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Abstract

In this paper we report results on synchronization of

two simple four-dimensional hyperchaotic electronic

circuit by means of the linear coupling method. We

prove analytically that using appropriate coupling

these hyperchaotic systems synchronizes for all initial

conditions. In simulations we observe that synchro-

nization is also possible when the systems are coupled

using only one variable. This result is con�rmed by

computation of the conditional Lyapunov exponents

of the response system.

1 Introduction

Since the demonstration of the ability of chaotic sys-

tems to synchronize [1] great activity has been in-

duced for analysis of this nonlinear phenomenon [2],

[3], [4], [5]. This synchronization has possible appli-

cations to communications and control [2].

In this paper we consider the problem of synchro-

nization of two linearly coupled systems

_
x = f (x); (1)

_
y = f (y) +K(x � y); (2)

where x;y 2 R

n

and K 2M(n; n) is a diagonal ma-

trix. This scheme is also called the error-feedback

synchronization method.

Such a con�guration was used by Chen and Dong

[6] to force a chaotic system to follow an unstable pe-

riodic orbit. This technique was also used by Pyragas

[7] to synchronize the Lorenz and R�ossler systems.

The synchronization of coupled systems is a con-

cept di�erent from the one introduced by Pecora and

Carroll [1], where in the response system some dy-

namical variables are set identically equal to the vari-

ables in the driving system.
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Due to unidirectional connection between the sys-

tems (1) and (2) the dynamics of the �rst system does

not depend on the dynamics of the second one. The

systems (1) and (2) will be called a driving system

a response system respectively. We say that the sys-

tems (1) and (2) synchronize if jjx(t)�y(t)jj ! 0 for

t!1.

In this paper we consider the case when the sys-

tem (1) is hyperchaotic (it has at least two positive

Lyapunov exponents [8]). In section 2 a hyperchaotic

circuit considered in this paper is described. In sec-

tion 3 we prove using the Lyapunov function method

that for appropriate coupling the systems synchro-

nize for all initial conditions. In section 4 we address

the question whether the synchronization can be ob-

tained with only one non-zero element of the matrix

K. This problem can be important for possible ap-

plications of chaotic synchronization in communica-

tions. For communication problems the systems (1)

and (2) are distant. If only one of the elements k

i

is non-zero then in order to synchronize the system

(2) one needs to send only a scalar signal through the

communication channel.

2 A fourth-order electronic cir-

cuit

Let us consider a simple fourth-order electronic cir-

cuit [9] shown in Fig. 1(a). The circuit contains the

nonlinear resistor N , with characteristics shown in

Fig. 1(b). For the implementation of active and non-

linear elements see [9].

The dynamics of the circuit is described by the

following set of ordinary di�erential equations:
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Figure 1: A fourth-order hyperchaotic circuit (a) and

characteristics of its nonlinearity (b)

where v

1

, v

2

, i

1

and i

2

denote the voltage across C

1

,

the voltage across C

2

, the current through L

1

and the

current through L

2

respectively, and f is the piece-

wise linear characteristics given by

f(x) = m

0

x+ 0:5(m

1

�m

0

)(jx + 1j � jx� 1j): (4)

We consider this circuit with the following param-

eter values: C

1

= 0:5, C

2

= 0:05, L

1

= 1, L

2

= 2=3,

R = 1, m

0

= 3 and m

1

= �0:2. A typical trajectory

of the system is shown in Fig. 2.

In order to check whether the circuit is hyper-

chaotic the Lyapunov exponents [8] of the system

have been computed: �

1

� 0:25, �

2

� 0:07, �

3

= 0

and �

4

� �53:2. Two of them are positive which

con�rms that the system is hyperchaotic.

3 Synchronization of the hy-

perchaotic circuit by linear

coupling

In this section we prove that the systems can be syn-

chronized by means of linear coupling. The dynamics

of the drive system is given by (3) and the response
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Figure 2: A trajectory of the fourth-order hyper-

chaotic circuit

system is de�ned be the following set of equations:
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Let us denote: e
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. The equations of the \error" system

read:

C

1

_e

1

= f(v

2

� v

1

)� f(v

0

2

� v

0

1

)� e

3

� k

1

e

1

;

C

2

_e

2

= �f(v

2

� v

1

) + f(v

0

2

� v

0

1

)� e

4

� k

2

e

2

;

L

1

_e

3

= e

1

+ Re

3

� k

3

e

3

; (6)

L

2

_e

4

= e

2

� k

4

e

4

;

We expect that when the coe�cients k

i

are big

enough then the systems synchronize.

The following theorem [10] states the existence of

matrix K for which the linearly coupled systems syn-

chronize.

Theorem 1. If jjx(0) � y(0)jj is su�ciently small

then there exist �nite values d

i

(i = 1; 2; : : : ; n) such

that for all matrices K = diag(k

1

; k

2

; : : : ; k

i

) with

k

i

> d

i

the systems (1) and (2) synchronize.

We cannot use the above theorem for our circuit to

decide whether the synchronization is possible. This

theorem is proved only for the case when f on the



right side of equations (1) and (2) is di�erentiable

(compare proof of this theorem in [10]).

From a similar reason we cannot use directly the

general framework for synchronization of dynamical

systems presented in [3]. In the proof of the theorem

on synchronization by unidirectional linear coupling

one uses the fact that the vector �eld de�ning a dy-

namical system is of C

1

class.

In order to �nd conditions for synchronization of

our circuit we will use the global Lyapunov function

method [4].

Theorem 2. Let the drive and response system be

de�ned by (3) and (5) respectively. Let us assume

that C

1

, C

2

, L

1

, L

2

> 0 and m

1

< m

0

. Let k

1

>

�2m

1

, k

2

> �2m

1

, k

3

> R and k

4

> 0. For all

initial conditions of the drive and response systems

the systems synchronize, i.e.,

lim

t!1

jje(t)jj = 0: (7)

In order to proof the above theorem we need the

following lemma concerning the nonlinear function f .

Lemma 1. Let f be de�ned by (4). Let m

1

< m

0

.

(a) If x � x

0

then

m

1

(x� x

0

) � f(x) � f(x

0

) � m

0

(x� x

0

),

(b) if x � x

0

then

m

0

(x� x

0

) � f(x) � f(x

0

) � m

1

(x� x

0

),

(c) m

1

(x � x

0

)

2

� (f(x) � f(x

0

))(x� x

0

) � m

0

(x�

x

0

)

2

.

Proof. The �rst part can be proved from the de�ni-

tion of f by considering several cases for the position

of x and x

0

with respect to the sets (�1;�1), [�1; 1],

(1;1). (b) is equivalent to (a) (exchange x and x

0

).

Inequalities (c) follows easily from (a) and (b).

Proof of Theorem 2. V (e) =

1

2
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+L
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e

2

3

+

L

2

e

2

4

) is a Lyapunov function, i.e. the following con-

ditions are satis�ed:

V (e) > 0 for e 6= 0; (8)

V (0) = 0; (9)

_

V (e) < 0 for e 6= 0; (10)

_

V (0) = 0; (11)

where

_

V is the derivative along the trajectories

_
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It is clear that the conditions (8), (9) and (11) are ful-

�lled. Now we prove the condition (10). Substituting

in (12) _e

i

from (6) we obtain
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Finally we have
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(13)

As m

1

< 0 the �rst term m

1

(e

1

+ e

2

)

2

is never posi-

tive. All the coe�cients at e

2

i

are negative, and hence

the condition (10) holds. Because the function V ful-

�lls the conditions (8{11) the error e(t) will tend to

zero as t goes to in�nity. It means that the systems

synchronize.

4 Computer simulations

In the previous section we have found conditions for

k

i

which ensure synchronization. In order to ob-

tain the negative derivative of the Lyapunov func-

tion along the trajectory we have to use four positive

coupling coe�cients (compare Theorem 2). Negative

derivative means that the Lyapunov function is con-

tinuously decreasing. A weaker condition is based on

conditional Lyapunov exponents (CLE's) of the non-

autonomous response system [1]. They characterize

the exponential rate at which the perturbation of the

initial conditions in a response system changes with

time. If all of them are negative then the response

system is asymptotically stable (i.e., if jjy

1

� y

2

jj is

small enough then jjy(t;x

0

;y

1

)�y(t;x

0

;y

2

)jj ! 0 for

t ! 1, where y(t;x

0

;y

0

) denotes the trajectory of

the response system for initial conditions of the drive

and response systems being x

0

and y

0

respectively).

CLE's of the response system coincide with CLE's of

the \error" system, and hence asymptotic stability of

the response system is closely related to the synchro-

nization property [11]. This condition is commonly
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Figure 3: Synchronization of the four-dimensional

circuit for k

3

= 1:0.

used, in fact a lot of \proofs" of synchronization are

based on computation of conditional Lyapunov expo-

nents.

In this section we will consider the special case

when only one of elements k

i

is non-zero. We will try

to answer the question whether it is possible to syn-

chronize the systems in this case. The performance

of the synchronization will be measured in terms of

conditional Lyapunov exponents.

We say that the systems are v

1

(respectively v

2

, i

1

,

i

2

) coupled if only k

1

(respectively k

2

, k

3

, k

4

) is dif-

ferent from zero. In our simulations we observed that

the systems synchronize only for the i

1

-coupling. An

example of synchronization of the i

1

-coupled systems

with coupling coe�cients k

1

= k

2

= k

4

= 0, k

3

= 1:0

is shown in Fig. 3. One can see that all of the vari-

ables of the \error" system tend to zero as time goes

to in�nity.

In Fig. 4 we show the synchronization process for

di�erent values of the coupling coe�cient. For k

3

= 0

(no coupling) the error e

1

= v

1

� v

0

1

behaves in a

chaotic way. As there is no connection between the

systems the signals v

1

and v

0

1

are uncorrelated (com-

pare Fig. 4(a)). For k

3

= 0:3 (Fig. 4(b)) we still do

not observe synchronization but there is some corre-

lation between signals. For k = 0:4 the correlation is

much stronger. One can clearly see the long period

of coherent behavior of the systems (Fig. 4(c)). In

fact in this case the observation time was extended

to t = 300, because for t < 200 we would not ob-

serve the lack of synchronization. For k

3

= 0:6 and

k

3

= 1:0 the synchronization occurs. For greater k

3

the rate of convergence is higher.

In order to analyze the behaviour of the response

system the conditional Lyapunov exponents have

been computed. The results are presented in Fig. 5.

The value of k

3

is chosen from the interval (0; 1)

with the step 0:01. For each value the conditional

Lyapunov exponents are computed. The greatest of

them is plotted. One can see that for weak cou-

pling (k

3

< 0:55) at least one of the conditional

Lyapunov exponents is positive (we do not observe

synchronization), while for k

3

> 0:6 all of the Lya-

punov exponents are negative (the synchronization

occurs). If the systems synchronize then the max-

imum Lyapunov exponent can be used to estimate

the rate of convergence of the \error" system. For

k

3

= 1:0 the maximum conditional Lyapunov expo-

nent is l

max

� �0:135. This value agrees very well

with the convergence rate observed in Fig. 3:

log(e

i

(t

1

))� log(e

i

(t

0

)

t

1

� t

0

� log

0:5 � 10

�6

100

� �0:145:

If the systems does not synchronize the maximum

Lyapunov exponent cannot be computed directly by

observing a time plot. As the chaotic attractors of

the systems are bounded the state variables of the

di�erence system cannot grow in�nitely and hence

we cannot obtain positive Lyapunov exponent in this

way.

The synchronization process shown in Fig. 4 agrees

with the maximum conditional Lyapunov exponent

l

max

plotted in Fig. 5. For the �rst three cases

(k

3

= 0; 0:3; 0:4) the maximum conditional Lyapunov

exponent is positive and the synchronization does not

occur, while in the last two cases (k

3

= 0:6; 1:0) l

1

is negative and we observe perfect synchronization.

For k

3

= 0:6 the maximum conditional Lyapunov ex-

ponent is l

max

� �0:1 and the convergence rate is

slow. For k

3

= 1:0 the value of l

max

is approximately

�0:135 and the state v

0

1

converges to v

1

at a higher

rate.

We would like to stress that (in opposite to the

method for proving synchronization presented in Sec-

tion 2) the method based on conditional Lyapunov



(a) k

3

= 0:0

0 50 100 150 200
−4

−2

0

2

4

t

e1

−4 −2 0 2 4
−4

−2

0

2

4

v1

v‘1

(b) k

3

= 0:3

0 50 100 150 200
−4

−2

0

2

4

t

e1

−4 −2 0 2 4
−4

−2

0

2

4

v1

v‘1

(c) k

3

= 0:4

0 100 200 300
−4

−2

0

2

4

t

e1

−4 −2 0 2 4
−4

−2

0

2

4

v1

v‘1

(d) k

3

= 0:6

0 50 100 150 200
−4

−2

0

2

4

t

e1

−4 −2 0 2 4
−4

−2

0

2

4

v1

v‘1

(e) k

3

= 1:0

0 50 100 150 200
−4

−2

0

2

4

t

e1

−4 −2 0 2 4
−4

−2

0

2

4

v1

v‘1

Figure 4: Synchronization of the four-dimensional circuit for di�erent values of the coupling coe�cient k
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.
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exponents does not allow us to obtain any global

characteristics of the coupled systems. Conditional

Lyapunov exponents are computed locally along the

trajectory. Hence one has no information about the

size of the set of initial conditions for which the syn-

chronization take place. Another drawback is that

CLE's are usually obtained from computer simula-

tions of the system, so one cannot be sure what their

exact values are.

5 Conclusions

In this paper we investigated the possibility of syn-

chronization of simple hyperchaotic circuits by linear

coupling of the systems. Using the global Lyapunov

function method we have proved that for certain val-

ues of coupling coe�cients the synchronization is en-

sured. In spite of existence of two positive Lyapunov

exponents for the system we managed to synchronize

them in simulations using only one variable from the

autonomous system.
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