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Abstract| The problem of synchronization of cou-

pled chaotic systems is considered. The notion of lo-

cal transversal Lyapunov exponents is introduced. We

show that they can be successfully used in investiga-

tions of the synchronization properties. The technique

is illustrated with computer simulations.
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I. Introduction

R

ECENTLY there has been a considerable inter-

est in using the concept of synchronization of

chaos to develop spread spectrum communication

systems. In applications in order to extract the in-

formation from transmitted chaotic signal a response

system must be synchronized with the signal.

In this paper we consider the problem of synchro-

nization of uni-directionally coupled chaotic systems:

_
x = F(x); (1)

_
y = F(y) + d(x� y); (2)

where x = (x
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), y = (y

1

; : : : ; y
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) are the

state variables of the drive and response systems

and d is a diagonal matrix with diagonal elements

d

1

; : : : ; d

n

being coupling coe�cients.

We say that the systems synchronize if y(k) �

x(k) ! 0 as k ! 1 (the trajectory of the system

(1), (2) converges to the synchronization subspace

x = y). It is clear that if the coupling coe�cients are

big enough the systems will synchronize. The source

of this synchronization is additional dissipation intro-

duced when the variables are not following the same

trajectories. For communication tasks we look for

systems where only one of the coupling coe�cients is

non-zero (otherwise one needs to send more signals

in order to extract the information).

There are several methods for investigating the

synchronization of chaotic systems. The �rst crite-

rion for successful synchronization, introduced in [2],

is based on conditional Lyapunov exponents calcu-

lated along a typical trajectory of the system. When
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all conditional Lyapunov exponents of the response

system driven by the signal x are negative then one

expects that the systems synchronize. This may not

be true especially in the presence of noise [3], [4].

It may happen that in the neighborhood of a peri-

odic orbit there exist a region where the trajectories

are pushed away from the synchronization subspace.

Such a situation occurs when not all conditional Lya-

punov exponents associated with the measure sup-

ported by the periodic orbit are negative. In this case

small noise could force the trajectory to enter such a

region. This in turn could lead to desynchronization

bursts [4].

Hence in order to ensure synchronization one

should evaluate the transversal Lyapunov exponents

for all periodic orbits and check that they are all neg-

ative. This is rather di�cult and computationally

expensive task. There is also another drawback of

this method. Even if the periodic orbit attracts the

trajectory to the synchronization space globally it is

possible that it repels trajectories locally. This may

also cause desynchronization bursts.

In this paper we propose another criterion for char-

acterizing the synchronization behavior. It is based

on local transversal Lyapunov exponents.

II. Synchronization of hyperchaotic

circuits in the presence of noise

The dynamics of the circuit [5] considered in this

paper is de�ned by the following state equation:
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where f is given by:

f(x) = m

0

x+ 0:5(m

1

�m

0

)(jx+ 1j � jx� 1j): (4)

Equations (3) and (4) de�ne a hyperchaotic system

with two positive Lyapunov exponents: �

1

� 0:25,

�

2

� 0:07, �

3

= 0 and �

4

� �53:2.

Two identical systems are connected by means of

uni{directional coupling. In the response system
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Fig. 1. Synchronization of hyperchaotic circuits: (a) transmit-

ted signal, The synchronization error v
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with the state variables (v
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) in the third

equation a linear coupling d

3

(i
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) is introduced

(i

1

is the driving signal).

In this section we investigate the in
uence of the

additive noise added to the transmitted signal on the

synchronization behavior.

In the �rst experiment we drive the response sys-

tem with the driving signal not corrupted by noise

(see Fig. 1a). Synchronization error v

1

� v

0

1

for dif-

ferent d

3

is shown in Fig. 1b{d. For all values of

coupling constant (d

3

= 0:6; 1; 2) the synchroniza-

tion takes place eventually. However for d

3

= 0:6

the time necessary to obtain the synchronization is

rather long (t > 150).

Next we consider synchronization behavior in a

more realistic situation when additive noise is present

in the channel. First we set the amplitude of the ad-

ditive noise at 0:1. The driving signal (containing

the noise) is shown in Fig. 2a. Synchronization error

for three di�erent values of d

3

is shown in Fig. 2b{d.

For d

3

= 0:6 large desynchronization bursts are ob-

served (see Fig. 2b). For d

3

= 1 we observe almost

perfect synchronization. Only one desynchronization
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Fig. 2. Synchronization of hyperchaotic circuits in the pres-

ence of channel noise: (a) transmitted signal with additive

noise of amplitude 0:1, The synchronization error v
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burst with a small amplitude is visible. For d

3

= 2

the synchronization error remains small for the whole

experiment.

Finally we consider synchronization with the driv-

ing signal contaminated by the additive noise of am-

plitude 1 (compare Fig. 3a). For weak coupling

d

3

= 0:6 one can see frequent desynchronization

bursts of large amplitude (Fig. 3b). For d

3

= 1 am-

plitude of bursts is much lower and they are less fre-

quent. For strong coupling d

3

= 2 the synchroniza-

tion error remains small. Non-coherent behavior is

damped by strong coupling.

III. Analysis of synchronization based on

local transversal Lyapunov exponents

First we will brie
y recall the notion of local Lya-

punov exponents �

i

(x; L). They are de�ned as loga-

rithms of the eigenvalues of the matrix [6]:

�(x; L) =

�

�

T

L

(x)

�

T

T

L

(x)

�

1

2L

; (5)

where T

L

(x) is the matrix of partial derivatives of the

time-L map induced by the continuous-time system
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Fig. 3. Synchronization of hyperchaotic circuits in the pres-

ence of channel noise: (a) transmitted signal with additive

noise of amplitude 1, The synchronization error v
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(compare [1]).

Local Lyapunov exponents say how rapidly per-

turbations of the initial point x changes after time L

from the moment of perturbation. From multiplica-

tive ergodic theorem of Oseledec [1] it follows that

local Lyapunov exponents tend to Lyapunov expo-

nents as L goes to in�nity.

Local transversal Lyapunov exponents are the lo-

cal Lyapunov exponents corresponding to eigenvec-

tors transversal to the synchronization subspace. It

turns out that local transversal Lyapunov exponents

are a very useful tool in studies of synchronization of

chaotic systems, especially in the presence of noise.

For the values of the coupling constant d

3

con-

sidered in the previous section we have computed

global transversal Lyapunov exponents. For d

3

= 0:6

the greatest transversal Lyapunov exponent is only

slightly negative � � �0:02. For d

3

= 1 and

d

3

= 2 the greatest transversal Lyapunov exponent

is � � �0:15 and � � �0:37 respectively. Hence

for all the cases transversal Lyapunov exponents are

negative and one could expect synchronization. We

have already seen that this is true but only when the
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Fig. 4. Histogram of maximum local transversal Lyapunov

exponent for L = 2
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Fig. 5. Histogram of maximum local transversal Lyapunov

exponent for L = 6

driving signal is not contaminated by noise (compare

Fig. 1). In order to explain the behavior of the cou-

pled systems in the presence of noise we will compute

local transversal Lyapunov exponents.

Local Lyapunov exponents have been computed

using the method proposed in [6]. First we �x the

time delay L = 2. Local transversal Lyapunov ex-

ponents have been computed at 1000 points along

the attractor. Then we have constructed histograms

of the greatest of them. In the construction of his-

tograms we have used bins of the length 0:05. The

results are presented in Fig. 4. One can clearly see

that the spectrum moves to negative values as the
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Fig. 6. Histogram of maximum local transversal Lyapunov

exponent for L = 20

coupling coe�cient is increased. For d

3

= 0:6 the

average value is positive �

aver

� 0:11. For only 39%

points on the attractor local transversal Lyapunov

exponents are all negative. This explains frequent

desynchronization bursts in Fig. 3b. For d

3

= 2 the

average value is negative �

aver

� �0:31 and more

than 90% of the spectrum lies below zero. This is an

indication that for this coupling the synchronized be-

havior is robust and not very sensitive to noise (com-

pare Fig. 3d).

In Fig. 5 we show histograms of maximum local

transversal Lyapunov exponents computed for time

L = 6. Spectrum is narrower (in comparison with

L = 2) and shifted slightly towards negative values.

For d

3

= 0:6 the average value is still positive �

aver

�

0:012. Now for approximately 57% points on the at-

tractor all local transversal Lyapunov exponents are

negative. For d

3

= 2 the average value is �

aver

�

�0:35 and 97% of the spectrum lies below zero.

Finally we have computed local transversal Lya-

punov exponents for L = 20 (see Fig.6). For d

3

= 0:6

the average value is still slightly positive �

aver

�

0:004. For strong coupling d

3

= 2 the whole spec-

trum is situated below zero and the average value is

�

aver

� �0:37.

If we further increase the value of L we will observe

in a histogram a very narrow peak at the value of the

\natural" maximum transversal Lyapunov exponent.

For investigations of synchronization properties

one should compute average local Lyapunov expo-

nents. Usually they are di�erent from global Lya-

punov exponents. In the limit L ! 1 the aver-

age values tend to global Lyapunov exponents. The

whole spectrum is also very important It tells us how

frequently (with respect to the natural measure on

the attractor) trajectories are repelled from the syn-

chronization subspace.

In order to use local Lyapunov exponents for the

analysis of synchronization one should choose the

time L properly. It cannot be too large as this would

protect us from obtaining any information about the

systems behavior in short time (for L!1 local ex-

ponents converge to global exponents). On the other

hand if we choose very small L we could get too re-

strictive conditions for the synchronized behaviour.

For discrete time systems the problem is much eas-

ier. If the whole spectrum of local transversal ex-

ponents for L = 1 lies below zero than one expects

synchronized behavior (see [7]).

IV. Conclusions

In this paper we have discussed the possibility of

using local transversal Lyapunov exponents for char-

acterization of the synchronization of chaotic sys-

tems. We have shown that there is a strong cor-

relation between local transversal Lyapunov expo-

nents and behaviour of coupled chaotic systems. We

have shown that local transversal Lyapunov expo-

nents could be e�ectively used for studying of syn-

chronization properties, especially in the presence of

noise. Their advantage is also that they could be

easily computed. It is not necessary to �nd periodic

orbits and compute their transversal Lyapunov expo-

nents to investigate synchronization properties. We

have also discussed the problem of choosing the time

L for which local Lyapunov exponents are evaluated.
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