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ABSTRACT

In this paper we introduce the global interval New-

ton method and investigate the possibility of using this

method for proving the existence of periodic orbits in

continuous{time dynamical systems. We compare this

method with a standard version of the interval Newton

method. As an example we consider a simple third or-

der electronic circuit for which we prove the existence

of several unstable periodic orbits.

1. INTRODUCTION

The detection of periodic orbits in nonlinear systems is

a problem of continuing interest in a variety of �elds.

Usually periodic orbits are found in numerical studies

but there is no guarantee that there exists a true pe-

riodic trajectory that stays near a computer generated

one. This problem is especially important for chaotic

systems, as chaotic trajectories exhibit sensitive depen-

dence on initial conditions.

In the present work we develop the technique for

proving the existence of periodic orbits based on the

interval Newton's method [1, 5]. An introduction to

the interval arithmetic underlying this method is given

in [2]. In interval analysis we are sure that the result

obtained encloses the true solution (together with the

rounding error). In this paper we use boldface lower-

case letters to denote intervals and usual math italic

lowercase letters to denote point quantities.

The interval Newton method uses set theoretic �xed

point theorem and belongs to the class of self validating

algorithms [1]. In this method in order to investigate

the existence of zeros of a function R

m

3 x 7! f(x) 2

R

m

in an m-dimensional interval x one computes the

interval Newton operator:

N(x) = x

0

� (Df(x))

�1

f(x

0

); (1)

where (Df(x))

�1

is the interval matrix containing all

Jacobian matrices of f of the form (Df(x))

�1

for x 2 x
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and x

0

is an arbitrary point belonging x. If N(x) � x

then there exists exactly one point x 2 x such that

f(x) = 0. Hence the interval Newton's method can be

used to prove the existence and uniqueness of zeros. By

iterating the method one can easily sharpen the bounds

of solutions.

In order to apply this method for proving the exis-

tence of periodic solutions for continuous{time systems

one considers a Poincar�e map P associated with the

continuous{time 
ow and applies the interval Newton

method to the map id � P . In our previous studies

[3] we have used this technique for proving the exis-

tence of low{period orbits in a simple electronic circuit.

For longer orbits the method does not work due to the

wrapping e�ect that causes a quick growth of the initial

rectangle | the assumptions of the existence theorem

cannot be checked with computer assistance in a rea-

sonable time.

2. GLOBAL INTERVAL NEWTON

METHOD

In this paper we present a modi�cation of this method

called the global interval Newton method which may be

also used for proving the existence of longer periodic

orbits.

Let us denote by '

t

(x) the trajectory of the system

starting at x. Let us consider an orbit f'

t

(�x)g

t2[0;T ]

and let us choose p planes �

1

; : : : ;�

p

which are

transversal to this orbit. Let us denote by � the union

of the planes �

i

. We assume that �x 2 � and that the

orbit does not intersect any of the sets �

i

\�

j

for i 6= j.

Let n be the number of points at which the trajectory

intersects �.

Let us de�ne a generalized Poincar�e map H : � 7! �:

H(x) = '

�(x)

(x); (2)

where � (x) is the time needed for the trajectory '

t

(x)

to reach �.

In order to prove that the trajectory f'

t

(�x)g

t2[0;T ]

is

periodic it is su�cient to prove that H

n

(�x) = �x. One

possible solution to this problem is to apply the inter-

val Newton method to the map id�H

n

. This method



works �ne for short orbits. For longer orbits, especially

when the matrix DH

n

(�x) is ill-conditioned, one can-

not check the existence condition and the method fails

(compare [3]).

Here we propose to use the interval Newton method

to the map F : (R

m

)

n

7! (R

m

)

n

de�ned by

[F (z)]

k

= x

(k+1)mod n

�H(x

k

) for 0 � k < n; (3)

where z = (x

0

; : : : ; x

n�1

). As a starting point for the

interval Newton method we choose an interval centered

at z = (�x;H(�x); : : : ;H

n�1

(�x)). See that F (z) = 0 if

and only if �x is a �xed point of H

n

. In the global

interval Newton method the problem of existence of

periodic orbits is translated to the problem of existence

of zeros of a higher{dimensional function.

Once the sequence of the planes �

i

is de�ned we

may introduce a local coordinate system on each of

the planes �

i

and consider H as a map from R

m�1

to

R

m�1

reducing the dimension of the map F from mn

to (m � 1)n.

3. ELECTRONIC CIRCUIT

As an example we consider the Chua's circuit, a sim-

ple third{order system de�ned by the following set of

ordinary di�erential equations:

C

1

_x = G(y � x) � g(x);

C

2

_y = G(x� y) + z; (4a)

L _z = �y � R

0

z;

where g(�) is a three-segment piecewise-linear function

g(x) = G

b

x+ 0:5(G

a

�G

b

)(jx+ 1j � jx� 1j): (4b)

For parameters: C

1

= 1, C

2

= 9:3515, G

a

=

�3:4429, G

b

= �2:1849, L = 0:06913, R = 0:33065,

R

0

= 0:00036 the system (4) has a \double{scroll"

chaotic attractor. The state space R

3

can be divided

into three regions (where the system is linear) sepa-

rated by planes V

�

= fx 2 R

3

: x = �1 g. For our

circuit we choose this planes as the planes de�ning the

generalized Poincar�e map (�

1

= V

+

, �

2

= V

�

).

The Jacobian matrix of the map F at the point z =

(x

0

; : : : ; x

n�1

) can be computed as

DF (z) =

0

B

B

B

@

�J

0

I

2

0 : : : 0

0 �J

1

I

2

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I

2

0 0 : : : �J

n�1

1

C

C

C

A

(5)

where I

2

is the identity matrix of dimension 2 and

J

i

= DH(x

i

) is the Jacobian of H at x

i

(see [3] for

the formula of DH).

4. PERIODIC ORBITS

In this section we apply the global interval Newton

method for proving the existence of periodic orbits for

Chua's circuit.

In order to identify periodic orbits and prove their

existence we propose to use the following procedure.

First we extract periodic orbits using the method of

close returns [4]. We monitor a trajectory and look

for parts of the trajectory coming closely to the initial

point. Then using the standard Newton method we

sharpen the approximation obtaining a trajectory of

length n of the generalized Poincar�e map. We create

an interval x centered at the approximate position of

the orbit with the same diameter at all points along the

orbit. Finally we apply the interval Newton operator

to the map F at x and check whether N(x) � x. If

this condition is ful�lled the existence of periodic orbit

is proven. In the opposite case we modify x and repeat

the computations.

Using the method of close returns we have found sev-

eral quasi{periodic trajectories. We have applied the

above procedure to some of the periodic orbits found.

For most of the orbits we have succeeded in proving

their existence. For few of them the method failed. We

have observed that in all unsuccessful cases the orbit

spent a long time in one linear region before return-

ing to �. If such cases introducing greater number of

planes �

i

should be helpful.

Some of the orbits for which the existence was

proven are shown in Fig. 1. Their parameters are

collected in Table 1. In the �rst column we give the

position of the orbit in Fig. 1. Periodic orbits are

sorted according to their periods which are printed in

the second column. In Table 1 we use the following

notation: n is the number of intersections of the orbit

with the planes V

�

(it is the period of the orbit on the

generalized Poincar�e map H), n

+

(n

�

) is the period of

the orbit on the Poincar�e map de�ned by the section

plane V

+

(V

�

). The position of the orbit on the plane

V

+

is given in the sixth column and the uncertainty of

the position of the orbit on the generalized Poincar�e

map is given in the last column. For all the orbits

by iterating the interval Newton method we have

obtained the uncertainty smaller than 10

�7

.

For every of the orbit shown in Fig. 1 there exist an

orbit symmetric to it with respect to the origin. This

is true also for orbits (j) and (k) which seem to be

symmetric. Close to the orbit (j) we have found orbits

of approximately two (n,o), three (r), four (t) and �ve

(v) times longer period.

We stress that the method is very powerful in a sense

that in order to prove the existence of the orbit one has

to evaluate the interval Newton operator only at one



orbit (Fig. 1) period n n

+

n

�

position uncertainty
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2
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8
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8
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6
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4
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3
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0
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2

0

6 3 0 (�0:32688953
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8
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9

) 6:3� 10
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h 28:6270866

6

2
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6

8
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0

3
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9
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3
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3

6
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9

7
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2

6

;�4:6065197

0

2

) 1:7� 10

�8

n 66:42711

8

5

16 4 4 (�0:3748804

5

7

;�4:7232727

5

7

) 4:8� 10

�8

o 66:58

2001

1997

16 4 4 (�0:37217029

5

7

;�4:69002

199
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) 4:9� 10

�8

p 74:95806

4

1

18 5 4 (�0:37426646

3

5
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) 3:6� 10

�8

q 79:12980
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2

4
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7
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) 2:0� 10
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9

4

24 6 6 (�0:37212670

4

6
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3

5

) 5:6� 10

�8
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5

3

26 9 5 (�0:3820839497

1

7

;�4:81724127

6

8

) 4:6� 10

�9

t 132:1431

4

2

32 8 8 (�0:2631955

46

5

;�3:382313

6

8

) 4:2� 10

�8

u 140:9263

9

7

34 9 8 (�0:26419576

1

3

;�3:3954757

3

6

) 6:0� 10

�8

v 165:4853

8

6

40 10 10 (�0:37472862

01

1

;�4:7214127

7

9

) 5:0� 10

�8

w 187:79237

8

6

38 7 12 (�0:382607950

2

4

;�4:82284234

0

2

) 1:6� 10

�8
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9

4
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1

6
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1

3

) 8:0� 10
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Table 1. Periodic orbits for the Chua circuit, compare Fig. 1, n is the number of intersections with the planes V

�

interval. We would like to point out that this method

(unlike the standard version of the interval Newton

method) is not limited to short periodic orbits. The

longest periodic orbit shown in Fig. 1 has period 29

times longer than the shortest one. Using standard ver-

sion of interval Newton method we were able to prove

the existence of the shortest orbit only (Fig. 1a). By

means of the method of intermediate sections for com-

putation of N(x) we proved the existence of the orbit

(b) with the second shortest period. For longer orbits

even using the method of intermediate sections we were

not able to complete the proof in a reasonable time.

5. CONCLUSIONS

In this paper we have introduced the global interval

Newton method for proving the existence of periodic

orbits in continuous time systems. We have shown that

this method is much more powerful that the non-global

version of the interval Newton method. The method is

very e�cient as in order to perform the proof we need

to evaluate the map under investigation only at one in-

terval. This technique may be automated for perform-

ing an exhaustive search of periodic orbits in the state

space. By iterating the Newton operator one can easily

reduce the uncertainty of the position of periodic orbits.
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Figure 1. Periodic orbits of the Chua's circuit. For the explanation see text and Table 1.


