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ABSTRACT

In this paper we introduce the PCPH (Pseudo-Chaotic Phase Hop-
ping) telecommunication scheme, which is obtained by combining
pseudo-chaotic encoding with N -ary phase shift keying. For this
system, we address the problem of finding the optimal constella-
tion labeling in order to minimize the error probability.

1. INTRODUCTION

Recently, it has been demonstrated that useful digital informa-
tion can be embedded in a chaotic signal for communication pur-
poses [1, 2, 3, 4]. The basic idea consists of controlling the dy-
namics of a chaotic system in order to obtain the desired symbolic
sequence [1]. Symbolic dynamics may be defined as a “coarse-
grained” description of the evolution of a dynamical system [5].
Namely, by partitioning the state space and associating a symbol
to each partition, a trajectory of the dynamical system can be ana-
lyzed as a symbolic sequence. From this perspective, a chaotic sys-
tem may be seen as a natural information source [6]. Hayes et al.
in [1] first suggested to control the evolution of a dynamical system
in order to encode useful information. More sophisticated control
techniques were developed by Schweizer et al. [2]. Recently, simi-
lar ideas have been successfully applied in the context of UWB im-
pulse radio [3, 7] and of DCSK (Differential Chaos Shift Keying)
systems [4]. In particular, the PCTH (Pseudo-Chaotic Time Hop-
ping) communication system [7] relies upon a pseudo-chaotic en-
coder whose output mimics the dynamics of the chaotic Bernoulli
shift [8]. In PCTH the output of the pseudo-chaotic encoder drives
a pulse position modulator (PPM), resulting in a random-like dis-
tribution of the pulses in the time domain. On the receiver side the
information is retrieved by using standard Viterbi detection [9].

In this work we consider a combination of the pseudo-chaotic
coding described in [7] with N -PSK (N -ary phase shift keying),
realizing a spread-spectrum system that we call pseudo-chaotic
phase hopping (PCPH). For such system we are interested in find-
ing the optimal constellation labeling, that is the symbol labeling
minimizing the BER (bit error rate).

2. PSEUDO-CHAOTIC PHASE HOPPING

The block diagram of the PCPH scheme is shown in Fig. 2.
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2.1. Pseudo-Chaotic Encoder

The pseudo-chaotic encoder performs a spreading of the input se-
quence c(k), mimicking the chaotic dynamics of the Bernoulli
shift map, defined by [8]:

xk+1 = 2xk mod 1 (1)

whose graph is shown in Fig. 1. The state x can be represented as
a binary expansion:

x = 0.b1b2b3 . . . ≡
∞

∑

j=1

2−jbj (2)

where each of the bits bj is either 0 or 1, and x ∈ I = [0, 1].
The successive iterates of x are obtained by moving the separating
point one position to the right (multiplication by 2) and setting to
zero the integer digit (modulo 1 operation). The information is
encoded by associating the symbol “0” to the subinterval I0 =
[0, 0.5) and the symbol “1” to I1 = [0.5, 1], as shown in Fig. 1.

In this work the Bernoulli shift process is approximated by
means of an M -bit shift register followed by a DAC (digital/analog
converter), as illustrated in Fig. 2. Correspondingly, the generic
state xl (with l = 1, 2, . . . , 2M ) can be expressed as:

xl = 0.b1b2 . . . bM ≡
M
∑

j=1

2−jbj (3)
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Fig. 1. The Bernoulli shift map. The invariant interval I = [0, 1]
is partitioned with respect to c = 0.5. The subintervals I0 and I1

are assigned the binary symbols “0” and “1”, respectively.
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Fig. 2. Simplified block diagram of the PCPH scheme.

where b1 and bM represent the MSB (most significant bit) and
the LSB (least significant bit), respectively. The shift operation
corresponds to a multiplication by a factor 2, while the modulo 1
operation is realized by discarding the shifted MSB at each step.
The shift register is fed with the input sequence c(k), which we
assume to be i.i.d.1 At each step the most recent bit of informa-
tion is assigned the LSB position while the old MSB is discarded.
Note that from the viewpoint of information theory the shift reg-
ister structure implementing the Bernoulli shift may be seen as a
form of convolutional coding [10].

2.2. PCPH Signal

In order to study the PCPH modulation we consider a discrete-
time baseband model of a telecommunication system. This model
can be shown to be equivalent to sampling (according to a sam-
pling interval t0 = 1/f0) the continuous-time signal transmit-
ted over an RF (radio frequency) bandlimited channel, utilizing
N -ary phase shift keying. Given the k-th pseudo-chaotic iterate,
xk, we define the corresponding symbol sk as follows: sk =
[cos(ϕk), sin(ϕk)], where ϕk = 2πxk, and ϕ0 = 2π/2M+1 is
a phase offset. The corresponding signal-space diagram is shown
in Fig. 3. Note that with these notations ϕk ∈ [0, 2π]. Thus, the
invariant interval I = [0, 1] of the Bernoulli shift, with its defi-
nition of symbolic dynamics, maps to the unit circle in the signal
space. Then, for each bit of information we transmit the vector:

Y = [Y1, Y2] =

[

√

Eb

2
cos(ϕk),

√

Eb

2
sin(ϕk)

]

where Eb denotes the energy per bit.

2.3. PCPH Decoder

By assuming the input c(k) to be an i.i.d. sequence, the optimal
decoder for the PCPH signal is represented by a trellis matched
to the dynamics of the Bernoulli shift, seen as convolutional en-
coder. In this work we consider soft Viterbi decoding [9] and for

1In practice this may be achieved by inserting a data compression
and/or a data scrambling block in front of the shift register.

illustrating the branch metric computations we consider the nor-
malized vector y =

√

2/EbY . At each step, the input of the
Viterbi algorithm is a vector ỹ = [ỹ1, ỹ2] representing the re-
ceived symbol affected by noise. By assuming that each sam-
ple is perturbed independently by additive white Gaussian noise
(AWGN) it can be shown that the observation probability of re-
ceiving ỹ, if the symbol sk = [sk1, sk2] was sent, is propor-

tional to e((ỹ1−sk1)2+(ỹ2−sk2)2)/2σ2

n , where σn is the noise vari-
ance. This in terms of logarithms, according to the usual formu-
lation of the Viterbi algorithm, translates into the branch metric:

dk =
√

(ỹ1 − sk1)
2 + (ỹ2 − sk2)

2, whose geometrical interpre-
tation is shown in Fig. 3.

3. BER PERFORMANCE

This section is devoted to the characterization of the PCPH scheme
in the presence of noise, in terms of BER (bit error rate). We con-
sider here the interference on the channel to be just AWGN (addi-
tive white Gaussian noise). The analysis is carried out as a function
of the ratio Eb/N0, where Eb is the energy per user bit and N0 is
the single-sided spectral noise density. In particular, we study the

"0"

"1"

0

s1

s2

s16

dk

sk

y~

Fig. 3. Signal-space diagram for the PCPH signal (for M = 4)
illustrating the geometrical meaning of the branch metric dk.
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Fig. 4. BER performance of PCPH (N = 4). The BPSK (binary
phase shift keying) curve is also plotted for reference purposes.

influence of the constellation labeling on the BER performance in
order to find the optimal symbol labeling.

3.1. Optimal Labeling

We define a symbol labeling by a permutation p1p2 . . . pN , mean-
ing that for the pseudo-chaotic iterate xk we transmit the symbol
spk

. Given N symbols there are clearly N ! possible permutations.
As the symbols are positioned on the unit circle it follows that
some of the permutations are equivalent. For example, the iden-
tity permutation 12345678 is equivalent to 34567812 (shift of two
positions). Thus, it suffices to consider only permutations with 1
on the first position. Also, because of the symmetry of the circle
with respect to the axis it is possible to further reduce the number
of permutations which need to be analyzed. Actually, it can be
shown that there are P ′ = (N

2
− 1)(N − 3)!(N − 1) classes of

non-equivalent permutations. A few examples are given in Table 1.
Note that different permutations correspond to different chaotic

Table 1. Number of possible permutations, P , and of non-
equivalent permutations, P ′, as a function of N(= 2M ).

M bits N(= 2M ) P (= N !) P ′

1 2 2 1
2 4 16 3
3 8 40320 2520
4 16 2.092 × 1013 6.538 × 1011

maps, characterized by different BER performances. For instance,
the “Gray/binary” permutation applied to the Bernoulli shift pro-
duces the tent map [8]. The case N = 2 (M = 1 bit) is trivial as
there are only two possible labelings (12 and 21) which are com-
pletely equivalent.

The case N = 4 (M = 2 bits) is the first non-trivial one and it
admits three non-equivalent permutations: 1234, 1243 and 1324.
The BER curves for these three permutations are shown in Fig. 4
from which it follows that the identity permutation 1234 and the
1324 permutation are optimal. In order to understand why certain
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Fig. 5. BER performance of PCPH (N = 8).

permutations result in a better BER performance, we computed the
distance between sequences with a single error. If two sequences
differ only in one position, then they correspond to the sequence
of states differing at two (for M = 2) subsequent positions (as
the different bit is present in M states only). Hence, for M = 2
it is sufficient to consider four pairs of sequences of length three:
0x0, 1x0, 0x1, 1x1, where x is either 0 or 1. For each pair we
can compute the distance between the corresponding sequence of
states. For example, for M = 2 and for a pair of sequences 001
and 011 we have:

d = (u1 − w1)
2 + (v1 − z1)

2 + (u2 − w2)
2 + (v2 − z2)

2,

where (u1, v1) is the state after 00, (u2, v2) is the state after 01
(for the sequence 001), (w1, z1) is the state after 01, and (w2, z2)
is the state after 11 (for the sequence 011). Since after the se-
quence 00 the system is in the state 1, it follows that (u1, v1) =
(cos 2πxp1

, sin 2πxp1
). For a given permutation we compute the

minimum distance dmin over all pairs of sequences and also the
sum Σ of these distances. The results are reported in Table 2.
Clearly the minimum distance dmin should be as large as possible
in order to minimize the BER. One can see very strong correlation
between dmin (or Σ) and the BER performance. It is interesting to
note that for all permutations the distance between two sequences
different only by one element does not depend on the choice of
sequences.

For the case N = 8 (M = 3 bits) there are 16 pairs of se-
quences with single error: 00x00, 10x00, 01x00, 11x00, 00x10,
10x10, 01x10, 11x10, 00x01, 10x01, 01x01, 11x01, 00x11,
10x11, 01x11, 11x11. For all the 2520 non-equivalent permu-
tations we computed the distance between sequences of states cor-

Table 2. Characterization of the non-equivalent permutations in
terms of BER and minimum distance (N = 4).

Permutation BER for Eb/N0 = 5dB dmin Σ
1234 0.0014 6 24
1243 0.0059 4 16
1324 0.0014 6 24
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Fig. 6. BER performance of PCPH (N = 16).

responding to these pairs. The minimum distance 9.41 is real-
ized, among the others, by the permutation 13465782. The latter
permutation, though, is outperformed in terms of BER by others.
This indicates that the single-error analysis alone is not sufficient
to predict correctly the BER performance of a given permutation.
Indeed, for the permutation 13465782 the distance between some
sequences differing at two subsequent positions is 7.17. In other
words, for this permutation two subsequent bits received with er-
rors are more likely than an isolated error. In order to study the
probability of multi-error events we have to consider sequences
with more than one different bit. In the light of the observations
above we propose to use the following criterion, valid under the
hypothesis that there exists dominant error events. Let us con-
sider all sequences that can differ at p subsequent positions (i.e.
the number of different bits can be from 1 to p). For each pair
of these sequences we compute the distance of the corresponding
symbol sequences. Then, we choose the permutation with largest
minimum distance over all such pairs. By applying this criterion
in the case N = 8, up to p = 6, we found that the maximum dmin

is achieved for four permutations, namely: 14365872, 14725836,
15374862, 15376284. In Fig. 5 we show the BER curves corre-
sponding to two of these permutations (the performance of optimal
permutations coincides) and some other permutations, including
the identity permutation, the “Gray/binary” (12438756) and the
“binary/Gray” (12437865). Incidentally, the “Gray/binary” per-
mutation is one of the 429 permutations with the smallest mini-
mum distance (dmin = 1.76). From Fig. 5 one can verify that
the BER curves for the optimal permutations actually exhibit the
best performance. Indeed they are more than 1 dB better than
the identity permutation at BER=10−3 and 5 dB better than the
“Gray/binary”. In practice, it is sufficient to consider only rela-
tively small values of p. In fact, it is clear that for larger p the dmin

will not increase. For example, in the case under consideration
(N = 8) it is enough to consider p = 2 in order to correctly iden-
tify the optimal labeling. Pairs of sequences with larger number of
different bits lead to distance larger than dmin for p = 2.

For N = 16 it is not feasible to consider all permutations,
even if we restrict ourselves to the non-equivalent ones. Instead, to
find the optimal labeling we use an heuristic argument based on the
observation that for N = 4, 8, one of the optimal permutations is
such that: |p2k+1−p2k| = N/2, for all k. For this class of permu-

tations the least significant bit (LSB) plays a dominant role in the
transmitted signal immediately after entering the shift register. On
the other hand, for the identity permutation, the significance of the
bit increases with time and its major contribution occurs just before
being discarded. The maximum dmin = 12.1 (for p = 4) within
this class is achieved by the permutation 195DB3F7C4G86EA2.
In Fig. 6 we show the BER curves for a few selected labelings.
Note that, as predicted, the permutation 195DB3F7C4G86EA2
exhibits an excellent BER performance. However, other permu-
tations like 192A4CE68GB3D57F turn out to be slightly better.
This can be explained by the fact that in this case the assump-
tion about the existence of a dominant error event is not exactly
valid. A more comprehensive analysis should take into account
other relevant factors such as the number of error events realizing
dmin (it should be as small as possible), and the distance/number
of corresponding events close to dmin. Finally, as for N = 8, the
“Gray/binary” permutation 12438756GFDE9ACB, corresponding
to the tent map, exhibits the worst performance (dmin = 0.609).

4. CONCLUSIONS

In this work we have presented the PCPH (Pseudo-Chaotic Phase
Hopping) communication scheme. This scheme exhibits an excel-
lent BER performance, compared to other chaos-based communi-
cation systems. Also, we discussed the optimal constellation label-
ing (hence the optimal map) that minimizes the error probability.

We have proposed and tested a simple criterion for choosing
a particular symbol permutation that minimizes the probability of
error, without the need for computing the BER curves. The crite-
rion is based on computation of distances between sequences cor-
responding to single and multi-error events.
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