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ABSTRACT

In this paper we consider the problem of synchronization

of coupled chaotic systems. First we show the limita-

tions of existing techniques for studying of the synchro-

nization. Then we introduce the notion of local con-

ditional (transversal) Lyapunov exponents. We show

that they can be successfully used in investigations of

synchronization properties. We develop a new criterion

for synchronization based on local conditional Lyapunov

exponents. The discussion is supported by numerical

examples.

1 INTRODUCTION

It is well known that when chaotic systems are coupled,

they may demonstrate identical oscillations associated

with the onset of synchronization [1]. The source of

this synchronization is additional dissipation introduced

when the variables are not following the same trajecto-

ries.

The synchronization has possible applications in com-

munications where in order to extract the information

from transmitted chaotic signal a response system must

be synchronized with the signal. Therefore the problem

of synchronization of chaotic systems is of very high im-

portance.

In this paper we consider the synchronization of uni{

directionally coupled discrete chaotic systems.
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being

the coupling coe�cients.

We say that the systems synchronize if jjy(k) �

x(k)jj ! 0 as k !1 (the trajectory of the system (1),

(2) converges to the synchronization subspace x = y).

There are several methods useful for studying of syn-

chronization of chaotic systems. The �rst criterion for

synchronization, introduced in [1], is based on condi-

tional Lyapunov exponents calculated along a typical

trajectory of the system. When all conditional Lya-

punov exponents of the system (2) driven by the sig-

nal x(k) are negative then one expects that the systems

synchronize. This may not be true especially for real

systems. It may happen that in the neighborhood of an

unstable periodic orbit there exist a region where the

trajectories are pushed away from the synchronization

subspace [2]. Such a situation occurs when one of the

Lyapunov exponents associated with the measure sup-

ported by the periodic orbit is positive. Small noise

inevitable in real systems could force the trajectory to

enter such region. This in turn could lead to desynchro-

nization bursts. This is observed in many computer and

laboratory experiments [3], [4], [5]. When there is no

noise in the system (or the noise level is very small) one

observes the synchronization behavior. But when the

noise level is increased then desynchronization bursts

occur.

Using the above argument one could develop another

criterion of successful synchronization based on all con-

ditional (transversal) Lyapunov exponents. In order to

ensure synchronization one should evaluate the condi-

tional Lyapunov exponents for all periodic orbits (apart

from the \natural" conditional Lyapunov exponents)

and check whether they are negative. This is rather

di�cult and computationally expensive task. There is

also another drawback of this method. Even if the peri-

odic orbit attracts the trajectory to the synchronization

space globally it is possible that it repels trajectories

locally. Examples of such orbits for continuous{time

systems are given in [6].

In order to avoid these problems we propose another

criterion for characterization of the synchronization be-

havior. It is based on local conditional Lyapunov expo-

nents.

2 CONDITIONAL LOCAL LYAPUNOV EX-

PONENTS

First we will briey recall the notions of local Lyapunov

exponents and conditional Lyapunov exponents.
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where

T
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(x)) : : :DF(F(x))DF(x) (4)

is the composition of L Jacobians. The multiplicative

ergodic theorem of Oseledec [7] states that for a typical

point on the chaotic attractor (for almost all points with

respect to the natural measure) the Lyapunov exponents

are well de�ned and do not depend of the initial point.

Local Lyapunov exponents �
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(x; L) are the eigenvalues

of the matrix [8]:

�(x; L) =

�

�

T

L

(x)

�

T

T

L

(x)

�

1

2L

: (5)

They say how rapidly perturbations of the initial point x

changes in L steps away from the time of perturbation.

They tend to global exponents as L goes to in�nity.

Conditional Lyapunov exponents of two uni{direction-

ally coupled systems are Lyapunov exponents of the re-

sponse system (2) driven by the driving signal x(k).

Combining these two concepts we can de�ne local con-

ditional Lyapunov exponents as the local Lyapunov ex-

ponents of the response system driven by the signal x(k).

It turns out that they are very useful in studies of syn-

chronization of chaotic systems, especially in the pres-

ence of noise.

Conditional Lyapunov exponents are here introduced

for the uni{directional synchronization scheme. When

the systems are bi{directionally coupled this notion

should be replaced by transversal Lyapunov exponents.

In the case of uni-directionally coupled systems these

two notions coincide. Lyapunov exponents of the mas-

ter system are responsible for the chaotic behavior of the

systems on the synchronization subspace. Conditional

Lyapunov exponents of the response system characterize

the behavior of the master-slave system in the neighbor-

hood of the synchronization subspace and are responsi-

ble for attracting or repelling trajectories to this space.

In this paper we consider only the master{slave con�g-

uration and hence we will use the notion of conditional

Lyapunov exponents.

3 SYNCHRONIZATION OF COUPLED

H

�

ENON MAPS

As an example we consider uni-directionally coupled

H�enon maps. The drive system is the H�enon map de-

�ned by

h(x; y) = (1 + y � ax

2

; bx); (6)

where a = 1:4 and b = 0:3 are standard parameter val-

ues. The response system is

h(x

0

; y

0

) = h(x

0

+ d

1
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); y
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+ d
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(y � y

0

)); (7)
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Figure 1: Histogram of maximum local conditional Lya-

punov exponent for di�erent time L. In all experiments

the number of points on the attractor at which the lo-

cal Lyapunov exponents are computed is 50000. The

coupling coe�cient is d

1

= 0:5.



where d

1

and d

2

are the coupling coe�cients. We will

consider the case when only the �rst coupling coe�cient

d

1

is non{zero.

In the �rst experiment we have �xed the coupling co-

e�cient d

1

= 0:5. For this coupling the systems (6) and

(7) eventually synchronize. However when the driving

signal is disturbed by a small additive noise we observe

frequent desynchronization bursts.

For the analysis of the synchronization properties we

use local conditional Lyapunov exponents. The eigen-

values of matrix (5) have been computed for 50000

points on the attractor. In Fig. 1 we show histograms of

maximumlocal conditional Lyapunov exponent �

1

(x; L)

for di�erent number of steps L.

In the construction of histograms we have chosen bins

of the length 0:05 covering the interval [�2; 1]. For each

bin the number of points for which the maximum Lya-

punov exponent belongs to the bin is plotted. One can

clearly see how the spectrum of the maximum local con-

ditional Lyapunov exponent changes with the number of

steps L. For small L it is rather wide, while for greater

L it becomes narrower and much higher. In the limit

L!1 there should be a very narrow peak at the value

of the global Lyapunov exponent.

One can also see that for L = 1 there are a lot of

points on the attractor with �

1

(x; 1) > 0. This is an ex-

planation for the existence of desynchronization bursts

observed in the presence of noise.

In Fig. 2 we show how the histogram changes when the

coupling coe�cient d

1

is modi�ed. For d

1

= 0:6 large

part of the histogram lies above zero. For stronger cou-

pling d

1

= 0:70 the part of the histogram above zero is

smaller and for coupling d

1

= 0:75 the whole histogram

lies below zero (compare Fig. 2).

We have performed several simulations of synchro-

nization of two H�enon systems for di�erent values of

coupling coe�cients, for di�erent initial conditions and

for di�erent noise level.

Based on these experiments we propose to use the

following synchronization criterion.

Synchronization criterion

If for a long enough trajectory all of the local conditional

Lyapunov exponents �(x; 1) are smaller than zero then

the synchronization of the chaotic systems will occur.

In this case noise of a small amplitude will not inuence

the synchronization behavior.

In order to �nd the value of d

1

for which all local

conditional Lyapunov exponents are negative we have

performed the following experiment. For each value of

d

1

from the interval [0; 2] (with the step 0:01) we com-

puted local conditional Lyapunov exponents at 50000

points along the attractor. At each point we have cho-

sen the maximum local conditional Lyapunov exponent.

For each d

1

we computed the minimum, average and

maximum of these maximum exponent. The results are

plotted in Fig. 3. One can clearly see the continuous
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Figure 2: Histogram of maximum local conditional Lya-

punov exponent for di�erent coupling coe�cient d

1

. In

all experiments the number of points on the attractor

at which the local Lyapunov exponents are computed is

50000. The time is L = 1.
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Figure 3: Spectrum of the maximum local conditional Lyapunov exponent. Average, maximum and minimum con-

ditional Lyapunov exponent are plotted with solid, dashed and dotted lines respectively. The number of steps is

L = 1

change of these values with the change of the coupling

coe�cient. The average value (solid line) becomes neg-

ative at d

1

= 0:38 while the maximum value (dashed

line) becomes negative for d

1

= 0:73. It is clear that

when there is no noise in the system one can achieve

synchronization with d

1

> 0:38. However if due to some

noise the trajectory is pushed away from the synchro-

nization subspace and this happens in the region where

the local conditional Lyapunov exponent is positive then

the trajectory will be repelled from the synchronization

subspace and synchronization burst will occur. In order

to avoid this possibility we must ensure that local condi-

tional Lyapunov exponents are negative everywhere on

the attractor. This condition is true for d

1

> 0:73.

4 CONCLUSIONS

We have discussed the possibility of using local condi-

tional Lyapunov exponents for characterization of syn-

chronization of coupled chaotic systems. We have shown

that they could be e�ectively used for prediction of syn-

chronization behavior in the presence of noise. We have

developed a new criterion for synchronization and con-

�rmed that it is useful in analysis of synchronization.

Local Lyapunov exponents can be used without mod-

i�cations in the analysis of continuous{time systems

(compare [9]). This idea can also be easily generalized

for bi-directional coupling. In this case one needs to use

local transversal Lyapunov exponents (in case of uni-

directional coupling they coincide with the conditional

exponents).
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