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Abstract| In this paper we report the existence

of a very large number of patterns corresponding to

di�erent chaotic attractors in a one{dimensional array

of coupled chaotic circuits. We estimate the number of

patterns that can be stored in the network for di�erent

network size.

I. INTRODUCTION

In nature structures composed of individual simple

subsystems and wide-spread. Speci�c examples come

from biology and medicine (tissues of living organisms)

physics and chemistry (matter composed of atoms),

etc. Properties of such systems depend on properties

of individual subsystems and the way they are cou-

pled together. Various models describing behavior of

interconnections of a large number of simple systems

have been proposed by scientists. Among them lattice

models, exhibiting various types of collective behavior

play an important role [1, 2, 3, 4, 5].

Among various types of collective dynamics one

can observe many types of spatial, temporal or

spatio-temporal ordered structures referred to as self-

organization [1] or \pattern formation". \Organized"

behavior is usually linked with coherent (synchro-

nized) behavior of a number of subsystems in the

network. Organized spatio-temporal behavior includes

propagation of waves including solitons and autowaves,

target waves, spiral waves and traveling wavefronts.

In our previous works we studied cooperative be-

havior in one- and two-dimensional arrays of Chua's

circuits with resistive coupling between the cells [6, 7].

In the present study we investigate steady-state be-

havior observed in a ring (one{dimensional array with

connected ends) of coupled Chua's chaotic circuits. In

experiments we use so-called balanced cells in which

a self-coupling term has been introduced in each cell

enabling simultaneous development of synchronized

chaotic motion in all cells. Using computer experi-

ments we have con�rmed the existence of a very large

number of stable �nal states depending on the connec-

tion strength and initial conditions applied in the indi-

vidual cells. Existence of various synchronized states is

studied experimentally. These �nal states can be coded

using a binary alphabet.

II. EXPERIMENTAL SETUP

Let us consider a one{dimensional lattice of sim-

ple third{order electronic oscillators (Chua's circuits).

The oscillators are coupled bi-directionally by means

of two resistors cross-connected between the capacitors

C

1

and C

2

of the neighboring cells (compare Fig. 1a).
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Figure 1: (a) A one{dimensional array of simple third{

order oscillators, (b) A �ve{segment piecewise linear

function.

Every cell is connected with two nearest neighbors.

The �rst and the last cells are also connected and the

lattice forms a ring. The dynamics of the lattice com-

posed of n cells can be described by the following set
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Figure 2: Switching of patterns in an array composed of 11 circuits (a) T 2 [3; 24], (b) T 2 [26; 73], (c)

T 2 [73; 89], (d) T 2 [89; 189] | �nal steady{state pattern.

of ordinary di�erential equations [6], [7]:
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where i = 1; 2; : : : ; n and we use the following bound-

ary conditions x

0

:= x

n

, z

0

:= z

n

, x

n+1

:= x

1

and

z

n+1

:= z

1

and f is a �ve{segment piecewise linear

function (compare Fig. 1b):
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As in our previous studies we use typical parameter

values for which an isolated Chua's circuit generates

chaotic oscillations | the \double scroll" attractor:

C

1

= 1=9F; C

2

= 1F; L = 1=7H;

G = 0:7S; m

0

= �0:8; m

1

= �0:5;

m

2

= 0:8; B

p

1

= 1; B

p

2

= 2:

(3)

For these parameter values together with a chaotic at-

tractor there exist periodic orbit with a large ampli-

tude. In the experiments we have considered the uni-

form coupling G

1

.

III. SIMULATION RESULTS

Let us consider the network composed of n = 11 cir-

cuits connected using a coupling G

1

= 0:2.

We have performed a very large number of experi-

ments, starting this network with small random initial

conditions of amplitude 0:01. A typical result of such

experiment is shown in Fig. 2.

In the steady{state the network behaves chaotically,

with some cells developing Roessler{type attractors in

the upper and some in the lower half{space (compare

Fig. 2(d)).

Such a state of the network when some cells operate

in the upper half{space, while others in the lower half{

space will be called a pattern. With each patterns we

associate the sequence of 0's and 1's in such a way

that if the ith cell operates in the upper (lower) half{

space then we set the ith element of the sequence to 1

(0). Hence the sequence corresponding to pattern from

Fig. 2(d) is 01100101011.

One can observe very interesting phenomena of pat-

tern switching (compare Fig. 2). It seems that patterns

including several adjacent cells operating in the same

half{space are less stable. After certain time they tend

to convert to a pattern with shorter clusters of cells op-

erating in the same half{space. Usually the neighbor-

ing cells operating in the same half{space are almost

synchronized, hence we will refer to such cells as \co-

herent" cells.

We think that the pattern switching phenomena can



be explained in the following way. Usually if the clus-

ter of \coherent" cells is large, the corresponding at-

tractors are larger and thicker than in a case when

the cluster size is small (< 3). After some time the

trajectory of one of the cells from the large \coher-

ent" cluster enters the second half{space. The pattern

is switched to a pattern with shorter \coherent clus-

ters", the attractors of individual cells become thinner

and smaller and this new pattern is more stable than

the initial one.
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Figure 3: Switching of patterns in an array composed

of n = 11 circuits. In all examples the �nal pattern is

composed of single{cell and double{cell clusters only.

Three examples of pattern switchings are shown in

Fig 3. For each pattern switching we also record its

time instant, which is printed to the left to the pat-

tern. In all examples after 5 pattern switchings the

steady{state pattern, which does not contain clusters

with size larger than 2, is obtained. The number of

pattern switchings before the steady{state can be very

di�erent, but usually if we start from very small initial

conditions it is smaller than 10.

In Fig. 4 we show another example of pattern switch-

ing. This time the number of pattern switching before

the steady{state is 7. See that the last pattern switch-

ing occurs after a very long time T > 3400. Cluster

composed of three cells converts to three single{cell

clusters. In this case in the steady{state we also ob-

serve a cluster composed of three \coherent" cells (cells

9{11).

During our experiments we have observed many ex-

amples of clusters composed of three or more cells,

that seemed to be stable, but usually after a long time

the pattern evolved into a pattern composed of shorter

clusters.
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Figure 4: Switching of patterns in an array composed

of n = 11 circuits. In the steady{state the pattern

contains the cluster composed of three cells.

From the experiments we conclude that all patterns

not containing clusters with size larger than three are

stable | they can be successfully stored in the network

| we say that they are admissible. In order to check

this hypothesis we initiate the network from several

randomly chosen patterns of that type. We have not

found an example of pattern which is not stable. This

property will be used in the next section to estimate

from below the number of patterns that can be stored

in the network.

IV. NUMBER OF PATTERNS

In this section we estimate from below the number of

patterns generated in the network. This computation

is performed under the assumption that the trajectory

of every cell can be in lower or upper half{space but



three neighboring cells cannot be in the same half{

space. In other words we assume that all patterns of

single{cell and double{cell clusters are admissible and

we do not count patterns containing clusters of more

than two cells. If such patterns are also admissible we

just obtain a larger number of patterns that can be

generated by the network.

Let us denote by S

n

the number of patterns of length

n not containing clusters larger than two cells.

Let us code the ith cell in upper half{space by �

i

= 1

and the in lower half{space by �

i

= 0. We are look-

ing for number of n-element sequences (�

1

; : : : ; �

n

)

with elements from the set f0; 1g which after creating

a cycle do not contain the subsequences (1; 1; 1) and

(0; 0; 0).

Let us introduce the numbers a

n

; b

n

; c

n

; d

n

, that cor-

respond to the number of sequences (�

i

)

n

i=1

with cer-

tain beginning and ending of the sequence. For exam-

ple a

n

is the number of n element sequences beginning

with 10 and ending with 10, b

n

is the number of se-

quences beginning with 10 and ending with 100, c

n

is

the number of sequences beginning with 10 and ending

with 01, while d

n

is the number of sequences beginning

with 10 and ending with 011. One can easily prove that

the numbers a

n

, : : : , d

n

can be computed using the

following recursive formula.
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n

c
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n
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with initial conditions: a

1

= b

1

= c

1

= 0, d

1

= 1.

The number of patterns S

n

for n � 2 is given by

S

n

= 2(a

n

+ b

n

+ c

n

+ a

n�1

+ b

n�1

): (5)

Using the method of generating functions we obtain

the following formula for the number of steady{state

patterns:
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The second term of S

n

goes to zero as n!1. The last

term is bounded, actually it admits only two values:

2 for n = 3k; 3k � 1 and �1 for n = 3k + 1; 3k + 2.

Hence the �rst term decides about the behavior of S

n

for large n. For large n

S

n+1

S

n

�

1 +

p

5

2

; (7)

and hence the number of patterns grows 1:618 times

when we increase the number of cells in the network by

1. For example for n = 10 cells we have 122 patterns

and for n = 30 the number of patterns is 1860500.

Remember that di�erent patterns correspond to dif-

ferent chaotic attractors. This means that the number

of attractors for the system is very large.

We would like to stress that the number of patterns

may be even larger due to possible stability of some

patterns containing clusters of three \coherent" cells,

which are not counted here.

V. CONCLUSIONS

We have performed a study of steady{state behav-

iors in the one{dimensional array of bi{directionally

coupled chaotic circuits. We have found the range of

coupling strength for which the network produces a

very large number of patterns corresponding to di�er-

ent chaotic attractors. We have estimated the number

of patterns that can be stored in the network for dif-

ferent network size.
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