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Abstract

In this paper we propose an enhanced version of the DCSK (Differential Chaos Shift Keying) scheme where the
carrier symbolic dynamics are exploited for conveying useful information. This is achieved by means of a pseudo-chaotic
encoder which spreads the input sequence approximating the dynamics of the Bernoulli shift. The information encoded
in the pseudo-chaotic carrier is retrieved by using standard maximum-likelihood detection. It is shown that the proposed
method can also be useful for noise filtering purposes.
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I. Introduction

Among the several proposed chaos-based communication schemes DCSK (Differential Chaos Shift Key-
ing) [1], [2], [3], exhibits one of the best BER performances and it has been shown to be particularly robust
against multipath fading [4]. In DCSK, for each symbol period, a portion of chaotic waveform (reference
signal) is transmitted followed by its inverted or non-inverted copy (information-bearing signal) depending
on the bit of information. At the receiver, the information is extracted by means of differentially coherent
demodulation, that is by correlating the information-bearing part of the signal with the reference. However,
as pointed out in [5], [6], part of the information associated with the chaotic carrier remains unexploited.
We emphasize that a chaotic system may be seen as an information source, which reveals more and more
information about its initial state during the evolution in time [7]. Actually, the entropy associated with a
chaotic signal can be measured by introducing the formalism of symbolic dynamics [8]. For piecewise linear
Markov (PWLM) maps there exists a natural discretization which allows to define a one-to-one relationship
between any initial condition and an (infinite) symbolic sequence [9].

In DCSK the total channel capacity is shared between the payload bits transmitted and the symbolic
sequence, which is also transmitted (in a hidden way), associated with the chaotic carrier. Furthermore, the
two sources are clearly independent [6]. In this work we propose an enhanced version of DCSK, which we call
SD-DCSK, exploiting the symbolic dynamics (SD) associated with the chaotic carrier. This is obtained by
replacing the chaotic generator used in DCSK with a pseudo-chaotic (PC) encoder [10], [11], which generates
a chaotic signal from the original input sequence. In practice, the pseudo-chaotic encoder is realized with a
convolutional-like encoder followed by a DAC (digital/analog converter), approximating the iterates of the
chaotic Bernoulli shift [12]. We show that the information encoded in the pseudo-chaotic carrier can be
extracted efficiently using standard maximum-likelihood detection. Also, the corresponding trellis exhibits an
interesting scalability property deriving directly from the symbolic dynamics approach.

The SD-DCSK scheme allows the creation of an auxiliary communication channel, in parallel to the DCSK
one. This can be used to increase the data rate of the system by transmitting independent information. If
instead the same binary stream is sent as for DCSK, it can be employed for error-correction purposes [13].
In addition, the recovered information associated with the symbolic dynamics of the (pseudo-)chaotic carrier
may be used to “clean” the reference part of the DCSK signal, thus improving the BER (bit error rate)
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Fig. 1. Simplified block diagram of the SD-DCSK scheme. For forward error-correction applications: m2(k) ≡ m1(k).

performance of DCSK as a communication system. Finally, we characterize the improvement in terms of the
total transfer of information between transmitter–receiver in terms of trans-information [15].

The paper is structured as follows. In Sec. II we present the relevant theory concerning the encod-
ing/decoding of the information exploiting symbolic dynamics. Sec. III reports the simulation results for
the SD-DCSK scheme in terms of BER performance. In Sec. IV we demonstrate the noise-filtering capabili-
ties intrinsic in the SD-DCSK system. Finally, the results regarding the computation of the trans-information
are reported in Sec. V.

II. SD-DCSK

The basic idea behind the SD-DCSK scheme is to replace the chaos generator present in the DCSK scheme [2]
with a pseudo-chaotic encoder, as illustrated schematically in Fig. 1. We denoted with m1(k) the binary stream
to be modulated according to the original DCSK scheme. On the other hand, the input sequence m2(k) is
used to generate the pseudo-chaotic carrier. Note that the inputs mj (j = 1, 2) are independent from each
other, although the same sequence can be transmitted in both channels in order to increase the reliability of
the communication. The only assumption that is made is on m2(k) to be an i.i.d. (independent identically
distributed) sequence, as discussed later.

A. Pseudo-Chaotic Encoder

The PC-encoder performs a spreading of the input sequence m2(k), mimicking the chaotic dynamics of the
Bernoulli shift map, defined by [12]:

xk+1 = 2xk mod 1 (1)

whose graph is shown in Fig. 2. The state x can be represented as a binary expansion:

x = 0.b1b2b3 . . . ≡

∞
∑

j=1

2−jbj (2)

where each of the bits bj is either a “0” or a “1”, and x ∈ I = [0, 1]. The successive iterates of x are obtained by
moving the separating point one position to the right (multiplication by 2) and setting to zero the integer digit
(modulo 1 operation). Hence, digits which are initially far to the right of the separating point, thus having
only a very slight influence on the value of x, eventually become the first fractional digit. The information is
encoded by associating the symbol “0” to the subinterval I0 = [0, 0.5) and the symbol “1” to I1 = [0.5, 1], as
shown in Fig. 2.

In this work the Bernoulli shift process is approximated by means of an M -bit shift register followed by a
DAC, as illustrated in Fig. 1. Correspondingly, the generic state xl (with l = 1, 2, . . . , 2M ) can be expressed
as:

xl = 0.b1b2 . . . bM ≡

M
∑

j=1

2−jbj (3)

where b1 and bM represent the MSB (most significant bit) and the LSB (least significant bit), respectively.
The shift operation corresponds to a multiplication by a factor 2, while the modulo 1 operation is realized by
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Fig. 2. The Bernoulli shift map with its definition of symbolic dynamics. The invariant interval I = [0, 1] is partitioned
with respect to the critical point c = 0.5. The subintervals I0 and I1 are assigned the binary symbols “0” and “1”,
respectively.

discarding the shifted MSB at each step. The shift register is fed with the input sequence m2(k), which we
assume to be i.i.d.1 At each step the most recent bit of information is assigned the LSB position while the old
MSB is discarded. Due to the finite length of the shift register, the dynamics of the Bernoulli shift can only
be approximated. In particular, for an M -bit shift register the quantization error ε is bounded from above by
ε(M) < 2−M , which tends to zero for M → ∞.

From the viewpoint of information theory the shift register structure implementing the Bernoulli shift may
be seen as a form of convolutional coding [14]. The memory of the structure is represented by the shift register
which stores the last M input bits. Each input bit causes an output of M bits; thus, the overall code rate
is 1/M .

In general, the shift register implementing the Bernoulli shift map may be followed by a transformation unit
for generating more complex chaotic maps. For example, a Gray/Binary converter can be used to generate
the tent map.

B. SD-DCSK Modulation

In order to describe the SD-DCSK modulation we consider a discrete-time baseband model of a DCSK
telecommunication system. This model can be shown to be equivalent to sampling the continuous-time
DCSK signal transmitted over an RF (radio frequency) bandlimited channel, employing phase modulation
(PM). In particular, in this work we consider DCSK for the case L = 1, which means that for each symbol
period T one (pseudo-)chaotic iterate is generated [2]. Hence the data rates associated with m1(k) and m2(k)
in this case coincide. However, note that in general the transmission rate associated with the SD channel
(m2(k)) would be L-times larger than the DCSK channel (m1(k)).

By denoting with xk the k-th pseudo-chaotic iterate, we define the corresponding symbol sk as follows:

sk = [cos(ϕk), sin(ϕk)] (4)

where: ϕk = 2πxk + ϕ0, and ϕ0 = 2π/2M+1, is a phase offset chosen accordingly with the definition of

1In practice this may be achieved by inserting a data compression and/or a data scrambling block in front of the shift register.
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Fig. 3. Signal-space diagram for the SD-DCSK transmitted signal (M = 4 bits) illustrating the geometrical meaning of
the branch metric dk. Note also that the arc [0, π) is associated with the symbol “0”, while [π, 2π) corresponds to
the symbol “1”.

the decision boundaries. Note that the symbol definition (4) guarantees that the transmitted energy/bit is
constant. The corresponding signal-space diagram is shown in Fig. 3. Also, with these notations ϕk ∈ [0, 2π];
thus the invariant interval I = [0, 1] of the Bernoulli shift, with its definition of symbolic dynamics, maps to
the unit circle in the signal space.

Then, by denoting with Eb the energy/bit, in the first half [0, T/2] of the symbol period we transmit the
reference vector:

Y = [Y1, Y2] =

[

√

Eb

2
cos(ϕk),

√

Eb

2
sin(ϕk)

]

followed by ±Y in the second half [T/2, T ], depending on the input bit m1(k). An example of transmitted
SD-DCSK signal and its spectrum are illustrated in Fig. 4, in normalized units. We emphasize that for practical
applications (and assuming m2(k) to be an i.i.d. sequence) the pseudo-chaotic signal can be considered
equivalent to the one produced by a real chaos generator.

C. SD-DCSK Demodulation

The scheme proposed allows the creation of an auxiliary communication channel to the DCSK one, exploiting
the symbolic dynamics associated with the chaotic carrier. As far as the demodulation is concerned, the two
channels can be considered independent from each other.

C.1 DCSK

Referring to Fig. 1, the DCSK demodulation is carried out as usual, i.e. by correlating the information-
bearing part of the signal (t ∈ [T/2, T ]) with the reference (t ∈ [0, T/2]), sampling the correlator output
according to the symbol period T , and inferring on the symbol received by means of a threshold detector [2].

C.2 SD Decoder

The information encoded in the pseudo-chaotic carrier can be extracted from the received signal by con-
sidering its reference part only. In the simplest case the pseudo-chaotically encoded data can be detected by
a phase discriminator detecting whether ϕk ∈ [0, π] or [π, 2π], respectively (see Fig. 3). This method is not
very effective as it relies solely on the sign of the sample Y2. In addition, because of the signal-space diagram
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Fig. 4. (a) Transmitted SD-DCSK signal (M = 10 bits), and (b) corresponding PSD (power spectral density). The
plots refer to normalized time t/t0 and normalized frequency f/f0, where t0 = 1/f0 is the sampling period.

associated with the PC-encoder, symbols such that sin(ϕk) ≈ 0 will cause an error also for relatively low noise
levels.

On the other hand, the SD signal is amenable of maximum-likelihood detection. By assuming the input
m2(k) to be an i.i.d. sequence, the optimal decoder for the PC-encoded signal is represented by a trellis
matched to the dynamics of the Bernoulli shift, seen as convolutional encoder. In fact, we recall that every
PWLM map admits a representation as a topological Markov chain [9]. In this work we consider soft Viterbi
decoding and for illustrating the branch metric computations we consider the normalized vector: y =

√

2/EbY .
At each step, the input of the Viterbi algorithm is a vector ỹ = [ỹ1, ỹ2] representing the received symbol affected
by noise. By assuming that each sample is perturbed by an independent Gaussian variable (AWGN) it can be
shown that the observation probability of receiving ỹ, if the symbol sk = [sk1, sk2] was sent, is proportional to

e((ỹ1−sk1)
2+(ỹ2−sk2)

2)/2σ2
n where σn is the noise variance. This in terms of logarithms, according to the usual
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formulation of the Viterbi algorithm, translates into the following branch metric:

dk =

√

(ỹ1 − sk1)
2 + (ỹ2 − sk2)

2 (5)

whose geometrical interpretation is shown in Fig. 3.
Note that the same PC-encoded signal can be decoded by Viterbi detectors with different number of states.

This is a direct consequence of the symbolic dynamic approach used for encoding/decoding information in
the pseudo-chaotic carrier. Namely, given the number N(= 2M ) of transmitter levels, the received PC-signal
can be decoded with Viterbi detectors with S = 2, 4, 8 . . . , N states. This requires a slight modification in
the branch metric computation; in particular, in this work we compute the observation probabilities based
on the transmitter level “closest” to the received signal. We reiterate that the scalability property allows to
perform a high spreading at the transmitter (large N) such that the PC-iterates reproduce with very good
approximation the dynamics of the Bernoulli shift, while decoding with reduced complexity (small S). Of
course, the performance of the Viterbi detector depends on the number of states, as discussed in the next
section.

III. BER Performance

The results of our analysis are presented in terms of BER probability versus the ratio Eb/N0 expressed in
dB, where Eb is the energy per user bit—which coincides for m1(k) and m2(k)—and N0 is the single-sided
spectral noise density. We consider here the interference on the channel to be just AWGN (additive white
Gaussian noise).

Fig. 5 shows the simulation results for the auxiliary communication channel associated with the pseudo-
chaotic carrier, versus DCSK. The BPSK (binary phase shift keying) curve is also shown for reference purposes.
We observe that soft Viterbi decoding results in a good BER performance, that is significantly better than
DCSK, even though the energy associated with the information bearing part of the signal is not utilized. Of
course, to make a fair comparison one should take into account that DCSK it is an uncoded modulation,
while SD channel benefits from the coding gain resulting from the pseudo-chaotic encoder. Still, these results
indicate that in conventional DCSK a considerable amount of information transmitted over the channel is not
exploited for communication purposes.

Note the BER dependence on the number S of states in the Viterbi detector, confirming the scalability
property discussed above. Also, we note a saturation effect in the performance when increasing the number
of states above a certain number (in the example S = 32).
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Fig. 5. BER performance: DCSK versus pseudo-chaotic modulation. Note the dependence on the number of states S
in the Viterbi detector. The BPSK curve is also shown for reference purposes.
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Fig. 6. BER dependence on the number N of transmitter levels, for a fixed complexity (S = 32) of the Viterbi detector.
Note that the performance is basically independent from the number of transmitter levels.

On the other hand, Fig. 6 illustrates the BER dependence on the number N of transmitter levels, for a
given receiver complexity, i.e. a given number of states of the Viterbi detector. Note that the performance is
basically related only to the number S of states. This allows to define arbitrarily many transmitter levels, in
order to minimize the quantization error, without compromising the overall performance of the auxiliary SD
channel.

IV. Applications to Noise Cleaning

In the literature several methods have been proposed for the filtering of chaotic signals affected by noise [16],
[17], [18], [19], [20], [21]. In this work we demonstrate how the decoded information from the SD channel can
be usefully employed to “clean” the reference part of the DCSK signal, thus improving the corresponding BER
performance. To this purpose the block diagram of Fig. 1 should comprise at the output m̃2(k) a serial/parallel
converter followed by a DAC, whose output can be used to replace the reference part of the DCSK signal prior
to the differentially coherent demodulation.2 Fig. 7(a) shows the BER performance improvement obtained by
applying the simple cleaning algorithm described above. The improvement amounts to approximately 1dB
when the BER is 10−3. This to the best of our knowledge is better than previously proposed methods.

The filtering technique proposed can also be applied in the context of conventional DCSK communication
system, provided that maximum-likelihood detection can be performed on the chaotic carrier. To demonstrate
this we consider a DCSK system using the Bernoulli shift as chaos generator, thus producing real-valued (vs.
discretized) chaotic iterates. In this situation the same apparatus described for the SD-DCSK scheme can
be used to produce a cleaner version of the reference signal. The corresponding results in terms of BER
performance are shown in Fig. 7(b). Again, the improvement obtained is about 1dB when the error probability
is 10−3. This result also indicates that the fact that the transmitted iterates are not quantized practically
does not affect the performance of the cleaning algorithm.

V. Computation of the Channel Trans-Information

We now consider how much information can be conveyed through the SD-DCSK channel, comparing it
to conventional DCSK. To this purpose, rather than relying on the BER, we consider as a measure of the
information transfer the so-called trans-information (or mutual information). In mathematical terms, the
trans-information I expresses the information that two linked random variable X and Y give about each

2It should be clear that in general it is not possible to clean the information bearing part of the DCSK signal, because of this
would require the knowledge of the transmitted information itself.
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Fig. 7. Noise cleaning utilizing symbolic dynamics. (a) BER curves for SD-DCSK with and without cleaning the
reference signal (N = 1024, S = 32); (b) BER curves for DCSK with and without noise filtering (N = 1024,
S = 32), when a true Bernoulli shift map is used at the transmitter. Note that in both cases the improvement
amounts to approximately 1dB when the error probability is 10−3. The BPSK curve is also shown for comparison
purposes.

other, that is [15]:
I(X;Y ) = H(X) − H(X|Y ) (6)

with H being the entropy.
The results of our analysis for the SD-DCSK communication system, when the transmitted energy/bit is

constant are summarized in Fig. 8. Namely, Fig. 8(a) shows a comparison of the BER performance for the
SD versus the DCSK channel. More interestingly, in Fig. 8(b) it is shown a plot of the trans-information for
the SD and DCSK channel, separately, plus the total (SD+DCSK) information transfer. From Fig. 8(b) we
observe that both SD and DCSK curves saturate to 0.25 bits corresponding to the fact that for each channel
(m1(k) and m2(k)) four samples are transmitted for each bit. Consequently, the total trans-information curve
saturates at 0.5 bits, for arbitrary large values of the signal/noise ratio.
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Fig. 8. SD versus DCSK when the transmitted energy per bit is constant: (a) Comparison of the BER performances,
and (b) Plot of the trans-information as a function of Eb/N0 for the SD channel, DCSK channel, and the total
(SD+DCSK) information conveyed by the physical channel.

Finally, for the sake of curiosity, we show in Fig. 8 the corresponding analysis when the energy/bit is not

constant, that is when we use AM (amplitude modulation) rather than PM (phase modulation). As expected
in these conditions, while the performance of the DCSK channel is significantly degraded, the SD channel is
basically maintained unaltered. This is due to the fact that the metric computations in the Viterbi detector
are not affected by the nature of the signal. In other words, for the SD channel Eb 6= const. basically does not
change the relative distance between symbols, thus its performance. This is confirmed by Fig. 8(a), while in
Fig. 8(b) this reflects into the DCSK trans-information curve saturating much slower than the SD one, when
the signal/noise ratio grows indefinitely. Note also that in this case, as two samples are transmitted for each
bit, the single trans-information curves tend to 0.5 bits, while the total to 1 bit.

VI. Conclusions

In this work we have proposed an enhanced version of the DCSK scheme which takes advantage of the
symbolic sequence associated with the chaotic carrier for conveying useful information. This allows the
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Fig. 9. SD versus DCSK when the transmitted energy per bit is not constant: (a) Comparison of the BER performances,
and (b) Plot of the trans-information as a function of Eb/N0 for the SD channel, DCSK channel, and the total
(SD+DCSK) information conveyed by the physical channel. Note the good performance exhibited by the SD
communication channel even when the energy/bit is not constant.

creation of an auxiliary communication channel to the DCSK one which can be used to increase the overall
data rate and/or for error-correction purposes. As a byproduct of this analysis we have also shown how the
carrier symbolic dynamics can be used to perform noise cleaning, thus improving the performance of the
DCSK channel.
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