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Abstract

In this paper we investigate the possibilities of applying the OGY control method to the three-cell

CNN chaotic system. We address the problem, why it is very di�cult or even impossible to achieve

successful control in computer simulations and real experiments. The theorem, which can be useful

for proving the existence of unstable periodic orbits is formulated. Using this theorem we prove

the existence of the period-1 orbit. We calculate its Jacobian analytically and �nd the size of the

neighbourhood, in which the linearisation of the system's behaviour in the vicinity of this periodic

orbit is valid. We show this size to be very small. Finally we give several reasons why it is very

di�cult to implement this control method in real chaotic systems.

1 Introduction

In this paper we consider an autonomous three-cell CNN with the dynamics described by the following

state equations:
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where f(�) is a saturation characteristic

f(x) = 0:5(jx+ 1j � jx� 1j) (2)

with the following parameter set: p

1

= 1:25, p

2

= 1:1, p

3

= 1, s = 3:2, r = 4:4. For this set of

parameters a chaotic attractor has been observed [7].

The OGY control method [5] has been applied for stabilization of the period-1 orbit of the above

system. In the case of a three-dimensional dynamical system this method can be used for the stabi-

lization of any periodic orbit embedded within the chaotic attractor, if only some system parameter is

available for the control. In the simplest case of single-point method the control parameter is modi�ed

only when the system trajectory intersects a chosen hyperplane. It is changed in such a way, that the

next intersection of this hyperplane by the trajectory will fall onto the stable manifold of the periodic

orbit.

2 Preliminaries

Let us divide the state space into 27 regions 


ijk

, with i; j; k 2 f�1; 0;+1g, de�ned by:
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where A

�1

= (�1;�1), A

0

= [�1;+1], A

+1

= (+1;1). In each of these regions the system (1) is

linear, hence one can calculate the solution without numerical integration. Let us denote the planes



being the boundaries of the 
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the system

equation can be written as:
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If the matrix A
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is invertible then one can rewrite the above equation in the form:
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Unfortunately not all of the matrices A
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are invertible. For instance in the region 
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the linear

part of the state equation is
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which is a non-invertible matrix. Similar situation happens for all triples (i; j; k) such that i; j 6= 0

and k = 0. However in this case we can also �nd analytically the solution of the system. Namely if
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is the state equation, then the solution of the system is
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3 The period-1 orbit

During computer simulations we have found a periodic orbit, which intersects the boundaries of the

regions 


i;j;k

six times and visits �ve of these regions. Let us denote by x

1

;x

2

; : : : ;x

6

the succesive

intersection points of the periodic orbit with the boundaries of the regions 


i;j;k

. Because we know

the solutions of the system in the linear regions we can write down the analytical conditions for the

�xed point:
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The conditions (6) and (7) are called the boundary conditions and the open conditions respectively.

The boundary conditions state that the points x

i

belong to the boundaries of the linear regions while

the open conditions state that no other points on the periodic orbit lie on the boundaries of the linear

regions. It is possible to �nd a solution of the system (5,6,7) numerically. We are not sure however,

whether the solution found is not a computer artifact. In order to prove the existence of the period-1

orbit we will use the following theorem:



Theorem 1. Let D � Q be the set possessing the �xed point property
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Figure 1: Sets D;A
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; A
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; B and their images under map f .

Proof. Let h := g� f . Because h(D) � D and D has the �xed point property, then there exists a �xed

point x

F

of function h. Now we prove that x

F
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Thus function f possesses a �xed point x
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2 B.

Remark 1. From the Brouwer's �xed point theorem it follows that every set homeomorphic to I

2

=

[0; 1]

2

possesses the �xed point property.

Remark 2. Let D = EFGH be a parallelogram, such that f(D) is enclosed in the stripe de�ned by

one pair of parallel sides of D (for example EH and FG). Let A
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Proof: As a retraction we can choose projection onto sides GH and EF in the direction EH.

The above theorem can be useful in computer-aided proofs of existence of �xed points of two{ or

higher{dimensional maps, when the �xed point possesses one unstable eigenvalue with negative sign.

Because all assumptions about f are inclusions of images of some sets one does not have to ensure

in�nite precision in calculations to check these assumptions.

In order to prove the existence of the period-1 orbit we have considered the Poincar�e map P = P

�

,

with the surface of section � = H

+

1

. We have found a parallelogram D with two subsets A

1

, A

2

satisfying assumptions of Theorem 1 (compare Fig. 2(a)). Conditions (8)..(10) have been checked by

computer. Having exact solutions in the linear regions, we were able to keep the computation error

small.

1

We say that a set has the �xed point property if for every continuous map from this set into itself there exists a

�xed point of this map.

2

A continuous function g : Q �! D � Q is called a retraction if g(x) = x for every x 2 D.
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Figure 2: (a) Sets A

1

and A

2

and their images under Poincar�e map associated with the 3-cell CNN

system. (b) Images of circles centered at �xed point under Poincar�e map.

Once we are sure that the �xed point exists, we can �nd its approximate position:

x

1

= (1; 0:973426;�0:381316)

T

(11)

4 Computation of the Jacobian

The next step in the control procedure is calculation of the Jacobian of the chosen periodic orbit. We

will calculate the Jacobian of the �xed point on the Poincar�e map associated with the periodic orbit

considered. The period-1 orbit intersects the boundaries H

�

i

six times. In such case it is natural to

decompose the Poincar�e map P

�

into six generalized Poincar�e maps, compute their Jacobians and

then multiply these Jacobians in order to obtain the Jacobian of the full Poincar�e map. First we derive

the formula for the Jacobian in the case when the matrix A

ijk

is invertible (the method is similar to

the one used in [4]).
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Let us de�ne a map f(x) = e
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(x�P )+P . In order to compute the derivative of f let us decompose

the map f in the following way: f(x) = (h�g)(x), where g(x) = (x; t(x)), h(x;y) = e
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From the construction f it follows that f

i

� 0, which correspond to zero i-th row of the matrix
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x = constg then it is clear that we

must remove the i-th row and the j-th column from Df(x
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) in order to obtain the Jacobian of the

generalized Poincar�e map.

For the case when the matrixA is non-invertible and the solution is described by equation (4) the

Jacobian is the ij-th minor of the matrix
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The proof is very similar to the proof in the previous case.

Now we can compute the Jacobian of the full Poincar�e map as
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where Df(x)

ij

denotes the ij-th minor of matrix Df(x).

One can also �rst multiply Jacobians Df

j

in the same order and then remove the �rst row and

�rst column from the result to obtain the Jacobian of the full Poincar�e map.

Using the approximation of the �xed point (11) we have found the Jacobian of the Poincar�e map

to be

J =

�

�5:7767 2:3839

�6:7152 2:7238

�

: (17)

Its eigenvalues are �

s

= �0:0924, �

u

= �2:9604.

5 Size of neighbourhood with \good" linear approximation

In the previous sections the approximate position of the periodic orbit and its Jacobian have been

found (without numerical integration, with very good accuracy). The calculated values agree quite

well with the values computed from the data series obtained using numerical integration.

To study the e�ect of noise we have added the term "�

n

to the time series, where " is a small

parameter specifying the level of noise and �

n

is a three-dimensional random variable �

n

2 [�1; 1]

3

.

For " = 0:0005 the control method worked properly, but for " = 0:001 we were not able to stabilize

the chosen periodic orbit. Similar e�ect has been obtained for di�erent integration time steps, when

we have used Runge-Kutta integration method instead of exact solutions presented in the �rst part of

the paper. For the time step � = 0:005 the control method worked well and for � = 0:01 the control

was unsuccessful. Greater time step is equivalent to the higher level of noise in computing Poincar�e

map. In Fig. 2(b) one can see circles centered at the �xed point and their images under Poincar�e map.

Only these points from the circles are painted in black, whose images under Poincar�e map return into

the small neighbourhood of the �xed point. The existence of a continuous Poincar�e map is ensured

only locally. This corresponds to the broken circles in Fig. 2(b).



We have observed that trajectories based at certain points very close to the �xed point intersect

the hyperplane H

�

1

and enter the second part of the attractor. In order to �nd such points it is enough

to solve the condition:
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simultaneously with the open condition:
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where x

0

= (1; y

0

; z

0

)

T

. We have found a pair (y

0

; z

0

) = (0:976024;�0:382350) satisfying (18,19). It

lies very close to the �xed point, its distance from the �xed point is d = 0:0028. The existence of a

point satisfying (18,19) is an explanation for the broken circles in Fig. 2(b).

Now it is clear that there are two main reasons for which the linear approximation is not good

enough. The �rst reason is that the continuous Poincar�e map could be de�ned only in a small

neighbourhood of the �xed point. Such a neighbourhood could be too small to ensure a successful

control of the periodic orbit. If we are unable to keep the trajectory inside this small neighbourhood

all the time the successful control cannot be obtained any more. In our case the circle with radius

0.003 is not completely enclosed inside the domain of the continuous Poincar�e map.

The second reason could be the existence of nonlinear terms (compare folding of image of the

greatest circle with radius 0.004 in Fig. 2(b)). In an ideal experiment we can modify the original

OGY method and include higher-order terms in approximation of the system's behaviour around the

periodic orbit. In experimental situation however, such a modi�cation is not helpful. Due to the

noise it is di�cult to �nd good approximations of linear terms. It is even more di�cult to compute

nonlinear ones.

6 Conclusions

The OGY method works well in theory and very accurate computer simulations. In real experiments

however it is very hard to implement it successfully.

In theory if the linearisation is not good or the Poincar�e map is de�ned only in a very small neigh-

bourhood of the �xed point we can decrease the neighbourhood size (one of the method's properties

is that the control can be achieved with arbitrarily small parameter changes). In practice we cannot

decrease it below the level of noise, and we have to consider quite large neighbourhoods if we want to

obtain unnoisy parameters.
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