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Abstract— In this paper we present a method
to find very long periodic orbits for one—dimen-
stonal maps. This new approach is a combination
of the interval Newton method and the shooting
technique. We also describe how to use this ap-
proach to find better approzimation of position of
computer generated pseudoperiodic orbit. Using
this method we find very long periodic orbits for
the logistic map and we calculate Lyapunov expo-
nents of these orbits.

I. INTRODUCTION

Finding periodic orbits of nonlinear systems is
an important problem which is frequently encoun-
tered in a variety of fields. Usually periodic or-
bits are found in numerical studies but there is
no guarantee that there exists a true periodic tra-
jectory that stays near a computer generated one.
This problem is especially important for chaotic
systems, as due to sensitive dependence on ini-
tial conditions usually after certain number of it-
erations (100 or so) the computer generated tra-
jectory becomes uncorrelated with the true tra-
jectory. A very important question is whether
there really exists a true periodic trajectory in
the neighborhood of a computer generated one.

In the present work we develop a technique for
proving the existence of true periodic orbits near
pseudo—periodic orbits obtained in computer sim-
ulations. This approach is based on the nter-
val Newton method [1], [8] and the shooting tech-
nique. An introduction to the interval arithmetic
is given in [2]. In interval analysis we are sure that
the result obtained encloses the true solution (to-
gether with the rounding error). In this paper we
use boldface letters to denote intervals and usual
math italic letters to denote point quantities.

The interval Newton method allows to prove

the existence of zeros of n—dimensional maps. In
this method in order to investigate the existence
of zeros of a function R™ > z — f(z) € R™
in an m-dimensional interval x one computes the
interval Newton operator:

N(x) = zo — f'(x) " f (x0), (1)

where f’(x)~! is the interval matrix containing
all Jacobian matrices of f of the form f’(z) ! for
x € x and x( is an arbitrary point belonging to
the interval vector x. Usually one chooses x( as
the center of x. The key property of the interval
Newton operator is following: if N(x) C x then
there exists exactly one point x € x such that
f(z)=0.

The interval Newton method can be used to
find all low period cycles for discrete time dynam-
ical systems [4]. It can be also used for proving
the existence of periodic orbits for continuous—
time systems [5], [6]. When we try to use this
method directly for very long periodic orbits we
face the problem of efficient computation of the
interval operator.

In this paper we use shooting technique for
evaluation of the interval Newton operator, which
makes the method applicable to long periodic or-
bits. As an example we consider the logistic map.
For this map we find extremely long periodic or-
bits.

II. INTERVAL NEWTON METHOD FOR 1D MAPS

In this section we present a combination of
the global interval Newton method and back-
ward shooting which may be useful for proving
the existence of very long periodic orbits in one—
dimensional maps. Backward shooting is a popu-
lar technique and was used in the context of find-
ing true periodic trajectories shadowing computer
generated ones [3]. Here we apply this technique



for efficient computation of interval Newton oper-
ator.

Let us consider a function R 3 z — f(z) € R.
In order to prove the existence of a period-n cycle
of f one may apply the interval Newton operator
to the global map F : R* — R" defined by

[F(2)]n = 21 — f(2n),

where z = (z1,... ,z,). Observe that z is a zero
of F' if and only if z; is a fixed point of f™. The
Jacobian of F' at z = (zy1,...,z,) can be com-

puted as
F'(z) = (3)
—f'(z1) 1 0 ... 0
0 —f(z2) 1 ... 0
1 0 0 —f’(wn)

In order to prove the existence of a periodic
orbit in the interval vector z we choose zy € z
and show that the interval vector N(z) = zp —
F'(z) 1 F(z) is enclosed in z. The main problem
we encounter is the necessity of computation of
F'(z) 'F(zp). Computation of the interval ma-
trix inverse of F”(z) can be done only for small n.
Here because the matrix F’(z) has a special form
we can use the technique described below to find
N(z).

Let

»Xn), (4)

and zyp = (z1,z9,...,z,) be an arbitrary point
in z. In order to evaluate the interval Newton
operator we first find the interval vector h =
F'(z) 'F(z). This is equivalent to solving the
following equation:

z = (x1,X2,...

F'(z)h = F(2). (5)

We can rewrite this equation in the following
form:

—f'(x1)hy +hy = x5 — f(z1),
—f'(x2)hy 4+ h3 = 23 — f(z2), (6)

_fl(xn)hn + hl =T — f(xn)a

Let ap = f'(x¢) and g = f(2k) — Trmodni1- We
assume that the intervals a; do not contain zero
SO one can compute a,;l. With this assumption
equation (6) can be written as

h; =a;'(hy + g1),
hy = a, ' (h; + g), (7)

h, = aﬁl(hl + gn)'

In order to find h; we substitute h; from the ith
equation into the (i — 1)th equation, starting from
the last equation. After n — 1 substitutions we
obtain

h; =a;'(ay ' (az'(...a ' (a, ' (hy +gn) +
+8n-1)..-+83)) +82) +81) (8)

Hence h; can be computed as

n
1y -1 - -
..anl) g all...ailgi.
i=1
(%)

Now we can find h,,h, 1,...,hy by backward
recursion using formula (7). Finally we evaluate
N(z) = zp — h.

There are several methods which can be used
to solve equation (6). For a chaotic map we ex-
pect that a; = f'(xj) has on average the absolute
value larger than 1. In this case multiplication
by a,;l reduces the diameter of the product and
we avoid the “wrapping effect”. Hence by using
formula (9) we obtain very narrow enclosure of
h;. Also the backward recursion does not pro-
duce wide intervals due to the existence of the
factor a,;l in (7).

The method requires relatively small amount of
memory (only few doubles per iteration need to be
stored). The computation time depends linearly
on the length of the orbit. Hence periodic orbits
of length of order 1000000 are easily handled.

The above method is very efficient for evalua-
tion of interval Newton operator. Another prob-
lem is how to obtain a good candidate for z. It
appears that we can use the same technique for
this task. We propose to use the following pro-
cedure. First by iterating the map we obtain a
quasi-periodic orbit z = (z1,x9,... ,x,). This
orbit usually cannot serve as a center of a candi-
date because the distance between f(z,) and z;

h1 = (1 —al_lagl.



is usually large. In order to obtain better approxi-
mation of position of periodic orbit with a smaller
global error

eglob(z) = max |f(xim0dn+1) - xz| (10)

i=1,...,n

we evaluate the interval Newton operator over the
point interval vector z = ([z1,z1],... ,[Tn, Zn)).
If the initial approximation z is good enough then
the center of N(z) is better approximation of the
position of a true periodic orbit. We may repeat
this procedure several times in order to further
improve the approximation (z1,xs,... ,z,). Usu-
ally after 3 to 5 iterations we do not observe fur-
ther improvements. Finally as a candidate we
choose the interval vector z = (xi,...,%xp,) =
([z1 —e,z1 + €],...,[xn — €,y + €]) centered
around the position of the pseudo—periodic orbit
we obtained form the interval Newton operator.
We use the uniform radius € of the interval x;
along the orbit. The radius € must be chosen in
such a way that the condition 0 ¢ f'(x;) holds for
all . In case of the logistic map with one maxi-
mum at ¢ = 0.5 we have to choose

(11)

€ < Emax = i_I{lin |z; — ¢|.

N}

If we do not have any clues for the initial value
of ¢ we may start with arbitrary ¢. If we do not
succeed in proving the existence condition we may
modify € and repeat the computations.

III. COMPUTATION OF THE LYAPUNOV
EXPONENT OF PERIODIC ORBIT

Lyapunov exponents of periodic orbits describe
the behavior of dynamical system in the neigh-
borhood of the orbit. If one of the Lyapunov
exponents is positive then the periodic orbit is
unstable and typical trajectory is repelled from
the orbit. The Lyapunov exponent of the peri-
odic orbit (z)} for the one-dimensional map f is
defined by

A=~ log D" 1) (12)
= loglf'(ea) - @) @)l (13)
= =3 logl (@) (14)

i=1

If we know that the point x; belongs to the in-
terval x; we may easily find the interval enclosing

the Lyapunov exponent of the orbit using the last
equation. Observe that although formulas (13)
and (14) are mathematically equivalent the sec-
ond one is much more useful for computation of
the accurate bound for the Lyapunov exponent
of the orbit. The reason is that the first formula
contains the product of n intervals, which when
evaluated in interval arithmetic may produce very
large errors.
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Fig. 1. Trajectory of the logistic map composed of

1000 points.

IV. LONG PERIODIC ORBITS FOR THE LOGISTIC
MAP

We apply the method described in the previous
section to the logistic map
f(z) = az(1l — ), (15)
with the parameter value ¢ = 3.9. For this value
of the parameter a chaotic behavior is observed.
A trajectory of the logistic map consisting of 1000
points is plotted in Fig. 1.
In order to find a quasi-periodic orbit we have
chosen z; = 0.66 as an initial point. After n =

5480633 iterations the trajectory returns to the
small neighborhood of the initial point

01 = |$5480634 — $1| <221-1077.

After two iterations of the interval Newton oper-
ator with point interval as an input we have ob-
tained a better approximation (z1,z2,...,2,) of
the periodic orbit with the global error near the
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Fig. 2. Periodic orbits for the logistic map, (a) period 701 orbit, (b) period 11348 orbit.

machine precision

09 = Hlla,X |f($l) — ximodn+1| <4.16-1071.
i=1,...,n

The distance between the point ¢ = 0.5 and the
pseudo—periodic orbit is

€max = min |z; —c¢| =4.9-107°,
i=1,...,n

Hence we know that as the radius of the in-
terval vector have to be smaller than 4.9 - 1078,
Next we have created the interval vector z =
(x1,%2,... ,X,) where x; = [z; — &, z; + €] with
e = 1078, Finally we have checked that N(z) C z
and proved that there exist a unique periodic or-
bit within z. By iterating the interval Newton
operator twice we have obtained the interval vec-
tor containing the orbit with uncertainty smaller
than 03 = 2.08 - 10710 at every point along the
orbit. As 5480633 is a prime number we are sure
that this is the principal period of the orbit. In
this way we have shown that there exists a true
periodic trajectory near the computer generated
one. In particular we know that the interval

x1 =1[0.6599999999999998, 0.66000000000000026]

contains a periodic point with period 5480633.
The time necessary to complete the existence
proof is 87.14 seconds. Its main part is the time
needed to evaluate the interval Newton operator.

Computations were performed on a Pentium III
computer with 500MHz processor. Program was
written in C++ (gec version eges-2.91.66). In the
program we used the Bias/Profil packages for in-
terval computations [7].

In a similar way we have found several other
long periodic orbits for the logistic map. Two or-
bits with periods 701 and 11348 respectively are
plotted in Fig 2. Computation details are col-
lected in Table I. n is the period of the orbit,
x1 is a start point of the computer generated §;—
pseudoperiodic orbit (zx)7_; (|f(zn) — 21| < 01).
After p iterations of Newton operator we obtain
a very good approximation of periodic orbit with
errors |f(Zpmodn+1) — Tk < 92 for k =1,... ,n.
¢ is the uniform radius of the interval vector z
(x; = [z; — e,2; + €]) used as an input to the in-
terval Newton operator and d3 is the maximum
radius of the intervals for which the existence of
the periodic orbit was proved — it is the accu-
racy of the position of the periodic orbit found.
In the last column we give the time necessary to
complete the existence proof.

In Table II several parameters of the orbits
are given. We have computed the interval A
containing the Lyapunov exponent of the or-
bit (for example 0.4961423% denotes the interval
[0.49614249,0.49614251]). In order to see how
densely the orbit fills the attractor we compute
two numbers. The value of dpax which is the
maximum gap between the points belonging to



n Il (51 P 52 9 53 t[S]
1 701 [ 0.70 | 420-107° | 3| 3.05-107'6 | 103 | 9.50 - 10~ 1° 0.01
2 11348 | 0.70 | 3.45-1076 | 2| 3.89-10716 | 107 | 3.38 - 1012 0.12
3| 723543 [ 0.70 | 2.23-10"7 | 2 | 4.02-107% | 1076 | 1.15- 10~ 7.96
411921687 | 0.60 | 1.56-10"7 | 2 | 4.16-10"16 | 10-7 | 1.61-10" | 20.95
5 | 2444017 | 0.64 | 2.56-10~7 | 3 | 4.16-10~6 | 10=8 | 2.08 - 10~10 | 27.29
6 | 5480633 | 0.66 | 2.21-10"7 | 2 | 4.16-10"6 | 108 | 2.08-10"10 | 87.14
71 8076157 | 0.62 | 8.18-1078 | 2| 4.16-107'6 | 108 | 7.03- 10710 | 166.00

TABLE I

Examples of long periodic orbits for the logistic map, n is the period of the orbit, z; is a start point of the

computer generated §;—pseudoperiodic orbit, p is the number of iterations of Newton operator after which we

obtain a very good approximation of periodic orbit with uniform error d,, € is the uniform radius of the

interval vector z, d3 is the maximum radius of the intervals x;, ¢t is the computation time necessary to prove

the existence.

the orbit gives us the global information about
the system. If there exists an attracting periodic
orbit for the map then basin of its attraction can-
not contain an interval with diameter larger than
dmax- dmin 18 the minimum distance between the
centers of intervals x;. One can clearly see that
the distance between the centers is much less than
the maximum radius of these intervals (J3 in the
Table I. This means that the intervals x; overlap.

A dmax dmin
1 | 0.5030428303869 | 0.014 2.83-10°7
2 | 0.49837574647 | 0.0012 2.08 - 1077
3| 0.4961488385 2.75-107° | 2.02-10713
4| 0.4956026785 1.11-107° | 7.92- 1071
5 | 0.49553530% 9.11-1075 | 1.40- 101
6 | 0.495894562 4.70-107% | 1.75- 101
7| 0.4961423} 3.15-107¢ | 2.78 - 10715
TABLE II

Properties of long periodic orbits for the logistic
map, A is the enclosure of the Lyapunov exponent of
the orbit, dyax is the maximum gap between the
points belonging to the orbit, dyi, is the minimum
distance between the points in the orbit.

V. CONCLUSIONS

In this paper we have described how to prove
the existence of a true periodic orbit in the neigh-
borhood of a computer generated one using the
interval Newton method and the backward shoot-
ing technique. We have applied this method to
show the existence of very long periodic orbit for
the logistic map.
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