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ABSTRACT | A number of mathemati-

cal tools are used for analysing nonlinear over-

ow e�ects in digital �lters. In our investiga-

tions we found if useful to use the probabilis-

tic approach and the circle-map theory in the

analysis of complex behaviour in second-order

digital �lter. In the �rst part we introduce

some de�nition (rotation number, nonwander-

ing and chain recurrent points, mixing, exact-

ness) and present several theorems. In the sec-

ond part we describe how to apply the theories

described to the dynamical systems de�ned by

digital �lters.

1 Mathematical tools

1.1 Circle-map theory

Let us recall some important de�nitions and the-

orems from the circle-map theory.

Let f : S

1

7�! S

1

be a continuous map of S

1

to

itself. The map � : IR 7�! S

1

de�ned by �(t) =

(cos(2�t); sin(2�t)) is continuous and onto. Let

F : IR 7�!: IR be a lift of f, i.e. F is continuous,

� � F = f ��, and for each x 2 IR, F (x + 1) =

F (x) + k, where k is an integer constant. The

integer k is unique for a given continuous map f

and is called the degree of f . In this paper we are

interested in degree-one maps only. An important

concept in the study of degree-one maps is the

rotation number. Let f be a degree-one map, and

let F be a lift of f . If x 2 IR, then the rotation

number of x under F is de�ned by:

�

F

(x) = lim

n!1

F

n

(x)� x

n

: (1)

We say that a map of a circle is non-decreasing

if its lift is non-decreasing.

Proposition 1 ([6]) If f is a non-decreasing

degree-one map, F is a lift of f , then �

F

(x) exists

for every x 2 IR and does not depend on initial

point x. �

F

(x) is rational i� f has a periodic

point.

Thus for non-decreasing degree-one maps we can

de�ne the rotation number in the following way:

�

f

= �

F

(x) (mod 1);

where x is an arbitrary real value and F is an

arbitrary lift of f .

We say that a point x is nonwandering if 8U -

neighbourhood of x 9n > 0 : f

n

(U) \ U 6= ;.

We say that a point x is chain recurrent if 8">

0 9n>0 9x

0

; : : : ; x

n

: d(f(x

i

); x

i+1

) < " and x =

x

0

= x

n

. Using the concept of nonwandering and

chain-recurrent points we were able to prove the

following two lemmas.

Lemma 1 If f is a non-decreasing degree-one

map and f is not injective, then the rotation num-

ber of f is rational.

Lemma 2 If f is a non-decreasing degree-one

circle map and the rotation number of f is ra-

tional then for every x 2 S

1

the limit set !(x) is

periodic.

1.2 Measure-theoretic theory

In this section we shall consider the probabilistic

(measure-theoretic) approach in the analysis of

chaotic system.

An important concept in studying measure pre-

serving dynamical systems is mixing property.

Mixing means that a set of initial conditions of

nonzero measure will eventually spread over the

whole phase space as the system evolves.

De�nition 1 Let (M;
; �) be a normalized mea-

sure space, and G : M ! M a measure-

preserving transformation (�(G

�1

(A)) = �(A)

for all A 2 
). G is called mixing if

lim

n!1

�(A \ G

�n

(B)) = �(A)�(B) 8A;B 2 


Another concept is exactness. For exact systems

a set of initial conditions of nonzero measure will

eventually �ll the whole phase space.



De�nition 2 Let (M;
; �) be a normalized mea-

sure space, and G : M ! M a measure-

preserving transformation such that for all A 2


, G(A) 2 
. G is called exact if

lim

n!1

�(G

n

(A)) = 1 for every A 2 
 ,�(A) > 0

2 Results

Mathematical results presented in the previous

section can be applied to analyse the dynamic be-

haviour of a digital �lter due to the overow non-

linearity. So far studies concentrated on stable

behaviour { normal operation of the �lter. New

mathematical tools enable analysis for a wide

range of �lter parameters, allowing prediction of

dynamic behaviour and possibly new unconven-

tional applications (eq. �lter-based noise genera-

tors). The simplest con�guration for realizing the

second-order �lter is the direct form realisation,

shown in Fig. 1.
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Figure 1: The direct form realization of the

second-order digital �lter

To simplify analysis, we neglect the quantiza-

tion error which occurs in the �nite wordlength

representation. Under zero input conditions,

the �lter can be modeled by a two-dimensional

discrete-time dynamical system with the follow-

ing state equations [1]:

�

x

1

(k + 1)

x

2

(k + 1)

�

=

�

x

2

(k)

f [bx

1

(k) + ax

2

(k)]

�

= F

�

x

1

(k)

x

2

(k)

�

(2)

where f(x) is the overow rule. The state space is

the invariant set I

2

= f(x; y) : �1 � x � 1;�1 �

y � 1g.

2.1 Saturation nonlinearity

When we use the saturation function for the over-

ow rule, f(x) has the form:

f(x) =

1

2

(jx+ 1j � jx� 1j) (3)
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Figure 2: Partition of the parameter plane into

sets T , Q
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, for (a; b) 2 Q

1

[ Q

2

one

eigenvalue lies inside and one outside the unit cir-

cle, for (a; b) 2 Q

3

[Q

4

both eigenvalues lie out-

side the unit circle, for (a; b) 2 T both eigenvalues

lie inside the unit circle and the linear system is

asymptotically stable.
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Figure 3: The saturation characterictic

We consider the case (a; b) 2 Q

3

= f(a; b) : b <

�1; b < a+1; b < �a+1g. For other cases the be-

haviour of the �lter is well-known, the only pos-

sible limit sets are period-1 and period-2 orbits

[4, 7]. In [7] it was shown that for (a; b) 2 Q

3

there exists an absolutely convex polygon with

invariant boundary W

1

. It was proved that ev-

ery non-trivial trajectory in �nite time enters the

set W

1

and remains in it. Thus we can reduce

our study to the analysis of one-dimensional map

of W

1

into itself. As W

1

is homeomorphic

to a circle we can de�ne the rotation number of

� := F jW

1

: W

1

7�! W

1

. The map � is

weakly monotone which implies (Proposition 1)

the existence of a unique rotation number for each

pair (a; b), denoted by �

F

.

Theorem 1 If (a; b) 2 Q

3

, x 6= O, � is the rota-

tion number of �, then

1. If � is not a homeomorphism then � is ra-

tional.



Figure 4: The rotation number as a function of

parameter a.

2. If � is rational (� = p=q) then the limit set

of x is a period-q orbit contained in W

1

.

3. If � is irrational then the limit set of x is

dense in W

1

.

From the above theorem it follows that no

chaotic behaviour is possible when we use the sat-

uration nonlinearity for the overow rule. In the

region Q

3

the behaviour of the �lter strongly de-

pends on the circuit parameter values. A very

small change of �lter parameters can cause the

qualitative change of circuit behaviour (change of

the period of the periodic orbit or change of the

type of the orbit, from periodic to the unperiodic

one).

Now we will discuss the structure of the Arnold

tongues.

De�nition 3 We say that point (a; b) belongs to

the !-Arnold tongue denoted by A

!

if there exists

an orbit with rotation number ! 2 IR for F with

parameters (a; b):

A

!

= f(a; b) : 9x 6= O : �

F

(x) = !g: (4)

From Proposition 1 it follows that (a; b) 2 A

p=q

implies the existence of a periodic orbit with pe-

riod q and rotation number p=q. It is also clear

that Arnold tongues with di�erent ! are disjoint.

For any real ! the !-Arnold tongue is closed and

pathwise connected [8].

In Fig. 4 we present the rotation number as a

function of parameter a. One can easily see the
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Figure 5: The ranges of parameters (a; b) with

a given rotation number, points (a; b) lying in-

side the half-circular regions correspond to home-

omorphic � (possible quasi-periodic limit sets),

below these regions the map � is not homeomor-

phic and the rotation number is rational (periodic

limit sets).

devil's staircase structure. It can be proved that

if we change the parameter a for a given value of

b then the rotation number changes in a weakly

monotonic way. It can also be proved that if !

is irrational then the interior of A

!

is empty. It

is clear that all Arnold tongues have nonempty

intersection with the interval T

3

= f(a; b) : b =

�1; a 2 [�2; 2]g - the bottom side of the triangle

T . Namely A

!

\T

3

= f(2 cos(2�!);�1)g. In Fig.

5 the structure of Arnold tongues on parameter

plane is shown.

It is clear that for such parameter choices the

structure does not have the �ltering properties

but can generate oscillations of any chosen period.

2.2 Modular nonlinearity

In this subsection we consider 2's complement

characteristic for the overow rule, i.e.:

f(x) = (x+ 1)mod 2� 1 (5)

We apply the measure-theoretic theory to the
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Figure 6: The 2's complement characterictic

considered digital �lter. The measure we will use

for the map F will be the Borel measure.
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Figure 7: The trajectory of 10000 points for (a)

a = 4; b = �1, (b) a = 3; b = �1:1, (c) a =

0:4; b = 1:03

Lemma 3 Let b 6= 0 be an integer. Then the

map F is measure-preserving.

Theorem 2 If b = �1, a > 2 and a is an inte-

ger, then F is mixing.

Theorem 3 If a,b are integers, such that b 6=

a+ 1, b 6= �a+ 1 and b 6= 0;�1, then the map F

is exact.

It can be proved that exactness implies mixing.

The converse is not necessarily true; the mixing

map F for b = �1 and a an integer larger than

2, is not an exact map.

Fig. 7 shows three examples of complex trajec-

tories. Of particular interest is Fig. 7(a), which

shows uniform distribution of points in the state

space { such a �lter structure could be possibly

used as a noise generator. In Fig. 7(b) the uni-

form distribution is no longer valid. One could see

stripes that are more frequently visited. Fig. 7(c)

shows an example when the trajectory visits frag-

ments of the state space. Thus one can see that

changing parameters we can inuence the statis-

tical properties of the generated sequences.

3 Conclusions

We have described some mathematical tools use-

ful in analysis of nonlinear e�ects in digital �lters.

In the case of saturation characteristic we used

the circle-map theory. We proved in this case

the existence of periodic and quasi-periodic limit

sets only. In the case of modular characteristic we

showed the strong chaotic �lter's behaviour (mix-

ing, exactness) in a wide range of parameters.
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