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ABSTRACT

In this paper we compare two di�erent methods, which can be used for proving the existence of

periodic orbits in continuous-time dynamical system. The �rst method (interval Newton method)

allows also to prove the uniqueness of a periodic orbit in a certain set. The secondmethod is based on

topological conjugacy of the dynamics of the system around the periodic point with a linear system.

1. INTRODUCTION

Proving the existence of a periodic solutions in a nonlinear system is usually not a

trivial task. The problem of existence and stability of periodic orbits is very important

in analysis of nonlinear systems and also in many applications. One of the most

sophisticated methods for controlling chaotic systems is to stabilize one of the periodic

orbits embedded in the chaotic attractor [1].

Usually for identi�cation of periodic solutions form a time series one uses the

method close returns developed in [2]. In this method one scans a trajectory looking

for parts which are almost periodic (the trajectory returns close to the initial point).

We believe that in the neighborhood of such fragment there exist a real periodic orbit.

However the existence of a real periodic trajectory is not ensured.

In this paper we study two di�erent methods for proving the existence of periodic

orbits. In both methods some parts of the proof are checked with the help of computer.

The �rst method | the interval Newton method | belongs entirely to the interval

arithmetic tools. The second method is based on the Brouwer's theorem and computer

is used to check the assumptions of the topological theorem.

In the �rst part of the paper the methods are outlined brie
y. Then we compare

the feasibility of these two methods using a simple chaotic circuit as an example.



2. PROVING THE EXISTENCE OF PERIODIC ORBITS

2.1. Interval Newton Method

The interval Newton method allows to �nd zeros of a function

R

n

3 x 7! f (x) 2 R

n

: (1)

In order to investigate the existence of zeros of f in an n-dimensional interval X one

has to evaluate the interval Newton operator

N(X) = x

0

� (Df (X))

�1

f (x

0

); (2)

where x

0

is an arbitrary point belonging to the interval X. In order to prove the

existence and uniqueness of periodic orbits we use the following property of interval

Newton operator [3]:

Proposition 1 If N(X) � X then there exist exactly one x 2 X such that f(x) = 0.

2.2. Topological Method

The second method, based on the Brouwer's theorem, was developed in [4]. Although

the method is formulated for arbitrary dimension n of the map but we will describe

it for the case n = 2. In order to prove the existence of a �xed point we have to �nd a

parallelogram P such that its image under the map is enclosed in the stripe S de�ned

by the \vertical" edges. The second condition is that the images of horizontal edges

lie above and below the considered parallelogram (compare Fig. 1).
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Fig. 1: Parallelogram P = ABCD and its image under f .

3. ELECTRONIC CIRCUIT

As an example let us consider the Chua's circuit | a simple third{order system |

de�ned by:

C

1

_x = G(y � x)� g(x);



C

2

_y = G(x� y) + z; (3)

L _z = �y � R

0

z;

where g(�) is a three-segment piecewise-linear function

g(x) = G

b

x+ 0:5(G

a

�G

b

)(jx+ 1j � jx� 1j): (4)

For parameters: C

1

= 1, C

2

= 9:3515, G

a

= �3:4429, G

b

= �2:1849, L = 0:06913,

R = 0:33065, R

0

=0:00036 the system (3,4) has a well-known \double{scroll" chaotic

attractor. The state space R

3

can be divided into three open regions U

�

= fx =

(x; y; z)

T

2 R

3

: �x > 1 g, U

0

= fx = (x; y; z)

T

2 R

3

: jxj < 1 g separated by

planes V

�

= fx 2 R

3

: x = �1 g. In the regions U

0

, U

�

the solution has the form

x(t) = e

A

0

t

x and x(t) = e

A

�

t

(x � p) � p respectively, where A

0

, A

+

= A

�

are

matrices with real coe�cients.

Let us de�ne a Poincar�e map P : V

+

3 x 7! �

�(x)

(x) 2 V

+

, where �

t

(x) is the

trajectory of the system (3,4) based at x and � (x) is the time needed for the trajectory

�

t

(x) to return to V

+

.

Similarly we de�ne a halfmap H : V

�

[V

+

3 x 7! �

�(x)

(x) 2 V

�

[V

+

, where � (x)

is the time needed for the trajectory �

t

(x) to reach one of the planes V

�

or V

+

.

Assuming that the trajectory based at x 2 V

+

visits k linear regions before return-

ing to V

+

the Poincar�e map can be decomposed as:P(x) = H

k

(x). Hence the Jacobian

of P can be computed in terms of Jacobians of the halfmap. For the computation of

the Jacobian matrix of H we will use the following lemma [5]:

Lemma 1 Let x

0

2 V

�

[ V

+

. Let us assume that the solution of the system for

t 2 [0; t

0

] is given by x(t) = e

At

(x

0

� p) + p. Let y

0

= H(x

0

) = x(t

0

). Let us also

assume that the intersections of V

�

and V

+

with the trajectory x(t) at x

0

and y

0

are

transversal. Then the Jacobian of the halfmap H at x

0

is the principal minor (created

by removing the �rst row and the �rst column) of the matrix

�

I�

A(y

0

� p)e

T

1

e

T

1

A(y

0

� p)

�

e

At

0

; (5)

where e

1

= (1; 0; 0)

T

and I is the 3� 3 identity matrix.

4. STUDY OF EXISTENCE OF PERIODIC ORBITS

For the extraction of periodic orbits we have used the combination of the method of

close returns [2] and standard Newton method. We have found several periodic points

of the Poincar�e map P associated with the continuous 
ow. Some of them are shown

in Fig. 2. Their approximate position and other parameters are collected in Table 1.

4.1. Interval Newton method

Now we describe how to prove the existence and uniqueness of a periodic orbit by

means of the interval Newton method. Let n be the period of the orbit. First one
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Fig. 2: Chaotic trajectory (a) and periodic orbits of the Chua's circuit, period-1 orbit

(b), period-2 orbits (c){(e), period-3 orbit (f)

n n

H

length approx. position �

1

�

2

1 2 7:38 (1;�0:333;�4:240) �3:18 �0:00412

2 4 14:38 (1;�0:352;�4:439) �9:09 �5:39 � 10

�6

3 6 28:62 (1;�0:185;�2:441) 45:57 3:69 � 10

�12

Table 1: Periodic orbits of P. n is the period of the orbit. n

H

is the number of the

regions U

0

and U

�

visited by the orbit (with multiplicities), �

1;2

are the eigenvalues

of P

n

chooses a rectangle X on the Poincar�e map which encloses the periodic point found

numerically. Then one evaluates the image of the center x

0

ofX under the n

th

iteration

of the Poincar�e map. We also need to compute the Jacobian matrix of P

n

at the

interval X. Finally the interval Newton operator for the map id�P

n

is computed:

N(X) = x

0

� (I �DP

n

(X))

�1

(x

0

� P

n

(x

0

)) : (6)

IfN(X) � X then there exists exactly one periodic point of P with period n belonging

to X. In the opposite case one has to modify the initial rectangle X and repeat the

computations.

First let us consider a �xed point of P (compare Fig. 2b). Using the interval

Newton method we were able to prove the existence and uniqueness of the �xed point

of P within the rectangle (y; z) = (�0:333

2181

0109

;�4:239

9987

7915

). Its diameter is greater



than 0:0002 in both y and z. We would like to stress that for proving the existence

and uniqueness of a periodic orbit we need to evaluate the interval Newton operator

only once.

By applying the interval Newton operator iteratively (3 iterations) we were able to

prove the existence of the �xed point within the interval (y; z) = (�0:333114482

207

009

;

�4:23989511

63

47

). In this way we have sharpened the bounds of the result to an uncer-

tainty under 1:98 � 10

�10

in y and 1:6 � 10

�9

in z. Using this result we have computed

the Jacobian matrix of the Poincar�e map at the �xed point and the eigenvalues of

this Jacobian. The eigenvalues belong to the intervals: �3:1798

239

308

and �0:0041

23

30

.

The uncertainty is below 7 � 10

�6

. Hence the �xed point is of a saddle type.

Let us now consider the period{2 orbit shown in Fig. 2c. This orbit has four

intersections with the planes V

�

. Due to the \wrapping e�ect" which causes quick

growth of initial rectangle when we compute its trajectory using interval arithmetic we

are not able to prove the existence of this periodic orbit using directly Proposition 1

| the diameter of N(X) is greater than the diameter of X for any choice of X.

In order to overcome this problem we can use the method of intermediate sections

[6]. When we use this method for X = (�0:351500

8

9

;�4:43901

119

245

) with division into

4 rectangles at each intermediate section for the evaluation of both DP

n

(X) and

P

n

(x

0

) we obtain N(X) = (�0:3515008

12

79

;�4:43901

19

25

) � X, with diameter 6:7 �10

�8

in y and 6 � 10

�7

in z. The existence and uniqueness of period two orbit follow from

Proposition 1.

We have also tried to use the interval Newton method for proving the existence of

the third periodic orbit from Table 1 (compare also Fig. 2d). We have estimated that

in order to prove the existence of this orbit it would be necessary to use 4

7

rectangles

at each intermediate section.

4.2. Topological method

Let us now consider the second method. In order to implement this method we have

to �nd a parallelogram with the desired properties. The most natural choice of a

parallelogram is based on the approximate position of the periodic orbit and the

eigenvectors of the Jacobian matrix at this point. We have found the approximate

positions of periodic orbits using the standard Newton method and the Jacobian

matrix at these points using equation (5). Then one has to check whether the images

of edges lie appropriately with respect to the parallelogram. This is done by covering

the edges by rectangles and computing their images using interval arithmetic tools.

In order to check the assumptions of the topological theorem for the period-1 orbit

we had to evaluate the Poincar�e map at 2605 rectangles. The number of rectangles

is almost independent on the parallelogram size. For the diameter 0:02 we need 2605

rectangles, for the diameter 2� 10

�7

we need 2801 rectangles while for the diameter

2 � 10

�8

we need 3801 rectangles. For the diameter 2 � 10

�9

we were not able to

complete the proof. Even if we use the smallest representable rectangles their images

under the second iteration of the Poincar�e map are greater than the parallelogram.

We have also estimated the amount of computations necessary to complete the



proof for the period-2 orbit. In order to check the assumptions of the topological

theorem we have to evaluate the second iteration of P at more than 4�10

6

rectangles.

There are several possible modi�cations of this method. The �rst possibility is to

use the concept of intermediate section. Another option is to construct parallelograms

for each plane V

�

separately.

5. CONCLUSIONS

In this paper we have compared two methods for proving the existence of periodic

orbits in continuous{time systems. The main advantage of the interval Newton method

is that it allows to prove also the uniqueness of the orbit. The implementation of this

method is easier. For short orbits one has to evaluate the interval Newton operator

only once, while in the topological method the number of rectangles at which we have

to evaluate the map is rather large even for short orbits. By iterating the interval

Newton method one can easily sharpen the bounds of solutions.

It seems that the interval Newton method is superior to the topological method

in the investigations of periodic orbits.
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