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Abstra
t-In this paper we propose an enhan
ed version of

the DCSK (Di�erential Chaos Shift Keying) s
heme where

the 
haoti
 
arrier is exploited for 
onveying useful infor-

mation. This is a
hieved by means of a pseudo-
haoti
 en-


oder whi
h spreads the input sequen
e, approximating the

dynami
s of the Bernoulli shift. The information en
oded

in the 
haoti
 
arrier is retrieved by means of standard

maximum-likelihood dete
tion methods.

I. Introdu
tion

Among the several proposed 
haos-based 
ommuni
ation

s
hemes DCSK (Di�erential Chaos Shift Keying) [1℄, [2℄,

[3℄ exhibits one of the best BER performan
es and it has

been shown to be parti
ularly robust against multipath

fading [4℄. In DCSK, for ea
h symbol period, a portion of


haoti
 waveform (referen
e signal) is transmitted followed

by its inverted or non-inverted 
opy (information-bearing

signal) depending on the bit of information. At the re-


eiver, the information is extra
ted by means of di�eren-

tially 
oherent demodulation, that is by 
orrelating the

information-bearing part of the signal with the referen
e.

However, as pointed out in [5℄, part of the information as-

so
iated with the 
haoti
 
arrier remains unexploited. We

emphasize that a 
haoti
 system may be seen as an infor-

mation sour
e, whi
h reveals more and more information

about its initial state during the evolution in time [6℄. A
-

tually, the entropy asso
iated with a 
haoti
 signal 
an be

measured by introdu
ing the formalism of symboli
 dy-

nami
s [7℄. For pie
ewise linear Markov (PWLM) maps

there exists a natural dis
retization whi
h allows to de�ne

a one-to-one relationship between any initial 
ondition and

an (in�nite) symboli
 sequen
e [8℄.

In DCSK the total 
hannel 
apa
ity is shared between

the payload bits transmitted and the symboli
 sequen
e,

whi
h is also transmitted (in a hidden way), asso
iated

with the 
haoti
 
arrier. Furthermore, the two sour
es

are 
learly independent [5℄. In this work we propose an

enhan
ed version of DCSK, whi
h we 
all SD-DCSK, ex-

ploiting the symboli
 dynami
s (SD) asso
iated with the


haoti
 
arrier. This is obtained by repla
ing the 
haoti


generator used in DCSK with a pseudo-
haoti
 (PC) en-


oder [9℄, whi
h generates a 
haoti
 signal from the original

input sequen
e. In pra
ti
e, the pseudo-
haoti
 en
oder is

realized with a 
onvolutional-like en
oder followed by a

DAC (digital/analog 
onverter), approximating the iter-
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ates of the 
haoti
 Bernoulli shift [10℄. We show that the

information en
oded in the pseudo-
haoti
 
arrier 
an be

extra
ted eÆ
iently using standard Viterbi dete
tion, with

an appropriate metri
 de�nition. Also, the 
orresponding

trellis exhibits an interesting s
alability property deriving

dire
tly from the symboli
 dynami
s approa
h. This prop-

erty allows to use a large number of levels at the trans-

mitter while de
oding with redu
ed 
omplexity, adding a

degree of freedom in terms of the re
eiver design.

In summary, the SD-DCSK s
heme allows the 
reation of

an auxiliary 
ommuni
ation 
hannel, parallel to the DCSK

one. This 
an be used to in
rease the data rate of the sys-

tem by transmitting independent information. If instead

the same binary stream is sent as for DCSK, it 
an be

employed for error-
orre
tion purposes [11℄.

II. SD-DCSK

The basi
 idea behind the SD-DCSK s
heme is to re-

pla
e the 
haoti
 generator present in the DCSK s
heme [2℄

with a pseudo-
haoti
 en
oder, as illustrated s
hemati
ally

in Fig. 1. We denoted with m

1

(k) the binary stream to be

modulated a

ording to the original DCSK s
heme. On

the other hand, the input sequen
e m

2

(k) is used to gen-

erate the pseudo-
haoti
 
arrier. Note that the inputs m

j

(j = 1; 2) are independent from ea
h other, although the

same sequen
e 
an be transmitted in both 
hannels in order

to in
rease the reliability of the 
ommuni
ation. The only

assumption that is made is on m

2

(k) to be an i.i.d. (in-

dependent identi
ally distributed) sequen
e, as dis
ussed

later.

For simpli
ity in this work we 
onsider a baseband sys-

tem and, for illustrative purposes only, a simple instan
e

of phase modulation meant to maintain the transmitted

energy per bit 
onstant.

A. Pseudo-Chaoti
 En
oder

The PC-en
oder performs a spreading of the input se-

quen
e m

2

(k), mimi
king the 
haoti
 dynami
s of the

Bernoulli shift map, de�ned by [10℄:

x

k+1

= 2x

k

mod 1 (1)

whose graph is shown in Fig. 2. The state x 
an be repre-

sented as a binary expansion:

x = 0:b

1

b

2

b

3

: : : �

1

X

j=1

2

�j

b

j

(2)
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Fig. 1. Blo
k diagram of the SD-DCSK s
heme. For forward error-
orre
tion appli
ations: m

2

(k) � m

1

(k).

where ea
h of the bits b

j

is either a \0" or a \1", and

x 2 I = [0; 1℄. The su

essive iterates of x are obtained

by moving the separating point one position to the right

(multipli
ation by 2) and setting to zero the integer digit

(modulo 1 operation). Hen
e, digits whi
h are initially far

to the right of the separating point, thus having only a

very slight in
uen
e on the value of x, eventually be
ome

the �rst fra
tional digit. The information is en
oded by

asso
iating the symbol \0" to the subinterval I

0

= [0; 0:5)

and the symbol \1" to I

1

= [0:5; 1℄, as shown in Fig. 2.
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Fig. 2. The Bernoulli shift map. The invariant interval I = [0; 1℄ is

partitioned with respe
t to 
 = 0:5. The subintervals I

0

and I

1

are

assigned the binary symbols \0" and \1", respe
tively.

In this work the Bernoulli shift pro
ess is approximated

by means of an M -bit shift register followed by a DAC, as

illustrated in Fig. 1. Correspondingly, the generi
 state x

l

(with l = 1; 2; : : : ; 2

M

) 
an be expressed as:

x

l

= 0:b

1

b

2

: : : b

M

�

M

X

j=1

2

�j

b

j

(3)

where b

1

and b

M

represent the MSB (most signi�
ant bit)

and the LSB (least signi�
ant bit), respe
tively. The shift

operation 
orresponds to a multipli
ation by a fa
tor 2,

while the modulo 1 operation is realized by dis
arding the

shifted MSB at ea
h step. The shift register is fed with

the input sequen
e m

2

(k), whi
h we assume to be i.i.d.

1

At ea
h step the most re
ent bit of information is assigned

the LSB position while the old MSB is dis
arded. Due to

the �nite length of the shift register, the dynami
s of the

Bernoulli shift 
an only be approximated. In parti
ular, for

an M -bit shift register the quantization error " is bounded

from above by "(M) < 2

�M

, whi
h tends to zero for M !

1.

>From the viewpoint of information theory the shift reg-

ister stru
ture implementing the Bernoulli shift may be

seen as a form of 
onvolutional 
oding [12℄. The memory

of the stru
ture is represented by the shift register whi
h

stores the last M input bits. Ea
h input bit 
auses an

output of M bits; thus, the overall 
ode rate is 1=M .

In general, the shift register implementing the Bernoulli

shift map may be followed by a transformation unit for

generating more 
omplex 
haoti
 maps. For example, a

Gray/Binary 
onverter 
an be used to generate the tent

map.

B. SD-DCSK Signal

In this work we 
onsider DCSK for the 
ase L = 1,

whi
h means that for ea
h symbol period T one pseudo-


haoti
 iterate is generated [2℄. In order to maintain the

transmitted energy per bit 
onstant we adopt a simple

phase modulation (PM) s
heme. Namely, given the k-th

PC-iterate, x

k

, we de�ne the 
orresponding symbol s

k

as

follows: s

k

= [
os('

k

); sin('

k

)℄ where '

k

= 2�x

k

+ '

0

,

and '

0

= 2�=2

M+1

is a phase o�set for fa
ilitating the

de�nition of the de
ision boundaries. The 
orresponding

signal-spa
e diagram is shown in Fig. 3. Note that with

these notations '

k

2 [0; 2�℄. Thus, the invariant inter-

val I = [0; 1℄ of the Bernoulli shift, with its de�nition of

symboli
 dynami
s, maps to the unit 
ir
le in the signal

spa
e.

Then, in the �rst half [0; T=2℄ of the symbol period we

transmit the referen
e ve
tor:

Y = [Y

1

; Y

2

℄ =

"

r

E

b

2


os('

k

);

r

E

b

2

sin('

k

)

#

followed by �Y in the se
ond half [T=2; T ℄, depending on

the input bitm

1

(k). An example of transmitted SD-DCSK

1

In pra
ti
e this may be a
hieved by inserting a data 
ompression

and/or a data s
rambling blo
k in front of the shift register.
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Fig. 3. Signal-spa
e diagram for the SD-DCSK transmitted signal

(for M = 4) illustrating the geometri
al meaning of the bran
h met-

ri
 d

k

. Note also that the ar
 [0; �) is asso
iated with the symbol \0",

while [�; 2�) 
orresponds to the symbol \1".

signal and its spe
trum are illustrated in Fig. 4, in normal-

ized units. Note that for pra
ti
al appli
ations (and as-

suming m

2

(k) to be an i.i.d. sequen
e) the pseudo-
haoti


signal 
an be 
onsidered equivalent to the one produ
ed by

a real 
haoti
 generator.

C. SD-DCSK Demodulation

The s
heme proposed allows the 
reation of an auxiliary


ommuni
ation 
hannel to the DCSK one, exploiting the

symboli
 dynami
s asso
iated with the 
haoti
 
arrier. As

far as the demodulation is 
on
erned, the two 
hannels 
an

be 
onsidered independent from ea
h other.

D. DCSK

Referring to Fig. 1, the DCSK demodulation is 
ar-

ried out as usual, i.e. by 
orrelating the information-

bearing part of the signal (t 2 [T=2; T ℄) with the referen
e

(t 2 [0; T=2℄), sampling the 
orrelator output a

ording to

the symbol period T , and inferring on the symbol re
eived

by means of a threshold dete
tor [2℄.

E. SD De
oder

The information en
oded in the pseudo-
haoti
 
arrier


an be extra
ted from the re
eived signal by 
onsidering

its referen
e part. Further methods may be applied to

take into a

ount the redundan
y due to the information-

bearing part of the signal, but this is outside the s
ope of

the present paper.

Threshold Dete
tion

In the simplest 
ase the pseudo-
haoti
ally en
oded data


an be dete
ted by a phase dis
riminator dete
ting whether

'

k

2 [0; �℄ or [�; 2�℄, respe
tively (see Fig. 3). This method

is not very e�e
tive as it relies solely on the sign of the

sample Y

2

. In addition, be
ause of the signal-spa
e dia-

gram asso
iated with the PC-en
oder, symbols su
h that

sin('

k

) � 0 will 
ause an error also for relatively low noise

levels.
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Fig. 4. (a) Transmitted SD-DCSK signal (for M = 10) and (b)


orresponding PSD (power spe
tral density). The plots refer to nor-

malized time t=t

0

and normalized frequen
y f=f

0

, where t

0

= 1=f

0

is the sampling period.

Maximum-Likelihood Dete
tion

By assuming the input m

2

(k) to be an i.i.d. sequen
e,

the optimal de
oder for the PC-en
oded signal is repre-

sented by a trellis mat
hed to the dynami
s of the Bernoulli

shift, seen as 
onvolutional en
oder. In fa
t, we re
all that

every PWLM map admits a representation as a topologi-


al Markov 
hain [8℄. In this work we 
onsider soft Viterbi

de
oding and for illustrating the bran
h metri
 
ompu-

tations we 
onsider the normalized ve
tor y =

p

2=E

b

Y .

At ea
h step, the input of the Viterbi algorithm is a ve
-

tor ~y = [ ~y

1

; ~y

2

℄ representing the re
eived symbol a�e
ted

by noise. By assuming that ea
h sample is perturbed

by an independent Gaussian variable (AWGN) it 
an be

shown that the observation probability of re
eiving ~y, if

the symbol s

k

= [s

k1

; s

k2

℄ was sent, is proportional to

e

(

( ~y

1

�s

k1

)

2

+( ~y

2

�s

k2

)

2

)

=2�

2

n

where �

n

is the noise varian
e.

This in terms of logarithms, a

ording to the usual formu-

lation of the Viterbi algorithm, translates into the bran
h

metri
:

d

k

=

q

( ~y

1

� s

k1

)

2

+ ( ~y

2

� s

k2

)

2

(4)

whose geometri
al interpretation is shown in Fig. 3.

Note that the same PC-en
oded signal 
an be de
oded
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Fig. 5. BER performan
e: DCSK versus pseudo-
haoti
 modula-

tion. Note the dependen
e on the number of states S in the Viterbi

dete
tor and the high error probability asso
iated with the threshold

dis
riminator (THR).

by Viterbi dete
tors with di�erent number of states. This

is a dire
t 
onsequen
e of the symboli
 dynami
 approa
h

used in this work for en
oding/de
oding information in

the pseudo-
haoti
 
arrier. Namely, given the number

N(= 2

M

) of transmitter levels, the re
eived PC-signal 
an

be de
oded with Viterbi dete
tors with S = 2; 4; 8 : : : ; N

states. This requires a slight modi�
ation in the bran
h

metri
 
omputation; in parti
ular, in this work we 
om-

pute the observation probabilities based on the transmitter

level \
losest" to the re
eived signal. We emphasize that

the s
alability property allows to perform a high spread-

ing at the transmitter (large N) su
h that the PC-iterates

reprodu
e with very good approximation the dynami
s of

the Bernoulli shift, while de
oding with redu
ed 
omplex-

ity (small S). Of 
ourse, the performan
e of the Viterbi

dete
tor depends on the number of states, as dis
ussed in

the next se
tion.

III. BER Performan
e

The results of our analysis are presented in terms of

BER probability versus the ratio E

b

=N

0

expressed in dB,

where E

b

is the energy per user bit|whi
h 
oin
ides for

m

1

(k) andm

2

(k)|andN

0

is the single-sided spe
tral noise

density. We 
onsider here the interferen
e on the 
hannel

to be just AWGN (additive white Gaussian noise).

Fig. 5 shows the simulation results for the auxiliary


ommuni
ation 
hannel asso
iated with the pseudo-
haoti



arrier, versus DCSK. We observe that the simple phase

dis
riminator results in a high error probability, deriving

from the stru
ture of the signal-spa
e diagram asso
iated

with the PC-en
oding (see Fig. 3). However, soft Viterbi

de
oding results in a good BER performan
e, that is sig-

ni�
antly better than DCSK (even though the energy as-

so
iated with the information bearing part of the signal is

not utilized). Note the BER dependen
e on the number S

of states in the Viterbi dete
tor, 
on�rming the s
alability
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Fig. 6. BER dependen
e on the number N of transmitter levels, for

a �xed 
omplexity (S = 32) of the Viterbi dete
tor. Note that the

performan
e is basi
ally independent from the number of transmitter

levels.

property dis
ussed above. Also, we note a saturation e�e
t

in the performan
e when in
reasing the number of states

above a 
ertain number (in the example S = 32).

On the other hand, Fig. 6 illustrates the BER depen-

den
e on the number N of transmitter levels, for a given


omplexity, i.e. a given number of states of the Viterbi de-

te
tor. Note that the performan
e is basi
ally related only

to the number S of states. This allows to de�ne arbitrarily

many transmitter levels, in order to minimize the quantiza-

tion error, without 
ompromising the overall performan
e

of the auxiliary 
hannel.

IV. Con
lusions

In this work we have proposed an enhan
ed version of

the DCSK s
heme whi
h takes advantage of the symboli


sequen
e asso
iated with the 
haoti
 
arrier for 
onveying

useful information. This allows the 
reation of an auxiliary


ommuni
ation 
hannel to the DCSK one whi
h 
an be

used to in
rease the overall data rate and/or for error-


orre
tion purposes.
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