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1. Introduction

In this work we develop a method for finding rigorous
bounds for topological entropy of discrete time dynamical
systems based on construction of symbolic dynamics embed-
ded within the considered nonlinear map. In order to prove
the existence of symbolic dynamics the concept of topologi-
cal covering [5] is used. The covering relations between the
topological rectangles N1, N2, . . . , Np are rigorously proved
using interval arithmetic. Once the existence of covering re-
lations is ensured, the transition matrix A = (aij) for the
subshift on p symbols is formed, such that the map is semi-
conjugate with the subshift on p symbols, with the transition
matrix A. Topological entropy of a subshift of a finite type
with transition matrix A is used to obtain a lower bound for
the topological entropy for the map f .

In this work we address the problem how to find sets Ni,
which lead to complex symbolic dynamics and estimates for
topological entropy close to the true entropy of the system.
For this task algorithms for finding nonwandering part of a
given set are used. The method starts with generation of the
nonwandering part of a chosen region. The set obtained is
covered by quadrangles, which are adjusted by hand to ful-
fill the assumptions of the theorem on existence of symbolic
dynamics.

As an example we consider simple two–dimensional
chaotic maps, namely the Hénon map and the Ikeda map. For
the Hénon map we find the symbolic dynamics on 29 sym-
bols with topological entropy larger than 0.43. For the Ikeda
map we find the symbolic dynamics on 18 symbols with the
topological entropy larger than 0.485. The rigorous bounds
for topological entropy found are best known to date.

2. Existence of Symbolic Dynamics

In this section we describe a topological method, which
can be used to prove the existence of symbolic dynamics. The
method is based on the concept of covering [5]. For simplicity
we consider two–dimensional systems only. For the descrip-
tion of covering relations in higher dimension see [5]. Let us
assume that f is a continuous two–dimensional map. Let us
choose p pairwise disjoint quadrangles N1, N2, . . . , Np. For

each Ni we choose two opposite edges and call them “hori-
zontal”. The two others are called “vertical”. We say that Ni

f–covers Nj and we use the notation Ni
f⇒ Nj if

(i) the image of Ni under f has empty intersection with the
horizontal edges of Nj ,

(ii) the images of vertical edges of Ni has empty intersec-
tion with Nj and they are located geometrically on the
opposite sides of Nj .

In the paper we will use the extension of the above defini-
tions by allowing that the edges of topological quadrangles
are broken lines instead of segments.

The existence of topological coverings can be rigorously
checked by means of computer assisted proofs using interval

arithmetic. To prove that a certain covering relation Ni
f⇒ Nj

holds, the edges of Ni are covered by boxes of a specified
size. Next, images of these boxes under f are found and the
conditions (i) and (ii) are checked.

Once the existence of covering relations is proved, we have
the existence of symbolic dynamics, as stated by the follow-
ing theorem (compare [3]).

Theorem 1 Let N1, N2, . . . , Np be pairwise disjoint quad-
rangles. Let A = (ai,j)

p

i,j=1
be a square matrix, where

ai,j =

{

1 if Ni
f⇒ Nj ,

0 otherwise.
(1)

Then f is semiconjugate with the subshift on p symbols, with
the transition matrix A.

2.1. Symbolic dynamics and topological entropy

From the fact that f is semiconjugate with a subshift of a
finite type, we can make conclusions on the topological en-
tropy of f .

Topological entropy H(f) characterizes “mixing” of points
by the map f . Topological entropy can be defined using the
notion of separated sets. A set E ⊂ X is called (n, ε)–
separated if for every two different points x, y ∈ E, there



exists 0 ≤ j < n such that the distance between f j(x) and
f j(y) is greater than ε.

Topological entropy of f is defined by

H(f) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε), (2)

where sn(ε) is the cardinality of a maximum (n, ε)–separated
set.

Topological entropy of a subshift of finite type with transi-
tion matrix A equals to the logarithm of the dominant eigen-
value λ1 of A, i.e., λ1 is such that λ1 ≥ |λj | for all eigen-
values of A (see [4][Theorem 1.9, p. 340]). The topological
entropy of a map semiconjugate to a subshift is not less than
the topological entropy of this subshift. For each symbolic se-
quence there exist a trajectory realizing the sequence, which
serves as an (n, ε)–separated set for every ε smaller that the
minimum distance between the sets Ni. Thus, we have the
following result.

Theorem 2 The topological entropy of the map f is not
smaller than the logarithm of the dominant eigenvalue of the
matrix A, defined be equation (1)

H(f) ≥ log λ1. (3)

2.2. Finding sets on which symbolic dynamics exists

There is no fully automatic method for finding sets Ni on
which complicated symbolic dynamics is defined. In previous
work the sets Ni were found by “trial and error” using some
information on the positions of low-period cycles and their
stable and unstable directions [5, 1, 3].

In order to locate the sets Ni we use the technique based
on construction of nonwandering part of a given set. A point
x is called nonwandering for f if for any neighborhood U
of x there exists n > 0 such that fn(U) ∩ U 6= ∅. For a
given set A we define the nonwandering part of A as the set
of nonwandering points of the map f |Inv(A). An enclosure
for the invariant or nonwandering part of a given set can be
easily found using the methods presented in [2].

The method of construction of sets Ni consists of several
steps. First, we choose the set containing the interesting dy-
namics. If we know the trapping region for the system, we
may choose this set. In the opposite case we choose a set con-
taining the numerically observed attractor. In the next step,
we find the nonwandering part of this set. Usually this set is
connected and it does not help us much in defining the sets
Ni. To break this set into several pieces we remove part of
this set and find the invariant part of what is left. In many
cases the result is a small number of connected components,
which after minor modification can serve as the rectangles
Ni.

It is possible to refine the enclosure of the nonwandering
part by dividing up the boxes constituting the enclosure. In
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Figure 1: Symbolic dynamics on 2 symbols for the second
iterate of the Hénon map

this way one may obtain a more detailed enclosure of the non-
wandering part and define symbolic dynamics on more sets.

3. Hénon Map

As a first example let us consider the Hénon map

h(x, y) = (1 + y − ax2, bx), (4)

with standard parameter values a = 1.4, b = 0.3.
In [1] we have proved the existence of symbolic dynamics

on 2 symbols for the second iteration of the Hénon map. The
corresponding quadrangles are shown in Fig. 1.

The covering relations between these sets correspond to the
following transition matrix

A =

(

1 1
1 0

)

, (5)

and we obtain the lower bound for the topological entropy for
the Hénon map

H(h) ≥ 1

2
log

√
5 + 1

2
> 0.2406. (6)

The factor 1

2
comes from the fact that covering relations in-

volve the second iterate of the map. In the above example the
sets Ni were found by “trial and error”.

To prove the existence of a more complex symbolic dy-
namics, we first find the nonwandering part of the set
[−2, 2]× [−2, 2] containing the numerically observed attrac-
tor. Then we remove boxes for which x < −1, and find the
invariant part of the remaining set. The result of this proce-
dure is shown in Fig. 2. This set is then used as an initial
guess for the position of rectangles, on which the symbolic
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Figure 2: Enclosure of the nonwandering part of [−1, 2] ×
[−2, 2]

dynamics is defined. Since the nonwandering part is com-
posed of 8 connected subsets, we choose 8 quadrangles (see
Fig. 3(a)). There are only four covering relations between
these sets. The transition matrix is almost empty and hence
there is no interesting symbolic dynamics on these sets. We
modify the position of the rectangles by hand, so that a large
number of covering relations hold. The improved sets and
their images under the Hénon map are shown in Fig. 3(b).

Finally, we check rigorously the existence of covering re-
lations between the chosen sets. The coverings correspond to
the symbolic dynamics on eight symbols with the following
transition matrix:

A =

























1 1
1 1

1
1

1 1
1
1

1

























. (7)

It follows that the symbolic dynamics with the transition ma-
trix (7) is embedded in h and that the topological entropy of
the Hénon map is bounded by H(h) > 0.382. This is better
than the best estimate known to date (H(h) > 0.338, see [3]).

We have performed several other attempts to find complex
symbolic dynamics for the Hénon map. The largest bound
for the topological entropy H(h) > 0.430 was obtained for
the sets shown in Fig. 3(c). This bound is close to the non-
rigorous estimation of topological entropy based on the num-
ber of low-period cycles H(h) ≈ 0.465 (see [2]).

(a)

-1.0 0.0 1.0
-0.5

0.0

0.5

 1
 2
 3
 4
 5
 6
 7
 8

(b)

-1.0 0.0 1.0
-0.5

0.0

0.5

 1
 2
 3
 4
 5
 6
 7
 8

(c)

-1.0 0.0 1.0
-0.5

0.0

0.5

 1
 2
 3
 4
 5
 6
 7
 8
 9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Figure 3: (a) Symbolic dynamics on 8 symbols, initial quad-
rangles, (b) Symbolic dynamics on 8 symbols, improved
quadrangles, (c) Symbolic dynamics on 29 symbols



4. Ikeda Map

As a second example let us consider the Ikeda map

f(x, y) = (p+B(x cos t−y sin t), B(x sin t+y cos t)), (8)

where t = t(x, y) = κ − α/(1 + x2 + y2), p = 1, B = 0.9,
κ = 0.4 and α = 6.

We have found several examples of symbolic dynamics
embedded withing the Ikeda map. For the symbolic dynamics
on four symbols (see Fig. 4(a)) the transition matrix is

A =









1
1
1 1

1









, (9)

and the bound for topological entropy is H(f) > 0.199.
The symbolic dynamics on seven symbols (Fig. 4(b)) gives
H(f) > 0.401. The largest bound H(f) > 0.485 is obtained
for the symbolic dynamics on 18 symbols (Fig. 4(c)).

5. Conclusions

In this work a method for choosing sets in the state space,
which can be used for the construction of complex symbolic
dynamics has been proposed. Lower bounds for topological
entropy has been found for the Hénon map: H(h) > 0.430
and for the Ikeda map: H(f) > 0.485.
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Figure 4: (a) Symbolic dynamics on 4 symbols, (b) symbolic
dynamics on 7 symbols, (c) symbolic dynamics on 18 sym-
bols


