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ABSTRACT

In this paper we propose a multilevel version of the differen-
tial chaos shift keying (DCSK) scheme exhibiting the same
bit error rate performance as DCSK but double data rate and
spectral efficiency.

1. INTRODUCTION

In the last few years a great research effort has been devoted
towards the development of efficient chaos-based modula-
tion techniques [2, 5]. Among the several schemes pro-
posed, one of the best bit error rate (BER) performances
has been achieved by the DCSK system [5]. DCSK is a
transmitted-reference digital signaling scheme. In DCSK a
chaotic sample function is transmitted for half the symbol
time followed, in the second half, by its duplicate or an in-
verted copy depending on the binary symbol (“0” or “1”).

Recently, several different methods have been proposed
to increase the bit rate of DCSK (see [3]). The simplest op-
tion consists of scaling the information and/or the reference
parts of the signal. For example the information bearing
part may be multiplied by a number depending on the sym-
bol transmitted. A more sophisticated approach uses two
basis chaotic functions and divides the symbol period into
four time slots in order to obtain a multilevel scheme [6].
The methods, though, achieve higher data rate by giving up
some of the BER performance.

In this work we introduce a new multilevel chaos-based
communication scheme, that we call quadrature chaos shift
keying (QCSK), with the same BER performance as DCSK
but characterized by higher data rate.

2. DIFFERENTIAL CHAOS SHIFT KEYING

In DCSK two chaotic sample functions are sent for each
symbol period, corresponding to one bit of information. The
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first sample function is used as a reference while the second
represents the information to be transmitted. The latter isa
copy or inverted copy of the first function for the transmit-
ted symbol “0” and “1”, respectively. On the receiver side
one observes a noisy version of the transmitted signal. The
digital information is extracted by means of a correlation
process between the two received sample functions.

2.1. DCSK versus BPSK

We emphasize that DCSK is in some sense similar to the
BPSK (binary phase shift keying) modulation scheme [1].
In BPSK one transmits asin(�) function signal or its in-
verted version depending on the bit of information. In prin-
ciple DCSK does exactly the same except that the (chaotic)
signal used for sending the information is different for each
bit, thus one needs to send the corresponding reference sig-
nal as well in order to enable the detection at the receiver.

One of the modifications of BPSK is the QPSK (quadra-
ture phase shift keying) scheme, which exhibits the same
BER performance as BPSK, but is more efficient by having
a double data rate. Basically, in QPSK a two-bit symbol
is encoded as a linear combination of two orthogonal wave-
forms (sin andos). In the next section we describe how this
idea can be applied for increasing the data rate of DCSK.

3. QUADRATURE CHAOS SHIFT KEYING

The aim of this section is to illustrate the theory behind the
quadrature chaos shift keying communication system. The
block diagram of the QCSK modulation scheme is shown in
Fig. 1.

3.1. Orthogonal Chaotic Signals

The first step for introducing QCSK is the generation of a
signal orthogonal to a chaotic reference signal. Letx(t)

be a chaotic reference signal defined fort 2 [0; � ℄. Let us
assume that the signalx has zero mean value1 and that in the

1This assumption simply implies that the DC value of the reference
signalx(t) is filtered out.
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Figure 1: Block diagram of the QCSK scheme. The DSP unit producing the orthogonal signal introduces a delay equal
to T=2.

interval [0; � ℄ it admits the the following Fourier expansion
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Let’s define thecomplementary signal y(t), with t 2 [0; � ℄,
as the signal obtained by changing the phase of each Fourier
frequency component by�=2:
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The signalsx(t) andy(t) are orthogonal in the interval[0; � ℄
and have the same power, that is:
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The above properties follow from:

1

�

Z

�

0

f

k

sin(k!t+ �

k

� �)f

m

sin(m!t+ �

m

� �)dt =

=

�

1

2

f

2

k

os(�+ �) for k = m;

0 for k 6= m:

(5)

Referring to the definition (2) ofy, we point out that by
extendingx(t) andy(t) to periodic signals with period� ,
y(t) represents the Hilbert transform ofx(t). We recall that
the Hilbert transform of a real signal is obtained by intro-
ducing a�=2 phase shift in every frequency component [1].
This property is well known and exploited for example in

the context of amplitude modulation (AM) for obtaining a
single (suppressed carrier) sideband (SSB) signal [1].

If we consider a length-L chaotic sequence(x
k

)

L�1

k=0

we
can generate the orthogonal signal(y

k

)

L�1

k=0

with the follow-
ing procedure, in analogy with the AM-SSB modulation.
Take the input sequence, subtract its mean value, calculate
the fast Fourier transform (FFT), zero the coefficients corre-
sponding to negative frequencies and then take the inverse
FFT. In practice this can be achieved by means of a DSP
(digital signal processor) unit as indicated in the block dia-
gram of Fig. 1.

3.2. Chaotic Signal Constellations

Once we have an orthogonal basis of signals(x; y) we can
produce many different multilevel signaling schemes. In
particular, we represent each symbols in the complex plane
as
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to which we associate the modulated signal:
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In this work we consider the four signal constellations
shown in Fig. 2, which analytical representation is reported
in Table 1. Constellations (a) and (b) are two-level signal-
ing, the first one being the ordinary binary DCSK.

The case (b) may have the advantage—with respect to
conventional DCSK—that the signal transmitted is never re-
peated, thus resulting possibly in a low probability of inter-
ception (LPI).

On the other hand, Fig. 2(c,d) show the signal constel-
lations corresponding to two versions of a four-level QCSK
chaotic signaling scheme.

3.3. QCSK Transmitted Signal

In QCSK, similarly to DCSK, to send the symbols we
transmit for half symbol period the reference signal r(t)=x(t)
produced by the chaotic system and in the second half the
modulated signalm

s

(t). The latter can be expressed as a
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Figure 2: Chaotic constellations: (a,b) two-level signaling
(DCSK), and (c,d) four-level signaling (QCSK). The dashed
lines represent the decision sets.

linear combination of the signalsx(t) andy(t). This is il-
lustrated in Fig. 1, where we denoted the symbol period by
T = 2�:

3.4. QCSK Signal Detection

By correlating the modulated signalm
s

(t) with the refer-
ence signalsx(t) andy(t), over� = T=2, one can retrieve
the complex number
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. In fact, from (3,4) it
follows that:
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In practice, at the receiver we observe the noisy versions
of the reference signal,~x(t), and of the modulated signal
~m

s

(t). By using the corrupted reference~x(t) we produce
an estimate of the complementary signal~y(t) and then we
correlate~m

s

(t) with ~x(t) and~y(t), as illustrated schemati-
cally in Fig. 1. Based on the correlation results a decision
on the symbols received is taken by a decision circuit ac-
cording to estimated value~a

s

+ i

~

b

s

relative to the decision
sets shown in Fig. 2.

3.5. Extension to M-ary Constellations

In general QCSK may be extended toM -symbol constel-
lations. For example, this can be obtained by considering
the set of complex numbers
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Table 1: Chaotic signal constellations and corresponding
modulated signals for the cases (a), (b), (c), (d) of Fig. 2.

This choice gives a chaos-based version ofM -ary PSK (phase
shift keying).

Moreover, if the constellation signals are not restricted
to lie on a circle one can design a chaotic version of QAM
(quadrature amplitude modulation) [1].

4. NOISE PERFORMANCE

In this section we report about the performance of the pro-
posed QCSK communication scheme in the presence of ad-
ditive white gaussian noise (AWGN). The system simulated
with Matlab is shown in Fig. 1, where as an example of a
chaotic system we consider the 3-adic Rényi map:f(x) =

(3x + 1) mod 2 � 1. The chaotic constellations consider
are the ones shown in Fig. 2 with the corresponding deci-
sion sets. The DSP unit givenx computes the orthogonal
signaly according to the procedure described before.

Fig. 3 shows the bit error rate versusE
b

=N

0

, whereE
b

is the energy per bit andN
0

is the noise power spectral den-
sity. The performance curves are plotted for the signal con-
stellations shown in Fig. 2. One can clearly see that the BER
performance is basically the same for all cases.

4.1. Dependence on the Correlation Time

As pointed out in [4], the performance of transmitted-refe-
rence communication schemes (such as DCSK and QCSK)
depends on the averaging timeL. This property is con-
firmed by Fig. 4, which shows the BER performance of the
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Figure 3: Comparison of BER performance: DCSK versus
QCSK.

QCSK scheme for different correlation timesL. As visible
from Fig. 4, the error probability increases asL is increased.

4.2. QCSK versus DCSK

The QCSK may be considered equivalent to two DCSK sys-
tems: the first using the reference signalx(t) and the second
using the complementary signaly(t) which is restored at the
receiver from the reference part of the transmitted signal.
The advantage of the proposed QCSK scheme is that there
is no need to send the orthogonal signal over the channel.
The price is the higher complexity as QCSK requires the
generation of the complementary signal in both the trans-
mitter and the receiver.

In summary, the BER performances of the DCSK and
QCSK schemes are identical but QCSK has double data
rate. In fact the QCSK symbol consists of two bits as op-
posed to one bit in DCSK. Since the two signals occupy the
same bandwidth it follows that QCSK has double spectral
efficiency with respect to DCSK.

5. CONCLUSIONS

In this paper we proposed a multilevel chaos-based modu-
lation scheme derived from DCSK. The QCSK scheme has
the advantage over DCSK of double data rate for a given
bandwidth (or half bandwidth for given data rate) with the
same BER performance. The drawback consists in an in-
creased complexity of both transmitter and receiver.
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Figure 4: BER performance of QCSK for different values
of the correlation timeL.
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