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Abstract-In this paper we propose an enhanced version of
the DCSK (Differential Chaos Shift Keying) scheme where
the chaotic carrier is exploited for conveying useful infor-
mation. This is achieved by means of a pseudo-chaotic en-
coder which spreads the input sequence, approximating the
dynamics of the Bernoulli shift. The information encoded
in the chaotic carrier is retrieved by means of standard
maximum-likelihood detection methods.

I. INTRODUCTION

Among the several proposed chaos-based communication
schemes DCSK (Differential Chaos Shift Keying) [1], [2],
[3] exhibits one of the best BER performances and it has
been shown to be particularly robust against multipath
fading [4]. In DCSK, for each symbol period, a portion of
chaotic waveform (reference signal) is transmitted followed
by its inverted or non-inverted copy (information-bearing
signal) depending on the bit of information. At the re-
ceiver, the information is extracted by means of differen-
tially coherent demodulation, that is by correlating the
information-bearing part of the signal with the reference.
However, as pointed out in [5], part of the information as-
sociated with the chaotic carrier remains unexploited. We
emphasize that a chaotic system may be seen as an infor-
mation source, which reveals more and more information
about its initial state during the evolution in time [6]. Ac-
tually, the entropy associated with a chaotic signal can be
measured by introducing the formalism of symbolic dy-
namics [7]. For piecewise linear Markov (PWLM) maps
there exists a natural discretization which allows to define
a one-to-one relationship between any initial condition and
an (infinite) symbolic sequence [8].

In DCSK the total channel capacity is shared between
the payload bits transmitted and the symbolic sequence,
which is also transmitted (in a hidden way), associated
with the chaotic carrier. Furthermore, the two sources
are clearly independent [5]. In this work we propose an
enhanced version of DCSK, which we call SD-DCSK, ex-
ploiting the symbolic dynamics (SD) associated with the
chaotic carrier. This is obtained by replacing the chaotic
generator used in DCSK with a pseudo-chaotic (PC) en-
coder [9], which generates a chaotic signal from the original
input sequence. In practice, the pseudo-chaotic encoder is
realized with a convolutional-like encoder followed by a
DAC (digital/analog converter), approximating the iter-
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ates of the chaotic Bernoulli shift [10]. We show that the
information encoded in the pseudo-chaotic carrier can be
extracted efficiently using standard Viterbi detection, with
an appropriate metric definition. Also, the corresponding
trellis exhibits an interesting scalability property deriving
directly from the symbolic dynamics approach. This prop-
erty allows to use a large number of levels at the trans-
mitter while decoding with reduced complexity, adding a
degree of freedom in terms of the receiver design.

In summary, the SD-DCSK scheme allows the creation of
an auxiliary communication channel, parallel to the DCSK
one. This can be used to increase the data rate of the sys-
tem by transmitting independent information. If instead
the same binary stream is sent as for DCSK, it can be
employed for error-correction purposes [11].

II. SD-DCSK

The basic idea behind the SD-DCSK scheme is to re-
place the chaotic generator present in the DCSK scheme [2]
with a pseudo-chaotic encoder, as illustrated schematically
in Fig. 1. We denoted with m; (k) the binary stream to be
modulated according to the original DCSK scheme. On
the other hand, the input sequence ms (k) is used to gen-
erate the pseudo-chaotic carrier. Note that the inputs m;
(j = 1,2) are independent from each other, although the
same sequence can be transmitted in both channels in order
to increase the reliability of the communication. The only
assumption that is made is on mo(k) to be an i.i.d. (in-
dependent identically distributed) sequence, as discussed
later.

For simplicity in this work we consider a baseband sys-
tem and, for illustrative purposes only, a simple instance
of phase modulation meant to maintain the transmitted
energy per bit constant.

A. Pseudo-Chaotic Encoder

The PC-encoder performs a spreading of the input se-
quence mo(k), mimicking the chaotic dynamics of the
Bernoulli shift map, defined by [10]:
mod 1 (1)
whose graph is shown in Fig. 2. The state x can be repre-
sented as a binary expansion:
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Fig. 1.

where each of the bits b; is either a “0” or a “1”, and
x € I =1[0,1]. The successive iterates of x are obtained
by moving the separating point one position to the right
(multiplication by 2) and setting to zero the integer digit
(modulo 1 operation). Hence, digits which are initially far
to the right of the separating point, thus having only a
very slight influence on the value of z, eventually become
the first fractional digit. The information is encoded by
associating the symbol “0” to the subinterval Iy = [0,0.5)
and the symbol “1” to I; = [0.5,1], as shown in Fig. 2.
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Fig. 2. The Bernoulli shift map. The invariant interval I = [0,1] is
partitioned with respect to ¢ = 0.5. The subintervals Iy and I; are
assigned the binary symbols “0” and “1”, respectively.

In this work the Bernoulli shift process is approximated
by means of an M-bit shift register followed by a DAC, as
illustrated in Fig. 1. Correspondingly, the generic state x;

(with 1 =1,2,...,2M) can be expressed as:
M .
2 =0biby...by = 277b; (3)
i=1

where by and bys represent the MSB (most significant bit)
and the LSB (least significant bit), respectively. The shift
operation corresponds to a multiplication by a factor 2,
while the modulo 1 operation is realized by discarding the
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Block diagram of the SD-DCSK scheme. For forward error-correction applications: ma(k) = mi (k).

shifted MSB at each step. The shift register is fed with
the input sequence ms(k), which we assume to be i.i.d.!
At each step the most recent bit of information is assigned
the LSB position while the old MSB is discarded. Due to
the finite length of the shift register, the dynamics of the
Bernoulli shift can only be approximated. In particular, for
an M-bit shift register the quantization error € is bounded
from above by e(M) < 2~ which tends to zero for M —
00.

. From the viewpoint of information theory the shift reg-
ister structure implementing the Bernoulli shift may be
seen as a form of convolutional coding [12]. The memory
of the structure is represented by the shift register which
stores the last M input bits. Each input bit causes an
output of M bits; thus, the overall code rate is 1/M.

In general, the shift register implementing the Bernoulli
shift map may be followed by a transformation unit for
generating more complex chaotic maps. For example, a
Gray/Binary converter can be used to generate the tent
map.

B. SD-DCSK Signal

In this work we consider DCSK for the case L = 1,
which means that for each symbol period T one pseudo-
chaotic iterate is generated [2]. In order to maintain the
transmitted energy per bit constant we adopt a simple
phase modulation (PM) scheme. Namely, given the k-th
PC-iterate, x, we define the corresponding symbol s as
follows: s = [cos(pk),sin(pr)] where pr = 27z + @0,
and o = 27/2M*! is a phase offset for facilitating the
definition of the decision boundaries. The corresponding
signal-space diagram is shown in Fig. 3. Note that with
these notations ¢ € [0,27]. Thus, the invariant inter-
val I = [0,1] of the Bernoulli shift, with its definition of
symbolic dynamics, maps to the unit circle in the signal
space.

Then, in the first half [0,7/2] of the symbol period we
transmit the reference vector:

\/?COS(%), \/%Sin(%)

followed by £Y in the second half [T'/2,T], depending on
the input bit m4 (k). An example of transmitted SD-DCSK

Y =[V1,Y] =

L In practice this may be achieved by inserting a data compression
and/or a data scrambling block in front of the shift register.
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Fig. 3. Signal-space diagram for the SD-DCSK transmitted signal
(for M = 4) illustrating the geometrical meaning of the branch met-
ric di. Note also that the arc [0, ) is associated with the symbol “0”,
while [, 27) corresponds to the symbol “1”.

signal and its spectrum are illustrated in Fig. 4, in normal-
ized units. Note that for practical applications (and as-
suming m2 (k) to be an i.i.d. sequence) the pseudo-chaotic
signal can be considered equivalent to the one produced by
a real chaotic generator.

C. SD-DCSK Demodulation

The scheme proposed allows the creation of an auxiliary
communication channel to the DCSK one, exploiting the
symbolic dynamics associated with the chaotic carrier. As
far as the demodulation is concerned, the two channels can
be considered independent from each other.

D. DCSK

Referring to Fig. 1, the DCSK demodulation is car-
ried out as usual, i.e. by correlating the information-
bearing part of the signal (¢t € [T/2,T]) with the reference
(t € ]0,7/2]), sampling the correlator output according to
the symbol period 7', and inferring on the symbol received
by means of a threshold detector [2].

E. SD Decoder

The information encoded in the pseudo-chaotic carrier
can be extracted from the received signal by considering
its reference part. Further methods may be applied to
take into account the redundancy due to the information-
bearing part of the signal, but this is outside the scope of
the present paper.

Threshold Detection

In the simplest case the pseudo-chaotically encoded data
can be detected by a phase discriminator detecting whether
vk € [0, 7] or [, 2], respectively (see Fig. 3). This method
is not very effective as it relies solely on the sign of the
sample Y5. In addition, because of the signal-space dia-
gram associated with the PC-encoder, symbols such that
sin(py) ~ 0 will cause an error also for relatively low noise
levels.
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Fig. 4. (a) Transmitted SD-DCSK signal (for M = 10) and (b)
corresponding PSD (power spectral density). The plots refer to nor-
malized time t/tp and normalized frequency f/fo, where to = 1/ fo
is the sampling period.
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Maximum-Likelihood Detection

By assuming the input mo(k) to be an i.i.d. sequence,
the optimal decoder for the PC-encoded signal is repre-
sented by a trellis matched to the dynamics of the Bernoulli
shift, seen as convolutional encoder. In fact, we recall that
every PWLM map admits a representation as a topologi-
cal Markov chain [8]. In this work we consider soft Viterbi
decoding and for illustrating the branch metric compu-
tations we consider the normalized vector y = /2/EpY.
At each step, the input of the Viterbi algorithm is a vec-
tor § = [¢1, Y] representing the received symbol affected
by noise. By assuming that each sample is perturbed
by an independent Gaussian variable (AWGN) it can be
shown that the observation probability of receiving g, if
the symbol sx = [sk1,Sk2] was sent, is proportional to
e(Ti=s11) + (12 —512)") /207 here o, is the noise variance.
This in terms of logarithms, according to the usual formu-
lation of the Viterbi algorithm, translates into the branch
metric:

dr, = \/(3]1 —s11)” + (2 — sp2)”

whose geometrical interpretation is shown in Fig. 3.

(4)

Note that the same PC-encoded signal can be decoded
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Fig. 5. BER performance: DCSK versus pseudo-chaotic modula-

tion. Note the dependence on the number of states S in the Viterbi
detector and the high error probability associated with the threshold
discriminator (THR).

by Viterbi detectors with different number of states. This
is a direct consequence of the symbolic dynamic approach
used in this work for encoding/decoding information in
the pseudo-chaotic carrier. Namely, given the number
N (= 2M) of transmitter levels, the received PC-signal can
be decoded with Viterbi detectors with S = 2,4,8... N
states. This requires a slight modification in the branch
metric computation; in particular, in this work we com-
pute the observation probabilities based on the transmitter
level “closest” to the received signal. We emphasize that
the scalability property allows to perform a high spread-
ing at the transmitter (large N) such that the PC-iterates
reproduce with very good approximation the dynamics of
the Bernoulli shift, while decoding with reduced complex-
ity (small S). Of course, the performance of the Viterbi
detector depends on the number of states, as discussed in
the next section.

III. BER PERFORMANCE

The results of our analysis are presented in terms of
BER probability versus the ratio E, /Ny expressed in dB,
where Ej, is the energy per user bit—which coincides for
mq (k) and my(k)—and Ny is the single-sided spectral noise
density. We consider here the interference on the channel
to be just AWGN (additive white Gaussian noise).

Fig. 5 shows the simulation results for the auxiliary
communication channel associated with the pseudo-chaotic
carrier, versus DCSK. We observe that the simple phase
discriminator results in a high error probability, deriving
from the structure of the signal-space diagram associated
with the PC-encoding (see Fig. 3). However, soft Viterbi
decoding results in a good BER performance, that is sig-
nificantly better than DCSK (even though the energy as-
sociated with the information bearing part of the signal is
not utilized). Note the BER dependence on the number S
of states in the Viterbi detector, confirming the scalability
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Fig. 6. BER dependence on the number N of transmitter levels, for
a fixed complexity (S = 32) of the Viterbi detector. Note that the
performance is basically independent from the number of transmitter
levels.

property discussed above. Also, we note a saturation effect
in the performance when increasing the number of states
above a certain number (in the example S = 32).

On the other hand, Fig. 6 illustrates the BER depen-
dence on the number N of transmitter levels, for a given
complexity, i.e. a given number of states of the Viterbi de-
tector. Note that the performance is basically related only
to the number S of states. This allows to define arbitrarily
many transmitter levels, in order to minimize the quantiza-
tion error, without compromising the overall performance
of the auxiliary channel.

IV. CONCLUSIONS

In this work we have proposed an enhanced version of
the DCSK scheme which takes advantage of the symbolic
sequence associated with the chaotic carrier for conveying
useful information. This allows the creation of an auxiliary
communication channel to the DCSK one which can be
used to increase the overall data rate and/or for error-
correction purposes.
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