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ABSTRACT

We study the possibility of using interval Newton method
for proving the existence of periodic orbits for models of
electronic circuits. The advantages and limitations of the
method are discussed. As an example a simple third order
electronic circuit is considered, for which the existence of
low–period unstable periodic orbits is proved.

1. INTRODUCTION

The problem of existence and stability of periodic orbits is
very important in analysis of nonlinear systems and also in
many applications. In chaotic systems it is even of higher
importance. Chaotic systems are characterized by the ex-
istence of infinitely many unstable periodic orbits. One of
the well-known methods for controlling such systems is to
stabilize one of periodic orbits embedded in the chaotic at-
tractor [6].

A method to find periodic solutions form a time series
was developed in [5]. In this method one searches for parts
of a trajectory which are almost periodic (the trajectory re-
turns close to the initial point). We believe that in the neigh-
borhood of such fragment there exist a real periodic or-
bit. But one never knows if a real trajectory actually ex-
ists. For example in a quasiperiodic motion defined on the
two-dimensional torus the method of close returns would
find many periodic orbits but we know that there exist no
periodic orbit for this system.

There are several methods for proving the existence of
periodic orbits. One of them is based on the Schauder’s
fixed point theorem, which states that if a convex compact
setX � R

n is mapped by a continuous mapf into itself
then there exist a pointx 2 X such thatf(x) = x. With
this theorem one can easily prove the existence of a periodic
orbit of a continuous–time dynamical system when the pe-
riodic orbit is stable. In such case one can always choose
a plane� transversal to the periodic orbit and find a neigh-
borhoodU of the point at which the periodic orbit intersects
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the plane such thatP (U) � U , whereP is the return map
defined by�. Similarly one can prove the existence of a
periodic orbit which is unstable in all directions (it becomes
stable when the direction of time is changed). Unfortunately
this method cannot be used directly for proving the exis-
tence of saddle type orbits.

Another class of methods is based on the fixed point
index properties. In one of the methods one has to prove
the topological conjugacy of the Poincaré map in the neigh-
borhood of the fixed point with a linear map possessing a
saddle–type fixed point [3]. The second method involves
computation of an integral of a certain function over a cir-
cle surrounding a fixed point on the Poincaré map. If this
integral is non-zero then the existence of a fixed point is en-
sured [4]. This last method can be used when the Poincaré
map is two dimensional. Both methods allow to prove the
existence of all types of periodic orbits (also of the saddle–
type). Their main drawback is non-efficiency — one has
to perform a lot of calculation in order to prove the assump-
tions of the existence theorem and control the computational
error (in case of computer assisted proof).

In this paper we investigate another method for proving
the existence of periodic orbits, namely theinterval New-
ton method[1]. This method is based on interval arithmetic
tools [2], where intervals are used instead of real numbers.
When interval arithmetic is implemented on a computer the
rounding of every operation is directed outwards. In this
way we are sure that the result obtained encloses the true
solution (together with the rounding error). Thus interval
arithmetic overcome the usual problem of computer calcula-
tions — the existence of rounding errors makes it difficult or
even impossible to find the relation between true solutions
and approximations obtained using standard computational
methods.

The interval Newton method uses fixed point theorem
and belongs to the class ofself validating algorithms. This
method allows to find zeros of a function

R

n

3 x 7! f(x) 2 R

n

: (1)

In order to investigate the existence of zeros off in an n-
dimensional intervalX one has to evaluate theinterval New-



ton operator

N(X) = x

0

� (Df(X))

�1

f(x

0

); (2)

wherex
0

is an arbitrary point belonging to the intervalX.
One usually choosesx

0

to be the center ofX.
The following lemma [1] states the relation between the

zeros off inX and the position ofN(X) with respect toX.

Theorem 1.

1. If N(X) � X then there exist exactly one pointx 2
X such thatf(x) = 0.

2. If N(X) \X = ; then there are no zeros off in X.

The above theorem can be used to prove both the exis-
tence and uniqueness of zeros. By iterating the method one
can easily sharpen the bounds of solutions.

2. ELECTRONIC CIRCUIT AND BASIC
NOTATIONS

As an example let us consider the Chua’s circuit, a simple
third–order system defined by:

C

1

_x = G(y � x)� g(x);

C

2

_y = G(x� y) + z; (3a)

L _z = �y �R

0

z;

whereg(�) is a three-segment piecewise-linear function

g(x) = G

b

x+ 0:5(G

a

�G

b

)(jx + 1j � jx� 1j): (3b)

For parameters:C
1

= 1,C
2

= 9:3515,G
a

= �3:4429,
G

b

= �2:1849,L = 0:06913,R = 0:33065,R
0

=0:00036

the system (3) has a well-known “double–scroll” chaotic at-
tractor. The state spaceR3 can be divided into three open
regionsU

�

= fx = (x; y; z)

T

2 R

3

: �x > 1 g, U
0

=

fx = (x; y; z)

T

2 R

3

: jxj < 1 g separated by planes
V

�

= fx 2 R

3

: x = �1 g. In the regionsU
0

andU
�

the system is linear. The state equation can be rewritten as:
x = A

0

x if x 2 U

0

and _
x = A

�

(x� p) if x 2 U

�

, where
A

0

, A
+

= A

�

are matrices with real coefficients. In the
regionsU

0

,U
�

the solution has the formx(t) = e

A

0

t

x and
x(t) = e

A

�

t

(x� p)� p respectively.
Let us define aPoincaŕe mapH : V

+

7! V

+

:

P(x) = �

�(x)

(x); (4)

where�
t

(x) is a trajectory of the system (3) based atx and
�(x) is the time needed for the trajectory�

t

(x) to return to
V

+

. Similarly we define ahalfmapH : V

�

[V

+

7! V

�

[V

+

:

H(x) = �

�(x)

(x); (5)

n n

H

Length �

1

�

2

1 2 7:38 �3:1798 �0:00412

2 4 14:38 �9:09 �5:39 � 10

�6

2 4 24:70 63:64 3:93 � 10

�10

2 8 32:99 �4:521 �6:01 � 10

�10

3 6 28:62 45:57 3:69 � 10

�12

Table 1: Periodic orbits ofP. n is the period of the or-
bit. n

H

is the number of the regionsU
0

andU
�

visited by
the orbit (with multiplicities — every region may be visited
several times),�

1;2

are the eigenvalues ofPn

where�(x) is the time needed for the trajectory�
t

(x) to
reach one of the planesV

�

or V
+

.
In our computation we will need to evaluate the Jaco-

bian matrix of the Poincaré map. Let us assume that the
trajectory based atx 2 V

+

visitsk linear regions before re-
turning toV

+

. HenceP(x) = H

k

(x) and the Jacobian of
the full Poincaré map is

DP(x) = DH(H

k�1

(x)) � � �DH(H(x)) �DH(x): (6)

For the evaluation of the Jacobian ofH we will use the
following lemma [3]:

Lemma 1. Let x
0

2 V

�

[ V

+

. Let us assume that the
solution of the system fort 2 [0; t

0

℄ is given byx(t) =

e

At

(x

0

� p) + p. Lety
0

= H(x

0

) = x(t

0

). Let us also
assume that the intersections ofV

�

andV
+

with the trajec-
tory x(t) at x

0

andy
0

are transversal. Then the Jacobian
of the halfmapH at x

0

is the principal minor (created by
removing the first row and the first column) of the matrix

�

I�

A(y

0

� p)e

T

1

e

T

1

A(y

0

� p)

�

e

At

0

; (7)

wheree
1

= (1; 0; 0)

T and I is the3� 3 identity matrix.

3. PERIODIC ORBITS

In this section we show how interval Newton method can
be used to prove the existence and uniqueness of periodic
orbits for continuous–time systems. For the extraction of
periodic orbits we have used the combination of the method
of close returns [5] and standard Newton method. We have
found several periodic points of the Poincaré mapP associ-
ated with the continuous flow. Some of them are shown in
Fig. 1. Their approximate position and other parameters are
collected in Table 1.

Now we describe how to prove the existence of a peri-
odic orbit by means of the interval Newton method. Letn be
the period of the orbit. First one chooses a rectangleX on
the Poincaré map which encloses the periodic point found
numerically. Then one evaluates the image of the centerx

0
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Figure 1: Chaotic trajectory (a) and periodic orbits of the Chua’s circuit, period-1 orbit (b), period-2 orbits (c)–(e), period-3
orbit (f)

of X under thenth iteration of the Poincaré map. We also
need to compute the Jacobian matrix ofP

n at the interval
X. Finally the interval Newton operator for the mapid�Pn

is computed:

N(X) = x

0

� (I�DP

n

(X))

�1

(x

0

�P

n

(x

0

)) : (8)

If N(X) � X then there exists exactly one periodic point
ofP with periodn belonging toX. In the opposite case one
has to modify the initial rectangleX and repeat the compu-
tations.

3.1. Fixed point

First let us consider a fixed point ofP (compare Fig. 1(b)).
Using the Newton method we were able to prove the ex-
istence and uniqueness of the fixed point ofP within the
rectangle(y; z) = (�0:333

2181

0109

;�4:239

9987

7915

). Its diameter
is greater than0:0002 in bothy andz. By using the tech-
niques described later it is possible to improve this result
and obtain even greater rectangle (this is important from the
point of view of uniqueness).

By applying the interval Newton operator iteratively (3

iterations) we were able to prove the existence of the fixed
point within the interval

(y; z) = (�0:333114482

207

009

;�4:23989511

63

47

): (9)

In this way we have sharpened the bounds of the result to
an uncertainty under1:98 � 10�10 in y and1:6 � 10

�9 in
z. Using this result we have computed the Jacobian matrix

of the Poincaré map at the fixed point and the eigenvalues
of this Jacobian. The eigenvalues belong to the intervals:
�3:1798

239

308

and�0:0041

23

30

. The uncertainty is below7 �
10

�6. Hence the fixed point is of a saddle type.

3.2. Period-2 periodic orbit

Let us now consider the period–2 orbit shown in Fig. 1(c).
This orbit has four intersections with the planesV

�

.
First we have tried to use directly theorem 1 to prove

the existence of this periodic orbit. Starting with intervals
X of different size we have computedN(X) according to
equation (8). When the diameter ofX is smaller than10�8

the diameter ofN(X) is almost constant and greater than
2 � 10

�7. For greaterX (diam(X) > 10

�7) it is not possi-
ble to computeN(X) (the Jacobian matrix is not invertible).
Hence it is not possible to prove the existence of periodic
point using the interval Newton method directly. The rea-
son is the “wrapping effect” that causes quick growth of ini-
tial rectangle when we compute its trajectory using interval
arithmetic.

One method to overcome this problem is to divide the
initial rectangle into several subsetsX

i

and computeN(X

i

)

for each of them. In order the prove the existence of the orbit
is suffices to show thatN(X

i

) � X for eachi. We have
estimated that in order to fulfill this condition we should
divideX into more than2 � 105 rectangles.

Much better results can be obtained by using the method
of intermediate sections. In this method one chooses sev-
eral sections along the trajectory (in our case it is naturalto



choose sectionsx = �1) and makes a division into a certain
number of rectangles at each section. It corresponds to use
the previous method for each halfmap independently. This
may reduce significantly the diameter of the computed Ja-
cobian matrix. Similarly we can use intermediate sections
for the computation ofPn

(x

0

). It makes no sense to divide
the initial intervalx

0

as it is already a point interval. But its
images underHi have nonzero diameter and the method of
intermediate sections may reduce the diameter ofP

n

(x

0

).
In the table below we present the influence of using dif-

ferent number of covering rectangles at each intermediate
section on the diameter of the Jacobian matrix and the di-
ameter of the image of the center. In all cases we started
from the rectangle:X = (�0:351500

8

9

;�4:43901

119

245

).

r diam(DP

n

(X)) diam(P

n

(x

0

))

1 no inverse 1:34 � 10

�6

4 7:38 2:93 � 10

�7

4

2

0:761 8:41 � 10

�8

4

3

0:156 1:64 � 10

�8

4

4

0:045 1:64 � 10

�8

For r = 1 (no divisions) the inverse of the Jacobian does
not exists. Forr � 4 the conditionN(X) � X holds and
hence the existence and uniqueness of period two orbit fol-
low from Theorem 1. For example when we use division
into 4 rectangles at each intermediate section for the evalu-
ation of bothDPn

(X) andPn

(x

0

) we obtain

N(X) = (�0:3515008

12

79

;�4:43901

19

25

) (10)

with diameter6:7 � 10�8 in y and6 � 10�7 in z. If we divide
into 4

4 rectangles we obtainN(X) with diameter1:9 �10�9

in y and1:27 � 10�8 in z. Hence the method of intermediate
sections can also be used for sharpening the bounds of the
position of the periodic orbit.

3.3. Other periodic orbits

We have also tried to use the interval Newton method for
proving the existence of other periodic orbits from Table 1.
We were not able to do this in a reasonable time. We have
estimated that in order to prove the existence of the period–
3 orbit (compare Fig. 1(f)) it would be necessary to use4

7

rectangles at each intermediate section. For the proof of the
existence of period–2 “symmetric” orbit (Fig. 1(e)) we need
4

9 rectangles at each section. For the proof of the existence
of period–2 orbit with three scrolls (see Fig. 1(d)) we need
4

10 covering rectangles. This orbit is the most difficult prob-
ably due to large eigenvalues (compare Table 1). The time
necessary to complete the proof for the first of these orbits
is more than 10 hours, using Sun-ULTRA 1 computer. This
is the cost we pay for the necessity of computing exact Ja-
cobian matrix. However it may by worth doing as we gain
the uniqueness of the orbit.

It is possible that the assumptions of the method could
be checked in a reasonable time if we use interval arithmetic
based on higher precision (we have used double precision).

4. CONCLUSIONS

We have studied the possibility of using interval Newton
method for proving the existence and uniqueness of periodic
orbits continuous–time systems. This method is very pow-
erful in a sense that it allows to prove also the uniqueness
of the obtained periodic solution. It is also very efficient as
in order to prove the existence and uniqueness we need to
evaluate the map under investigation only at one interval.

As an example we have considered a simple third-order
nonlinear circuit. We were able to prove the existence and
uniqueness (in a certain region) of two unstable periodic or-
bits. By iterating the interval Newton method we sharpened
the bounds of the fixed point on the Poincaré map to an un-
certainty less than1:6 � 10�9. For longer periodic orbits we
have estimated the time necessary to perform the proof.

It seems that the interval Newton method can be suc-
cessfully used for proving the existence and uniqueness of
periodic orbits with low periods. In case of longer periodic
orbits when it is not possible to prove the assumptions of
the method in one step one can divide the initial interval
into several subsets obtaining smaller bounds for the result
of the Newton operator. Even better one can use the method
of intermediate sections. For very long periodic orbits the
time necessary to prove the assumptions of the method is
usually very long which makes the method unusable.
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