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ABSTRACT

In this paper we present some theoretical results of the possibilities for controlling a given chaotic

system using the (occasional proportional feedback) OPF method. It is usually claimed that the OPF

method can be used only if the return map is almost one{dimensional and that the OPF control lacks

a theoretical background for the choice of the feedback gain. We show how to �nd the gain value for

which the stabilization can be obtained. We prove that the possibility of stabilization depends on the

behavior of the system in the neighborhood of the periodic orbit and not on the dimensionality of the

attractor on the Poincar�e surface.

1. INTRODUCTION

It is well known that by perturbing a chaotic system in the right way one can force the

system to behave more regularly. Various methods of controlling chaotic systems have

been developed. They can be divided into two main categories. The �rst class consists

of nonfeedback methods, where chaos is supressed by applying some external forcing:

constant, periodic or even random noise. Feedback methods fall in the second class. In

one of these methods the control force is proportional to the di�erence between a desired

oscillation (generated by a special oscillator) and the scalar output of the chaotic sys-

tem. In another one stabilization is achieved by applying a control signal proportional to

the di�erence between scalar variable and its delayed version. An important category of

feedback methods uses the existence of in�nitely many unstable periodic orbits embed-

ded within a chaotic attractor. These methods are of special interest because they use

speci�c properties of chaotic systems and only very small control signals are required. A

comprehensive review of the methodologies for controlling chaos is presented in [3].

Let us start with the description of two feedback methods, namely OGY [1] and OPF

[2] control. One of the special properties of chaotic attractors is that they contain an

in�nite number of unstable periodic orbits. As it was shown in [1], any of these periodic

orbits can be stabilized by applying small perturbations to one of the system parameters.

Let us assume that we have a three-dimensional autonomous continuous time system

of �rst-order ordinary di�erential equations:

dx

dt

= F(x; p); (1)



where x 2 IR

3

and p 2 IR is a system parameter which we can change. We also assume

that parameter p can be modi�ed within a small interval around its nominal value p

0

. We

choose a two-dimensional transversal section � which de�nes a Poincar�e map P. Since

the vector �eld F depends on p, the Poincar�e map P also depends on this parameter p.

Thus, we have

P: IR

2

� IR 3 (�; p) �! P(�; p) 2 IR

2

; (2)

where � = (�

1

; �

2

)

T

. P(�; p) is the point at which the trajectory starting from � 2 �

intersects � for the �rst time. Let us assume that P is di�erentiable. Say we have

selected one of the unstable periodic orbits embedded in the system's attractor as the

goal of our control because, for example, it o�ers an improvement in system performance

over the original chaotic behavior. For simplicity, we assume that this is a period-1 orbit

(a �xed point of P). Let us denote by �

F

= (�

F1

; �

F2

)

T

an unstable �xed point of P for

p = p

0

(i.e., P(�

F

; p

0

) = �

F

). Let the �rst-order approximation of P in the neighborhood

of (�

F

; p

0

) be of the form

P(�; p) � P(�

F

; p

0

) +A � (� � �

F

) +w � (p� p

0

); (3)

where A is a Jacobian matrix of P(�; p

0

) at �

F

, and w =

@P

@p

(�

F

; p

0

) is the derivative of

P with respect to the parameter p.

Stabilization of the �xed point is achieved by realizing feedback of the form

p(�) = p

0

+ c

T

(� � �

F

): (4)

In the original description of the OGY method [1], the vector c is computed using the

expression

c = �

�

u

f

T

u

w

f

T

u

; (5)

where �

u

is the unstable eigenvalue and f

u

is the corresponding contravariant eigenvector

of A.

The second method, we will describe is the one{dimensional version of the OGY

method, called usually the occasional proportional feedback (OPF) control. In this

method the parameter p is computed using only one variable, for example �

1

:

p(�) = p

0

+ c(�

1

� �

F1

): (6)

There are several possibilities of implementation of the OPF control. One of them is

the Hunt's implementation [2]. Hunt uses the peaks of one of the system variables to

generate the one{dimensional map. He uses a window around a �xed level to set the

region where control is applied. This approach means that his controller needs just

one of the system variables as input. In order to �nd the peaks, Hunt's scheme uses

a synchronizing generator. The frequency, delay, control pulse width, window position,

width and gain are all adjustable. All these parameters are found by trial and error. One

of the major advantages of Hunt's controller over OGY is that the control law depends on

only one variable and does not require any complicated calculations in order to generate

the required control signal.

In another implementation of the OPF method (compare [6]) one takes the derivative

of the input signal and generates a pulse when it passes through zero. This pulse is used

instead of Hunt's external driving oscillator as the \synch" pulse for the Poincar�e map.

This obviates the need for the external generator and makes the controller simpler.



2. THEORETICAL RESULTS

In this section, we address the problem of whether or not it is possible to stabilize a given

periodic orbit using the one{dimensional control method. We describe our approach for

the case of stabilizing a �xed point of a Poincar�e map.

The control signal is computed using equation (6). We want to �nd values of c for

which �

F

is an asymptotically stable �xed point of the map � 7! P(�; p(�)).

Theorem 1 Let

f(�; p) = A� +wp; (7)

where A is a two-dimensional square matrix, � = (�

1

; �

2

)

T

, w = (w

1

; w

2

)

T

and p 2 IR.

Let us denote A = (a

ij

)

i;j=1;2

. Let trA = a

11

+ a

12

and detA = a

11

a

22

� a

12

a

21

denote

the trace and determinant of matrix A respectively. If

1 + trA + detA+ c(w

1

+ w

1

a

22

� w

2

a

12

) > 0

1 � detA+ c(�w

1

a

22

+ w

2

a

12

) > 0 (8)

1 � trA+ detA+ c(�w

1

+ w

1

a

22

� w

2

a

12

) > 0

then (0; 0)

T

is a stable �xed point of

f(�)

df

= f(�; p(�)) = f(�; c�

1

) = A� +wc�

1

: (9)

Proof:

f(�) = A� +wc�

1

= A� +w (c 0) �

=

 

a

11

+ w

1

c a

12

a

21

+ w

2

c a

22

! 

�

1

�

2

!

df

= W

1

�:

Now (0; 0)

T

is an asymptotically stable �xed point of f if both eigenvalues of W

1

=

A+w (c 0) lie within the unit circle. One can easily see using for example the Hurwitz

criterion that this is equivalent to (8). 2

The above theorem is formulated for the case of a linear map f with the �xed point

�

F

= (0; 0)

T

. The next theorem extends this result to a nonlinear map P with an

arbitrary �xed point �

F

.

Theorem 2 Let P be the map de�ned in (2) and let �

F

be a �xed point of P. Let the

linear approximation of P be of the form (3). De�ne

P(�)

df

= P(�; c�

1

) (10)

If conditions (8) are satis�ed then there exists a neighborhood U of �

F

such that P

n

(�)

n!1

�!

�

F

for all � 2 U (i.e. �

F

is asymptotically stable for the map (10)).

Proof: Apply Theorem 1 to the linear approximation of the map P at �

F

. 2

From the above theorem one can �nd values of c for which successful control is possible.

Similar results can be obtained for the case when the second variable is used for the

computation of the control signal (parameter is modi�ed according to p(�) = p

0

+ c(�

2

�

�

F2

, this time one has to check if eigenvalues of W

2

= A + w (0 c) lie within the unit

circle).

The most important conclusion which can be drawn from the results presented in this

section is that the possibility of succesfull control using the OPF technique depends on

the form of the linear approximation of the system's behavior in the neighborhood of the

periodic orbit.
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Figure 1. Eiqenvalues of the controlled H�enon system at the �xed point for di�erent

values of c, (a) control signal computed using x state, eigenvalues of W

1

= A+w (c 0)

(b) control signal computed using y state, eigenvalues of W

2

= A +w (0 c)

3. SIMULATION RESULTS

First let us consider the H�enon system: h((x; y)

T

) = (a � x

2

+ by; x)

T

. This is a two-

dimensional nonlinear map. For a = 1:4, b = 0:3 chaotic trajectories can be observed.

The coordinates of the �xed point (x

F

; y

F

) and the Jacobian matrix A at the point

(x

F

; y

F

)

T

can be computed analytically

x

F

= y

F

=

�

(b� 1) +

q

(b� 1)

2

+ 4a

�

=2

A =

 

�2x

F

b

1 0

!

:

Parameter a with nominal value a

0

= 1:4 was chosen as a control parameter. The

derivative of h with respect to a is w = (1; 0)

T

. Possibility of stabilization depends

on the eigenvalues of the Jacobian matrix of the controlled system at the �xed point.

Magnitudes of eigenvalues of W

1

and W

2

for di�erent values of the gain c are shown in

Fig. 1. The su�cient condition for the one{dimensional control method to work is that

both eigenvalues are smaller than 1 in absolute value.

Let us �rst consider the case when the x state is used for the computation of the

control signal. Using Theorem 1 one can easily prove that if c 2 (2x

F

+ b� 1; 2x

F

� b+

1) � (1:06; 2:46) then both eigenvalues of the controlled system lie within the unit circle

(compare also Fig. 1a). The eigenvalue, greater in magnitude decides about the quality

of control. The smaller this value is the more robust control can be obtained. In our case

the best results can be achieved for c = 2x

F

� 1:76, where the curves representing two

eigenvalues intersect (compare Fig. 1). For this c eigenvalues are �

1;2

= �

p

b � �0:547.

This control procedure was tested in computer simulations. We observed very quick

convergence of the trajectory to the �xed point.

In the second case when we use the y variable it is much more di�cult to stabilize

the �xed point. According to Theorem 1 proper behavior of the method is guaranteed

for c 2 [�1 � b; 1 � b � 2x

F

] � [�1:3;�1:06]. This interval is much smaller than in the

previous case. Moreover the eigenvalues for the best choice of c are now greater, namely

for c = �b � x

2

F

� 1:07 both eigenvalues are equal: �

1;2

= �x

F

� �0:88. In computer

simluations we observed that even small deviation from this value of c causes that the

control method fails.
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Figure 2. Eiqenvalues of controlled Chua's system at the �xed point for di�erent values

of c, control signal computed with (a) state y used for the computation of the control

signal, eigenvalues of W

1

= A + w (c 0) (b) state y used for the computation of the

control signal, eigenvalues of W

2

= A +w (0 c)

The above example shows clearly that we can apriori predict which variable should be

used for the computation of the control signal (if we have a choice) and what gain should

be chosen in order to obtain robust stabilization of the periodic orbit.

As another example let us consider the Chua's circuit, which is a three-dimensional

system described by the following state eqution:

C

1

_x = �g(x) + z;

C

2

_y = �Gy + z; (11)

L _z = �x� y �Rz;

where g(�) is a piece-wise linear characteristic g(x) = G

b

x+0:5(G

a

�G

b

)(jx+1j�jx�1j).

We have considered the Chua's circuit with the following set of parameters: C

1

= 1:02,

C

2

= �0:632, G = �0:0033, L = �1:02, R = �0:33, G

a

= �0:419, G

b

= 0:839. We

have chosen the transversal plane x = 1 and the slope G

a

of the nonlinear function g

as the control parameter. As the aim of the stabilization procedure we chave chosen

the period{1 orbit, corresponding to the �xed point on the transversal plane. From the

three dimensional time series we have found the approximate position of the �xed point

�

F

� (�1:39;�1:02) and the Jacobian matrix of the Poincar�e map at the �xed point

A �

 

�1:67 �1:15

�1:31 �0:91

!

:

The derivative of the Poincar�e map with respect to G

a

were found to be w � (1:82; 3:15)

T

.

In Fig. 2 the eigenvalues of matrices W

1

= A + w (c 0) and W

2

= A + w (0 c) are

shown. For c = 0:42 both eigenvalues of the �rst matrix are aproximately 0:92. For the

second matrix always at least one eigenvalue is greater than 1 in magnitude. It follows

from Theorem 1 that if y is used for the computation of the control signal then we should

succeed in stabilization of the chosen periodic orbit if we use c close to 0:42.

The one{dimensional control method was tested in simulations. The results for the

case of y and c = 0:42 are shown in Fig. 3. We managed to stabilize the chosen orbit, but

the stabilization was not robust against small change of c. For the second case (variable

z) we were not able to stabilize the periodic orbit for any value of c.
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Figure 3. Control of Chua's circuit with the one{dimensional version of the OGY method,

(a) state variable, (b) control parameter G

a

4. CONCLUSIONS

In this paper some analytical results concerning the possibilities for stabilizing periodic

orbits in chaotic systems using one{dimensional control methods have been presented.

We stress that the only essential di�erence between the OGY and OPF methods is the

number of variables used for the computation of the control signal. Furthermore, we have

shown that the usual assumption, when using OPF, that the Poincar�e map is almost one{

dimensional is unnecessary. The only assumptions that we need in order to determine if

a given periodic orbit can be stabilized are concerned with the dynamics of the system

in the neighborhood of the chosen orbit. We have shown that the OPF method does not

lack the theoretical basis for the choice of the feedback gain. In order to compute it we

can use similar methods as for the OGY control.
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