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ABSTRACT the plane such tha®(U) C U, whereP is the return map
defined byX. Similarly one can prove the existence of a
periodic orbit which is unstable in all directions (it becesn
stable when the direction of time is changed). Unforturyatel
this method cannot be used directly for proving the exis-
tence of saddle type orbits.

Another class of methods is based on the fixed point
index properties. In one of the methods one has to prove
the topological conjugacy of the Poincaré map in the neigh-

1. INTRODUCTION borhood of the fixed point with a linear map possessing a
saddle-type fixed point [3]. The second method involves
The problem of existence and stability of periodic orbits is computation of an integral of a certain function over a cir-
very important in analysis of nonlinear systems and also in cle surrounding a fixed point on the Poincaré map. If this
many applications. In chaotic systems it is even of higher integral is non-zero then the existence of a fixed pointis en-
importance. Chaotic systems are characterized by the exsured [4]. This last method can be used when the Poincaré
istence of infinitely many unstable periodic orbits. One of map is two dimensional. Both methods allow to prove the
the well-known methods for controlling such systems is to existence of all types of periodic orbits (also of the saddle
stabilize one of periodic orbits embedded in the chaotic at- type). Their main drawback is non-efficiency — one has
tractor [6]. to perform a lot of calculation in order to prove the assump-

A method to find periodic solutions form a time series tions of the existence theorem and control the computationa
was developed in [5]. In this method one searches for partserror (in case of computer assisted proof).
of a trajectory which are almost periodic (the trajectory re In this paper we investigate another method for proving
turns close to the initial point). We believe that in the feig  the existence of periodic orbits, namely timerval New-
borhood of such fragment there exist a real periodic or- ton method1]. This method is based on interval arithmetic
bit. But one never knows if a real trajectory actually ex- tools [2], where intervals are used instead of real numbers.
ists. For example in a quasiperiodic motion defined on the When interval arithmetic is implemented on a computer the
two-dimensional torus the method of close returns would rounding of every operation is directed outwards. In this
find many periodic orbits but we know that there exist no way we are sure that the result obtained encloses the true
periodic orbit for this system. solution (together with the rounding error). Thus interval

There are several methods for proving the existence ofarithmetic overcome the usual problem of computer calcula-
periodic orbits. One of them is based on the Schauder’stions — the existence of rounding errors makes it difficult or
fixed point theorem, which states that if a convex compact €ven impossible to find the relation between true solutions
setX C R" is mapped by a continuous mdinto itself and approximations obtained using standard computational
then there exist a point € X such thatf(x) = x. With methods.
this theorem one can easily prove the existence of a periodic ~ The interval Newton method uses fixed point theorem
orbit of a continuous—time dynamical system when the pe- and belongs to the class sélf validating algorithmsThis
riodic orbit is stable. In such case one can always choosemethod allows to find zeros of a function
a planeX transversal to the periodic orbit and find a neigh-
borhoodU of the point at which the periodic orbit intersects

We study the possibility of using interval Newton method
for proving the existence of periodic orbits for models of
electronic circuits. The advantages and limitations of the
method are discussed. As an example a simple third orde
electronic circuit is considered, for which the existenée o
low—period unstable periodic orbits is proved.

R* 5 x+— f(x) € R". 1)
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ton operator

N(X) = xo — (Df(X)) ™ f(x0), ()

wherex, is an arbitrary point belonging to the intenl.
One usually chooses, to be the center oX.

The following lemma [1] states the relation between the
zeros off in X and the position oN(X) with respect taX.

Theorem 1.

1. If N(X) C X then there exist exactly one poiate
X such thatf(x) = 0.

2. If N(X) N X = 0 then there are no zeros dfin X.

The above theorem can be used to prove both the exis-

n | ng | Length A Ao
1] 2 7.38 | —3.1798 —0.00412
2| 4 14.38 -9.09 | —5.39-10°6
2| 4 24.70 63.64 | 3.93-1071°
2| 8 32.99 | —4.521 | —6.01-1071°
3| 6 28.62 45.57 | 3.69-10"'2

Table 1: Periodic orbits oP. n is the period of the or-
bit. ny is the number of the regiorig andU_. visited by
the orbit (with multiplicities — every region may be visited
several times)); , are the eigenvalues &f"

wherer(x) is the time needed for the trajectogy(x) to
reach one of the plands_ or V..
In our computation we will need to evaluate the Jaco-

tence and uniqueness of zeros. By iterating the method ondian matrix of the Poincaré map. Let us assume that the

can easily sharpen the bounds of solutions.

2. ELECTRONIC CIRCUIT AND BASIC
NOTATIONS

As an example let us consider the Chua’s circuit, a simple

third—order system defined by:

Ciz = Gy —a)-g(2),
Cry = Gz —y)+z, (3a)
Lz = —y— Ryz,

whereg(-) is a three-segment piecewise-linear function

g(z) =Gz + 0.5(G, — Gp)(Jlz + 1| — |z — 1]). (3b)
For parameters?; = 1, Cy, = 9.3515, G, = —3.4429,

Gy = —2.1849, L = 0.06913, R = 0.33065, Ry =0.00036

the system (3) has a well-known “double—scroll” chaotic at-

tractor. The state spa®® can be divided into three open

regionsUy = {x = (z,y,2)T e R* : £z > 1}, Uy

{x = (z,y,2)T € R® : |z| < 1} separated by planes

Vi ={xe€ R :z = +£1}. Inthe regiond/y andU.

trajectory based at € V, visits k linear regions before re-
turning toV,. HenceP(x) = H*(x) and the Jacobian of
the full Poincaré map is

DP(x) = DH(H"!(x)) --- DH(H(x)) - DH(x). (6)

For the evaluation of the JacobianHfwe will use the
following lemma [3]:

Lemmal. Letxg € V_ U V,. Let us assume that the
solution of the system far € [0,t0] is given byx(t)
eAt(xp — p) + p. Letyy = H(xo) = x(tp). Letus also
assume that the intersectionséf andV, with the trajec-
tory x(t) at xo andy, are transversal. Then the Jacobian
of the halfmapH at x; is the principal minor (created by
removing the first row and the first column) of the matrix

_Alyo-plel] au
el A(yo — p) ’

wheree; = (1,0,0)” and I is the3 x 3 identity matrix.

()

3. PERIODIC ORBITS

the system is linear. The state equation can be rewritten asln this section we show how interval Newton method can

x=ApxifzeUyandx = A (xFp)if z € Uy, where
Ay, AL = A_ are matrices with real coefficients. In the
regionsly, U the solution has the form(t) = eotx and
x(t) = eA+!(x F p) + p respectively.

Let us define &oincae mapH : V; — V:

P(X) = ¢‘r(x) (X)v (4)

whereg;(x) is a trajectory of the system (3) basedkaind
7(x) is the time needed for the trajectapy(x) to return to
V. Similarly we define dalfmapH : V_UV, — V_UV,:

H(X) = er(x) (X)a (5)

be used to prove the existence and uniqueness of periodic
orbits for continuous—time systems. For the extraction of
periodic orbits we have used the combination of the method
of close returns [5] and standard Newton method. We have
found several periodic points of the Poincaré riPapssoci-
ated with the continuous flow. Some of them are shown in
Fig. 1. Their approximate position and other parameters are
collected in Table 1.

Now we describe how to prove the existence of a peri-
odic orbit by means of the interval Newton method. Ldte
the period of the orbit. First one chooses a rectailen
the Poincaré map which encloses the periodic point found
numerically. Then one evaluates the image of the ceafer
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Figure 1: Chaotic trajectory (a) and periodic orbits of tHeu@'s circuit, period-1 orbit (b), period-2 orbits (¢c)—(period-3
orbit (f)

of X under thent! iteration of the Poincaré map. We also of the Poincaré map at the fixed point and the eigenvalues
need to compute the Jacobian matrixif at the interval of this Jacobian. The eigenvalues belong to the intervals:
X. Finally the interval Newton operator for the mialp- P™ —3.1798232 and —0.004123. The uncertainty is below -

is computed: 10~5. Hence the fixed point is of a saddle type.

n -1 n
NX) = x0 ~ (I =DPHX))™ (x0 = P(x0)) . (8) 3.2. Period-2 periodic orbit
If N(X) C X then there exists exactly one periodic point
of P with periodn belonging taX. In the opposite case one
has to modify the initial rectangX and repeat the compu-
tations.

Let us now consider the period—2 orbit shown in Fig. 1(c).
This orbit has four intersections with the plariés.

First we have tried to use directly theorem 1 to prove
the existence of this periodic orbit. Starting with intdsva
) ) X of different size we have computéd(X) according to
3.1. Fixed point equation (8). When the diameter Xfis smaller thari0—*

First let us consider a fixed point & (compare Fig. 1(b)). the diameter ofN(X) is almost constant and greater than

Using the Newton method we were able to prove the ex- 2~ 10 ’. For greateX (diam(X) > 10 '7).|t is not possi-

istence and uniqueness of the fixed pointofvithin the ble to Cqmputé\I(X) (the Jacobian matrix is notlnvertlblle)..

rectangle(y, z) = (—0.3332181, —4.2309987T). Its diameter Hence it is not possible to prove the existence of periodic
’ 02097 L5 point using the interval Newton method directly. The rea-

is greater thai®.0002 in bothy andz. By using the tech- ) “ X ! . e
niques described later it is possible to improve this result SON iS the “wrapping effect” that causes quick growth of ini-

and obtain even greater rectangle (this is important freen th ti@l rectangle when we compute its trajectory using interva

point of view of uniqueness). arithmetic. _ _ o

By applying the interval Newton operator iteratively ( .One methoq to overcome this problem is to divide the
iterations) we were able to prove the existence of the fixed INitial rectangle into several subséts and computN(X;)
point within the interval for each of them. In order the prove the existence of the orbit

is suffices to show thaN(X;) C X for eachi. We have
(y,2) = (—0.333114482207 —4.239895115%).  (9) estimated that in order to fulfill this condition we should
divide X into more thar2 - 10° rectangles.
In this way we have sharpened the bounds of the result to  Much better results can be obtained by using the method
an uncertainty undet.98 - 107° in y and1.6 - 1077 in of intermediate sections. In this method one chooses sev-
z. Using this result we have computed the Jacobian matrixeral sections along the trajectory (in our case it is natioral



choose sections = +1) and makes a division into a certain It is possible that the assumptions of the method could
number of rectangles at each section. It corresponds to usde checked in a reasonable time if we use interval arithmetic
the previous method for each halfmap independently. Thisbased on higher precision (we have used double precision).

may reduce significantly the diameter of the computed Ja-
cobian matrix. Similarly we can use intermediate sections
for the computation oP"(xy). It makes no sense to divide
the initial intervalxg as it is already a pointinterval. But its
images undeH' have nonzero diameter and the method of
intermediate sections may reduce the diamet@®’tfxy).

In the table below we present the influence of using dif-
ferent number of covering rectangles at each intermediat
section on the diameter of the Jacobian matrix and the di-

ameter of the image of the center. In all cases we started
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from the rectangleX = (—0.3515008, —4.439013}2

).

r | diam(DP"(X)) | diam(P"(xo))
1 no inverse 1.34-10°
4 7.38 2.93.1077
42 0.761 8.41-108
43 0.156 1.64-10~8
44 0.045 1.64-1078

Forr = 1 (no divisions) the inverse of the Jacobian does
not exists. For > 4 the conditionN(X) C X holds and
hence the existence and uniqueness of period two orbit fol-
low from Theorem 1. For example when we use division
into 4 rectangles at each intermediate section for the evalu-
ation of bothDP"™(X) andP™(x,) we obtain
N(X) = (—0.351500812, —4.4390132) (10)
with diameter6.7 - 108 in y and6 - 10~7 in 2. If we divide
into 4* rectangles we obtailN (X) with diameter1.9-10°
iny and1.27-10~8 in z. Hence the method of intermediate

sections can also be used for sharpening the bounds of the

position of the periodic orbit.

3.3. Other periodic orbits

We have also tried to use the interval Newton method for
proving the existence of other periodic orbits from Table 1.
We were not able to do this in a reasonable time. We have

estimated that in order to prove the existence of the period—

3 orbit (compare Fig. 1(f)) it would be necessary to uée
rectangles at each intermediate section. For the proofof th
existence of period—2 “symmetric” orbit (Fig. 1(e)) we need

4? rectangles at each section. For the proof of the existence

of period-2 orbit with three scrolls (see Fig. 1(d)) we need
419 covering rectangles. This orbitis the most difficult prob-
ably due to large eigenvalues (compare Table 1). The time
necessary to complete the proof for the first of these orbits
is more than 10 hours, using Sun-ULTRA 1 computer. This
is the cost we pay for the necessity of computing exact Ja-
cobian matrix. However it may by worth doing as we gain
the uniqueness of the orbit.

e

4. CONCLUSIONS

We have studied the possibility of using interval Newton
method for proving the existence and uniqueness of periodic
orbits continuous—time systems. This method is very pow-
erful in a sense that it allows to prove also the uniqueness
of the obtained periodic solution. It is also very efficieat a

in order to prove the existence and uniqueness we need to
evaluate the map under investigation only at one interval.

As an example we have considered a simple third-order
nonlinear circuit. We were able to prove the existence and
uniqueness (in a certain region) of two unstable periodic or
bits. By iterating the interval Newton method we sharpened
the bounds of the fixed point on the Poincaré map to an un-
certainty less thai.6 - 10~°. For longer periodic orbits we
have estimated the time necessary to perform the proof.

It seems that the interval Newton method can be suc-
cessfully used for proving the existence and uniqueness of
periodic orbits with low periods. In case of longer periodic
orbits when it is not possible to prove the assumptions of
the method in one step one can divide the initial interval
into several subsets obtaining smaller bounds for the tresul
of the Newton operator. Even better one can use the method
of intermediate sections. For very long periodic orbits the
time necessary to prove the assumptions of the method is
usually very long which makes the method unusable.
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