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Abstract— In this paper, we investigate synchro-
nization and cluster formation phenomena in two-
dimensional arrays of locally interconnected chaotic
circuits. We report the existence of an abundance of
attractors, for which each cell stores a binary infor-
mation. We describe a simple method for storing bi-
nary patterns in the network. We also address the
question which patterns can be successfully stored in
the network and discuss problems of pattern stability
and influence of parameter mismatch.

I. I NTRODUCTION

One of the theories explaining the functionality
of the brain relies on the dynamical representations.
Construction of patterns of brain activity constitutes
the key to understanding of various phenomena in-
cluding perception, memory, attention etc. [2]. Many
different kinds of artificial neural networks have been
proposed to mimic such functionality [1], [3], [4].
Also special types of information processing can be
obtained using Cellular Nonlinear Networks [5], [6].
In this paper we combine two aspects - chaotic unit
cells and abundance of existing attractors to obtain bi-
nary pattern storage.

After introduction of the dynamical array in sec-
tion III we study the problem of existence of many
attractors, corresponding to binary patterns. In sec-
tion IV we describe how to force the network to store
a given binary pattern. We also show examples of pat-
terns, which cannot be stored and attempt to charac-
terize those patterns. In section V we investigate sta-
bility of patterns, the size of their basins of attraction
and influence of parameters mismatch. Finally in sec-
tion VI, we show two examples of behavior of larger
networks and discuss the influence of network size on
the ability of the network to store binary patterns.
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II. DYNAMICS OF THE NETWORK

Let us consider a two–dimensional array composed
of simple third–order nonlinear systems (Chua’s cir-
cuits). The dynamics of ann × m array can be de-
scribed by

C2ẋi,j =G(zi,j − xi,j)− yi,j +
∑

(k,l)∈Ni,j

G1(xk,l − xi,j),

Lẏi,j =xi,j , (1)

C1żi,j =G(xi,j − zi,j)− f(zi,j),

wherei = 0, 1, 2, . . . , n − 1, j = 0, 1, 2, . . . ,m − 1
andf is a five–segment piecewise linear function:

f(z) =m2z + 0.5 · (m1−m2)(|z+b2| − |z−b2|)+
0.5 · (m0−m1)(|z+b1| − |z−b1|). (2)

xi,j andzi,j denote the voltages across the capacitors
C2 andC1 respectively, andyi,j is the current through
the inductorL in the cell (i, j) (i.e. belonging to
the ith column andjth row – see Fig. 1).Ni,j de-
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Fig. 1. A third order circuit coupled with its neighbors by
means of conductancesG1

notes the neighborhood of the cell(i, j), i.e. a set of
cells directly connected with the cell(i, j). We con-
sider the case when each cell is connected with its
four nearest neighbors (i.e.Ni,j = {((i + 1) mod
n, j), ((i− 1) mod n, j), (i, (j +1) mod m), (i, (j−
1) mod m)}) by means of conductancesG1 (here
G1 = 20). In our study we use parameter values for



which an isolated circuit generates the “double scroll”
chaotic attractor:C1 = 1/9, C2 = 1, L = 1/7, G =
0.7,m0 =−0.8,m1 =−0.5,m2 =0.8, b1 =1, b2 =2.

III. E XISTENCE OF MANY ATTRACTORS

Let us consider the network composed ofn · m =
10 · 10 cells. To make a classification of steady states
of the network we have run a number of simulations
starting the network with random initial conditions.
Four examples are shown in Figs. 2–5. In each case
the network converges to a limit set (steady state). To
show the state of the whole network, we plot a snap-
shot using shades of gray to represent the value ofz
variable in each cell. We plot also projections of the
system trajectory onto chosen sub-spaces. Projection
onto the plane(zi,j , yi,j) shows a trajectory of a given
cell, while the projection onto the plane(zk,l, zi,j) in-
dicates the synchronization between two cells.

(a) (b) (c) (d)

Fig. 2. (a) Initial state (t = 0), (b) Steady state (t = 300);
Plots of variables in the steady state: (c)y0,0 versus
z0,0, (d) z4,6 versusz0,0.

For the first example snapshots of the initial state
and the steady state are shown in Fig. 2(a,b). A uni-
form coloring for the whole network in Fig. 2(b) in-
dicates that all cells are synchronized. This is con-
firmed by plotting projection of the trajectory onto the
plane(zk,l, zi,j) for two distant cells(k, l) and(i, j)
(see Fig. 2(d)). Trajectories of individual cells form
double–scroll attractors (Fig. 2(c)). Fully synchro-
nized state is observed most frequently when the net-
work is started from random initial conditions, which
indicates that its basin of attraction is large.

In the second example, in the steady state there are
two clusters of cells oscillating synchronously. This
corresponds to groups of light and dark squares in
Fig. 3(b). Oscillations generated by cells belonging to
different clusters are shown in Fig. 3(c,d). The cells in
different clusters operate in distinct regions of theR3

space (for cells in one clusterz > 0, while for the sec-
ond onez < 0). Very good synchronization between
the cells within clusters is shown in Fig. 3(e). In the
steady state the behavior of the network is periodic.

Fig. 4 shows an example where one cluster is much
smaller than the other. Clusters have sizes 17 and 83,
respectively. Another important difference is that the

(a) (b)

(c) (d) (e) (f)

Fig. 3. (a) snapshot att = 0, (b) snapshot att = 300; plots
in the steady state: (c)y0,0 – z0,0, (d) y4,4 – z4,4, (e)
z4,6 – z0,0, (f) z4,4 – z0,0.

(a) (b)

(c) (d) (e) (f)

Fig. 4. (a) Initial state (t = 0), (b) steady state (t = 300);
plots in the steady state: (c)y0,0 – z0,0, (d) y6,0 – z6,0,
(e)z4,4 – z0,0, (f) z6,0 – z0,0.

network in the steady state oscillates chaotically (see
Fig. 4(c,d)). There is very good synchronization be-
tween cells belonging to each cluster (Fig. 4(e)).

The last example shows pattern switching phenom-
ena. The network started with random initial condi-
tions for timet ∈ [20, 45] displays a pattern with clus-
ter sizes 94 and 6 (Fig. 5(a)). This structure is however
not stable. Att ≈ 45 the pattern changes. Most of the
cells from the larger cluster leave the regionz > 0
and a pattern with clusters of size 13 and 87 emerges
(Fig. 5 (b)). This last pattern is stable. After very
long integration time is still persists in the network.
The cells within a cluster are not fully synchronized.
Sometimes small bursts can be seen (Fig. 5(c)), but all
the time the cluster pattern is clearly visible.

Among an abundance of observed attractors most
frequent is the state of full synchronization. Other at-
tractors are characterized by two clusters of cells op-
erating in distinct regions of theR3 space. In some
sense this attractors can be regarded as binary pat-
terns. If a cell operates in the regionz > 0 (or z < 0)
we say it corresponds to binary “1” (or “0”). In some
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Fig. 5. (a) Initial state (t = 10.5) and (b) steady state
(t = 300); plots in the steady state: (c)y0,0 – z0,0, (d)
y1,5 – z1,5, (e)z5,5 – z0,0, (f) z1,5 – z0,0.

cases patterns are not stable.

IV. STORING PATTERNS

An important question, which arises in this context
is how can we force the network to display a given
pattern. We test a very simple approach. First, we
choose a point(x, y, z) on the double-scroll attrac-
tor positioned far from the hyperplanez = 0 and
satisfying the conditionz > 0. In cells, which we
want to code as binary “1” we set(xi,j , yi,j , zi,j) =
(x, y, z) as an initial condition. For other cells we set
(xi,j , yi,j , zi,j) = (−x,−y,−z). It appears that in
this simple way we can force the network to store a
given binary pattern. An example is shown in Fig. 6.

(a) t = 0 (b) t = 12.5 (c) t = 20 (d) t = 200

Fig. 6. Storing a pattern

Since the initial state (Fig. 6(a)) does not belong to the
attractor corresponding to the binary pattern stored,
we observe transient oscillations (see shades of gray
in Fig. 6(b)). After some time the network converges
to the attractor. Snapshots taken att = 20 andt = 200
confirm that in the steady state the cells in each cluster
oscillate synchronously.

In Fig. 7, we show four other examples of patterns
that were successfully stored in the network.

There are some patterns which are not stable. Two
examples are shown in Fig. 7(e,f). If we try to im-
pose these patterns using the method described above
the system displays them for some time, but eventu-
ally escapes to a stable attractor – in both cases the

(a) (b) (c) (d)

(e) (f)

Fig. 7. First row – stored patterns (snapshot att = 40);
second row – unstable patterns, impossible to store

trajectory is attracted to the steady state with all cells
synchronized. It seems that patterns for which one of
the clusters is very small are unstable. Further anal-
ysis is necessary to characterize the class of unstable
patterns.

V. STABILITY OF PATTERNS

In order to study stability of binary patterns, we
carry out two different tests.

In the first test we modify the network parame-
ters. All parameters of cells are disturbed by a ran-
dom deviation of maximum amplitude0.01% of nom-
inal value. Two snapshots taken at the steady state are
shown in Fig. 8. Initially a binary pattern is formed.
Later, the cells within clusters are not fully synchro-
nized (different shades of grey) but still the cluster
structure is clearly visible.

(a) t = 10 (b) t = 500

Fig. 8. Behavior of network with nonuniform cells.

In the second test we disturb all variables in the net-
work displaying a binary pattern by adding a random
value of a small amplitude. In this way we can test
the size of the basin of attraction of the correspond-
ing attractor. Results for the pattern form Fig. 6(d)
are shown in Fig. 9. The maximum amplitude of per-
turbation was0.5 (Fig. 9(a)) and1.0 (Fig. 9(c,e)). In
two cases the pattern was recovered in a correct way
(Fig. 9(b,d)), while in the last case one bit was de-
tected with error (Fig. 9(f)).
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Fig. 9. Stability of patterns, (a), (c), (e) disturbed patterns,
(b), (d), (f) recovered patterns

VI. L ARGER NETWORKS

Let us now consider two examples of larger net-
works. The behavior of a20 × 20 network started
with random initial conditions is shown in Fig. 10.
The binary pattern visible in Fig. 10(b) evolves (see
Fig. 10(c)) and aroundt = 200 the final pattern
emerges (Fig. 10(d)). This pattern persists even for
t ≤ 5000. Although the binary pattern is stable there
is no full synchronization between the cells in the
clusters – waves traveling through the network are vis-
ible as different shades of gray for cells belonging to
a given cluster.

(a) t = 0 (b) t = 10 (c) t = 32 (d) t = 402

Fig. 10. Dynamics of a network of20× 20 cells

As a last example we show simulations of the net-
work composed of100 × 100 cells. In this case the
network started from random initial conditions after
t > 4 displays a binary pattern (Fig. 11(b)). This
pattern is however not stable. Att = 18 a circular
wave appears and the behavior becomes disorganized.
Snapshots taken att = 100 andt = 500 are shown in
Fig. 11(c,d). The mode of pattern variation is typical
for large networks.

These two simulations show that the property of
storing binary patterns depends on the network size.
It seems that the number of stable patterns is smaller
for large networks. For very large networks binary
patterns are not stable and more complex behavior is
observed.

(a) t = 2.5 (b) t = 12

(c) t = 100 (d) t = 500

Fig. 11. Behavior of a network of100× 100 cells

VII. C ONCLUSIONS

Arrays of locally coupled chaotic circuits show an
abundance of pattern formation phenomena. Using
position of the attractors in the phase space it is pos-
sible to give a binary description to such patterns. We
have investigated the formation of binary patterns in
arrays of Chua’s circuits coupled via a regular resis-
tive grid. Further we have proposed a simple method
for obtaining a desired binary pattern by appropriate
choice of initial states of the network. Stability of pat-
terns and influence of non-uniformity and size of the
networks have also been addressed.
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