
Cluster formation in arrays of interconnected
chaotic circuits∗

Z. Galias◦, M. Ogorzałek◦◦

Department of Electrical Engineering, University of Mining and Metallurgy,
al. Mickiewicza 30, 30–059 Kraków, POLAND

◦ e-mail: galias@agh.edu.pl, ◦◦ e-mail: maciej@zet.agh.edu.pl

ABSTRACT

We present the results of computer simulations of an array composed of locally intercon-
nected chaotic circuits. We investigate the phenomena of synchronization and cluster forma-
tion in such networks.
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1 INTRODUCTION

Networks of locally coupled oscillators has become an extensively studied subject in the last
decade [3, 4, 1]. They provide a model for a variety of phenomena observed in real systems.

Depending on the connection type and strength of coupling a variety of interesting phe-
nomena can be observed. This includes synchronization behavior, when all cells behave in the
same manner and clustering, when some cells in the network are fully synchronized [5, 3, 2].

In this work we study the behavior of a ring of coupled chaotic oscillator. We find exam-
ples of full synchronization, clustering and weak synchronization in this network. We discuss
conditions under which such phenomena can be observed.

2 DYNAMICS OF THE NETWORK

Let us consider a one–dimensional array composed of simple third–order electronic oscilla-
tors (Chua’s circuits). The circuits are coupled by means of conductances G1. Every circuit
is connected with its two nearest neighbors. The dynamics of the one–dimensional lattice
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composed of n circuits can be described by the following set of equations:

C2ẋi =G(zi − xi) − yi + G1(xi−1 − xi) + G1(xi+1 − xi),

Lẏi =xi, (1)

C1żi =G(xi − zi) − f(zi),

where i = 1, 2, . . . , n and where xi and zi denotes the voltages across the capacitances C2

and C1 respectively, and yi is the current through the inductance L in the ith circuit. f is a
five–segment piecewise linear function:

f(z) = m2z +
m1−m2

2
(|z+Bp2

| − |z−Bp2
|) +

m0−m1

2
(|z+Bp1

| − |z−Bp1
|). (2)

The lattice forms a ring, i.e. xn+1 = x1, zn+1 = z1, x0 = xn, z0 = zn. In our study we
use typical parameter values for which an isolated circuit generates chaotic oscillations — the
“double scroll” attractor (C1 = 1/9, C2 = 1, L = 1/7, G = 0.7, m0 = −0.8, m1 = −0.5,
m2 = 0.8, Bp1

= 1, Bp2
= 2). In this work we consider the network composed of n = 15

cells.
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Figure 1: “Steady–state” behavior for (a) G1 = 0, (b) G1 = 10, (c) G1 = 50, (d) G1 = 100

3 STABILITY OF THE SYNCHRONOUS STATE

Observe that for the connection type considered there exists a synchronized chaotic solution.
If we apply identical initial conditions to every oscillator in the ring then all the circuits



oscillate synchronously. In the first experiment we study the stability of synchronous motion.
We start the network from a point close to the synchronization space and observe its behavior
for different values of coupling strength. We consider four cases, namely G1 = 0, 10, 50
and 100. The long term behavior (a trajectory for t ∈ [1300, 1400]) is shown in Fig. 1. For
each simulation we show two lines of plots. The upper line shows individual trajectories of
circuits, i.e., projection of the trajectory of the system onto the plane zi, yi. In the second
line in the ith plot we show the zi variable versus the variable zi+1 from the next cell. By
inspecting this plot we can easily check whether neighboring cells are synchronized. In case
of perfect synchronization between cells i and i + 1 the plot is on the diagonal line.

For G1 = 0 the circuits are not coupled and hence they are oscillating independently.
Each circuit forms the double–scroll attractor but their trajectories are uncorrelated. For G1 =
10 there is some correlation between the circuit trajectories. Every cell oscillates chaotically
and forms the double–scroll attractor, but the switchings between the scrolls are less frequent
than for the uncoupled case. Observe that due to short observation time trajectories of most
of the cells belong to one of the scrolls only.

For G1 = 50 the steady state of the system is a periodic trajectory. The network is
divided into two clusters of cells with trajectories in the upper or lower part of the state space.
In each cluster the cells are fully synchronized (diagonal lines in the second row of plots).
There is a phase offset between the clusters corresponding to the “eight”-type trajectory. For
G1 = 100 the trajectory does not escape from the synchronization subspace. In each cell the
double–scroll attractor is formed, and all cells oscillate in a full synchrony.

From this experiment one can conclude that for G1 = 100 the synchronous chaotic state
is stable while for other values of coupling strength it is not. The steady state for G1 = 100 is
the synchronous behavior. For smaller values of G1 the system displays various steady states
including two clusters of cells oscillating synchronously (G1 = 50), and non-synchronized
behavior for G1 = 10.

4 CLUSTER FORMATION

Above we have seen an example of existence of clusters in the network, where cells oscillate
synchronously, although the network as a whole is not synchronized. In the second part of
the paper we study properties of the system in this state and the process of cluster formation.

We have run a number of simulations, where the system was started from a perturbed
synchronized state, i.e. the synchronous state was modified by adding a small random number
to each system variable. Initially the cells were strongly connected (G1 = 100). In each
simulation we apply a series of changes to the coupling strength (coupling changes in time).

In the first experiment we have changed the coupling conductance to G1 = 50 at t =
30. It follows from the previous simulations that for G1 = 50 the synchronous state is
not stable. The system trajectory leaves the synchronization subspace somewhere around
t = 100. Initially only two cells switch the scroll, and a two cluster structure with 2 and 13
cells is formed. This structure is unstable and after a short time some cells lying on the border
of the larger cluster switch the scroll and leave the cluster. In Fig. 2(b) one can see two clusters
with sizes 5 and 10. After some more time the larger cluster decreases to have 8 cells and this
state is stable in the sense that in quite a long integration time no cell changes the scroll and



(a)

(b)

(c)

(d)

Figure 2: Coupling strength: G1 = 100 for t ∈ [0, 30] — full synchronization, G1 = 50 for
t ∈ [30, 650] — process of cluster formation (clusters of large size are not stable), G1 = 100
for t ∈ [650, 800] — cluster structure is sustained, trajectory becomes periodic, (a) t ∈
[130, 170], (b) t ∈ [180, 200], (c) t ∈ [200, 250], (d) t ∈ [750, 850]

the cluster structure persists (compare Fig. 2(c)). In this steady state each circuit oscillates
chaotically and the synchronization within a cluster is not full (phase synchronization). After
the steady state is achieved the connection strengths were increased to the initial value of
G1 = 100. See the system does not return to the synchronization subspace. Instead, the
cluster structure is sustained. The trajectory in the steady state is periodic (see Fig. 2(d)).

In Fig. 3 one can see the results of similar simulations. These time the cluster structure is
quite different. The number of clusters is much larger. Clusters have sizes 2,3 and 4 and they
are separated by single cells operating in a different region of the state space. For G1 = 50
in the steady state circuits display quasi-periodic trajectory. After increasing the connection
strength to G1 = 100 the cluster structure is unaltered. The steady state however changes
from quasiperiodic one to the period-2. The cells in the clusters become fully synchronized.

In Fig. 4 we show the results of simulation when we did not wait until steady state de-
velops for the smaller connection strength. Initially G1 = 100, at t ∈ [50, 70] connection
strengths were decreased to G1 = 50 and at t = 70 it was changed to the initial value
G1 = 100. In consequence for G1 = 50 the steady state was not obtained and the large clus-
ter with 12 cells survived. From the observation of the steady state for G1 = 100 it follows
that such a cluster is stable for this connection strength. In the steady state all cells within
the cluster are fully synchronized, but on contrary to the previous cases the steady state is
chaotic. There is no generalized synchronization between the clusters, i.e. there is no one to
one relation between the states (see the zi versus zi+1 plot on the border of the cluster).
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Figure 3: Coupling strength, G1 = 100 for t ∈ [0, 200] — synchronous state, G1 = 50 for
t ∈ [200, 700] — synchronization is lost, steady state with many clusters of cells oscillating in
a quasiperiodic way develops, G1 = 100 for t ∈ [700, 1300] — cluster structure is sustained,
period–2 orbit, (a) t ∈ [600, 700], (b) t ∈ [1200, 1300]

Figure 4: Coupling strength, G1 = 100 for t ∈ [0, 50] — synchronous state, G1 = 50 for
t ∈ [50, 70] — the trajectory leaves the synchronization subspace, the steady state is not
achieved, G1 = 100 for t ∈ [70, 1000] — steady state with two fully synchronized clusters
oscillating chaotically, trajectory for t ∈ [1200, 1300] shown

Finally we consider the case when large connection strengths are applied to freely running
uncoupled cells. Initially the cells oscillate independently and in consequence the cluster
structure (i.e. the position of the trajectory with respect to scrolls) is random. At t = 50
we apply strong connection of G1 = 100. Such a strong connection preserves the cluster
structure. In the steady state we observe two clusters of size 3 and 8 separated by single cells.
Cluster are fully synchronized and are oscillating chaotically (see Fig. 5(b)). In the steady
state at t = 700 the connection strength is decreased to G1 = 50. The cluster structure
remains unmodified but the cells within the cluster are not fully synchronized any more (see
Fig. 5(c)). After increasing the connection strength to G1 = 100 the system achieves the
same steady state as before decreasing G1.

5 CONCLUSIONS

We have performed a series of simulations of a ring of locally connected chaotic oscillators.
From these experiments one can draw several conclusions about the cluster formation and
stability of particular cluster structures. Full synchronization is only possible for large cou-
pling (G1 = 100 in our experiments). For smaller values of coupling strength (for example
G1 = 50) clusters are formed. Large clusters however are not stable and they loose border
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Figure 5: Coupling strength: G1 = 0 for t ∈ [0, 50] — independent oscillations, G1 = 100
for t ∈ [50, 700] — steady state with two fully synchronized clusters oscillating chaotically,
G1 = 50 for t ∈ [700, 1100], G1 = 100 for t ∈ [1100, 1500], (a) t ∈ [0, 50], (b) t ∈
[650, 700], (c) t ∈ [1000, 1100]

cells until maximum stable size is achieved. In this case cells within a cluster may or may be
not fully synchronized. Trajectories of individual cells may form periodic orbits (Fig. 2(c)),
quasiperiodic orbits (Fig. 3(a)) or chaotic orbits (Fig. 5(c)). Increasing the coupling strength
back to the original value does not cause the system to return to the state of full synchroniza-
tion between all cells. Instead the cluster structure is sustained, and the cells within clusters
become fully synchronized if this was not the case before. Individual cells may oscillate pe-
riodically (period–1, see Fig. 2(d), period–2, see Fig. 3(b)) or chaotically (see Fig. 5(d)). The
maximum size of the stable cluster increases with the connection strength.
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