
INTERVAL NEWTON METHOD AND BACKWARD

SHOOTING FOR FINDING LONG PERIODIC ORBITS IN 1D

CHAOTIC MAPS

Zbigniew Galias

Institute for Nonlinear Siene, University of California, San Diego

9500 Gilman Dr., Dept. 0402, San Diego, CA 92093-0402, USA

e-mail: galias�usd.edu, www: http://inls.usd.edu/�galias

on leave from University of Mining and Metallurgy, Krak�ow, Poland

Abstrat|In this paper we present a method

to �nd very long periodi orbits for one{dimen-

sional maps. This new approah is a ombination

of the interval Newton method and the shooting

tehnique. We also desribe how to use this ap-

proah to �nd better approximation of position of

omputer generated pseudoperiodi orbit. Using

this method we �nd very long periodi orbits for

the logisti map and we alulate Lyapunov expo-

nents of these orbits.

I. Introdution

Finding periodi orbits of nonlinear systems is

an important problem whih is frequently enoun-

tered in a variety of �elds. Usually periodi or-

bits are found in numerial studies but there is

no guarantee that there exists a true periodi tra-

jetory that stays near a omputer generated one.

This problem is espeially important for haoti

systems, as due to sensitive dependene on ini-

tial onditions usually after ertain number of it-

erations (100 or so) the omputer generated tra-

jetory beomes unorrelated with the true tra-

jetory. A very important question is whether

there really exists a true periodi trajetory in

the neighborhood of a omputer generated one.

In the present work we develop a tehnique for

proving the existene of true periodi orbits near

pseudo{periodi orbits obtained in omputer sim-

ulations. This approah is based on the inter-

val Newton method [1℄, [8℄ and the shooting teh-

nique. An introdution to the interval arithmeti

is given in [2℄. In interval analysis we are sure that

the result obtained enloses the true solution (to-

gether with the rounding error). In this paper we

use boldfae letters to denote intervals and usual

math itali letters to denote point quantities.

The interval Newton method allows to prove

the existene of zeros of n{dimensional maps. In

this method in order to investigate the existene

of zeros of a funtion R

m

3 x 7! f(x) 2 R

m

in an m-dimensional interval x one omputes the

interval Newton operator:

N(x) = x

0

� f

0

(x)

�1

f(x

0

); (1)

where f

0

(x)

�1

is the interval matrix ontaining

all Jaobian matries of f of the form f

0

(x)

�1

for

x 2 x and x

0

is an arbitrary point belonging to

the interval vetor x. Usually one hooses x

0

as

the enter of x. The key property of the interval

Newton operator is following: if N(x) � x then

there exists exatly one point x 2 x suh that

f(x) = 0.

The interval Newton method an be used to

�nd all low period yles for disrete time dynam-

ial systems [4℄. It an be also used for proving

the existene of periodi orbits for ontinuous{

time systems [5℄, [6℄. When we try to use this

method diretly for very long periodi orbits we

fae the problem of eÆient omputation of the

interval operator.

In this paper we use shooting tehnique for

evaluation of the interval Newton operator, whih

makes the method appliable to long periodi or-

bits. As an example we onsider the logisti map.

For this map we �nd extremely long periodi or-

bits.

II. Interval Newton Method for 1D maps

In this setion we present a ombination of

the global interval Newton method and bak-

ward shooting whih may be useful for proving

the existene of very long periodi orbits in one{

dimensional maps. Bakward shooting is a popu-

lar tehnique and was used in the ontext of �nd-

ing true periodi trajetories shadowing omputer

generated ones [3℄. Here we apply this tehnique



for eÆient omputation of interval Newton oper-

ator.

Let us onsider a funtion R 3 x 7! f(x) 2 R.

In order to prove the existene of a period-n yle

of f one may apply the interval Newton operator

to the global map F : R

n

7! R

n

de�ned by

[F (z)℄

1

= x

2

� f(x

1

);

[F (z)℄

2

= x

3

� f(x

2

); (2)

: : :

[F (z)℄

n

= x

1

� f(x

n

);

where z = (x

1

; : : : ; x

n

). Observe that z is a zero

of F if and only if x

1

is a �xed point of f

n

. The

Jaobian of F at z = (x

1

; : : : ; x

n

) an be om-

puted as

F

0

(z) = (3)

0

B

B

B

�
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0

(x

1
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0
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2

) 1 : : : 0
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C

C
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In order to prove the existene of a periodi

orbit in the interval vetor z we hoose z

0

2 z

and show that the interval vetor N(z) = z

0

�

F

0

(z)

�1

F (z

0

) is enlosed in z. The main problem

we enounter is the neessity of omputation of

F

0

(z)

�1

F (z

0

). Computation of the interval ma-

trix inverse of F

0

(z) an be done only for small n.

Here beause the matrix F

0

(z) has a speial form

we an use the tehnique desribed below to �nd

N(z).

Let

z = (x

1

;x

2

; : : : ;x

n

); (4)

and z

0

= (x

1

; x

2

; : : : ; x

n

) be an arbitrary point

in z. In order to evaluate the interval Newton

operator we �rst �nd the interval vetor h =

F

0

(z)

�1

F (z

0

). This is equivalent to solving the

following equation:

F

0

(z)h = F (z

0

): (5)

We an rewrite this equation in the following

form:

�f

0

(x

1

)h

1

+ h

2

= x

2

� f(x

1

);

�f

0

(x

2

)h

2

+ h

3

= x

3

� f(x

2

); (6)

: : :

�f

0

(x

n

)h

n

+ h

1

= x

1

� f(x

n

);

Let a

k

= f

0

(x

k

) and g

k

= f(x

k

)� x

kmodn+1

. We

assume that the intervals a

k

do not ontain zero

so one an ompute a

�1

k

. With this assumption

equation (6) an be written as

h

1

= a

�1

1

(h

2

+ g

1

);

h

2

= a

�1

2

(h

3

+ g

2

); (7)

: : :

h

n

= a

�1

n

(h

1

+ g

n

):

In order to �nd h

1

we substitute h

i

from the ith

equation into the (i�1)th equation, starting from

the last equation. After n � 1 substitutions we

obtain

h

1

=a

�1

1

(a

�1

2

(a

�1

3

(: : : a

�1

n�1

(a

�1

n

(h

1

+ g

n

) +

+ g

n�1

) : : :+ g

3

)) + g

2

) + g

1

): (8)

Hene h

1

an be omputed as

h

1

=

�

1� a

�1

1

a

�1

2

: : : a

�1

n

�

�1

n

X

i=1

a

�1

1

: : : a

�1

i

g

i

:

(9)

Now we an �nd h

n

;h

n�1

; : : : ;h

2

by bakward

reursion using formula (7). Finally we evaluate

N(z) = z

0

� h.

There are several methods whih an be used

to solve equation (6). For a haoti map we ex-

pet that a

k

= f

0

(x

k

) has on average the absolute

value larger than 1. In this ase multipliation

by a

�1

k

redues the diameter of the produt and

we avoid the \wrapping e�et". Hene by using

formula (9) we obtain very narrow enlosure of

h

1

. Also the bakward reursion does not pro-

due wide intervals due to the existene of the

fator a

�1

k

in (7).

The method requires relatively small amount of

memory (only few doubles per iteration need to be

stored). The omputation time depends linearly

on the length of the orbit. Hene periodi orbits

of length of order 1000000 are easily handled.

The above method is very eÆient for evalua-

tion of interval Newton operator. Another prob-

lem is how to obtain a good andidate for z. It

appears that we an use the same tehnique for

this task. We propose to use the following pro-

edure. First by iterating the map we obtain a

quasi-periodi orbit z = (x

1

; x

2

; : : : ; x

n

). This

orbit usually annot serve as a enter of a andi-

date beause the distane between f(x

n

) and x

1



is usually large. In order to obtain better approxi-

mation of position of periodi orbit with a smaller

global error

e

glob

(z) = max

i=1;::: ;n

jf(x

imodn+1

)� x

i

j (10)

we evaluate the interval Newton operator over the

point interval vetor z = ([x

1

; x

1

℄; : : : ; [x

n

; x

n

℄).

If the initial approximation z is good enough then

the enter of N(z) is better approximation of the

position of a true periodi orbit. We may repeat

this proedure several times in order to further

improve the approximation (x

1

; x

2

; : : : ; x

n

). Usu-

ally after 3 to 5 iterations we do not observe fur-

ther improvements. Finally as a andidate we

hoose the interval vetor z = (x

1

; : : : ;x

n

) =

([x

1

� "; x

1

+ "℄; : : : ; [x

n

� "; x

n

+ "℄) entered

around the position of the pseudo{periodi orbit

we obtained form the interval Newton operator.

We use the uniform radius " of the interval x

i

along the orbit. The radius " must be hosen in

suh a way that the ondition 0 62 f

0

(x

i

) holds for

all i. In ase of the logisti map with one maxi-

mum at  = 0:5 we have to hoose

" < "

max

= min

i=1;::: ;n

jx

i

� j: (11)

If we do not have any lues for the initial value

of " we may start with arbitrary ". If we do not

sueed in proving the existene ondition we may

modify " and repeat the omputations.

III. Computation of the Lyapunov

exponent of periodi orbit

Lyapunov exponents of periodi orbits desribe

the behavior of dynamial system in the neigh-

borhood of the orbit. If one of the Lyapunov

exponents is positive then the periodi orbit is

unstable and typial trajetory is repelled from

the orbit. The Lyapunov exponent of the peri-

odi orbit (x

k

)

n

1

for the one{dimensional map f is

de�ned by

� =

1

n

log jDf

n

(x

1

)j (12)

=

1

n

log jf

0

(x

n

) : : : f

0

(x

2

)f

0

(x

1

)j (13)

=

1

n

n

X

i=1

log jf

0

(x

i

)j: (14)

If we know that the point x

i

belongs to the in-

terval x

i

we may easily �nd the interval enlosing

the Lyapunov exponent of the orbit using the last

equation. Observe that although formulas (13)

and (14) are mathematially equivalent the se-

ond one is muh more useful for omputation of

the aurate bound for the Lyapunov exponent

of the orbit. The reason is that the �rst formula

ontains the produt of n intervals, whih when

evaluated in interval arithmeti may produe very

large errors.

0 0.5 1
0

0.5

1

Fig. 1. Trajetory of the logisti map omposed of

1000 points.

IV. Long periodi orbits for the logisti

map

We apply the method desribed in the previous

setion to the logisti map

f(x) = ax(1� x); (15)

with the parameter value a = 3:9. For this value

of the parameter a haoti behavior is observed.

A trajetory of the logisti map onsisting of 1000

points is plotted in Fig. 1.

In order to �nd a quasi-periodi orbit we have

hosen x

1

= 0:66 as an initial point. After n =

5480633 iterations the trajetory returns to the

small neighborhood of the initial point

Æ

1

= jx

5480634

� x

1

j < 2:21 � 10

�7

:

After two iterations of the interval Newton oper-

ator with point interval as an input we have ob-

tained a better approximation (x

1

; x

2

; : : : ; x

n

) of

the periodi orbit with the global error near the
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Fig. 2. Periodi orbits for the logisti map, (a) period 701 orbit, (b) period 11348 orbit.

mahine preision

Æ

2

= max

i=1;::: ;n

jf(x

i

)� x

imodn+1

j < 4:16 � 10

�16

:

The distane between the point  = 0:5 and the

pseudo{periodi orbit is

"

max

= min

i=1;::: ;n

jx

i

� j = 4:9 � 10

�8

:

Hene we know that as the radius of the in-

terval vetor have to be smaller than 4:9 � 10

�8

.

Next we have reated the interval vetor z =

(x

1

;x

2

; : : : ;x

n

) where x

i

= [x

i

� "; x

i

+ "℄ with

" = 10

�8

. Finally we have heked that N(z) � z

and proved that there exist a unique periodi or-

bit within z. By iterating the interval Newton

operator twie we have obtained the interval ve-

tor ontaining the orbit with unertainty smaller

than Æ

3

= 2:08 � 10

�10

at every point along the

orbit. As 5480633 is a prime number we are sure

that this is the prinipal period of the orbit. In

this way we have shown that there exists a true

periodi trajetory near the omputer generated

one. In partiular we know that the interval

x

1

=[0:6599999999999998; 0:66000000000000026℄

ontains a periodi point with period 5480633.

The time neessary to omplete the existene

proof is 87:14 seonds. Its main part is the time

needed to evaluate the interval Newton operator.

Computations were performed on a Pentium III

omputer with 500MHz proessor. Program was

written in C++ (g version egs-2.91.66). In the

program we used the Bias/Pro�l pakages for in-

terval omputations [7℄.

In a similar way we have found several other

long periodi orbits for the logisti map. Two or-

bits with periods 701 and 11348 respetively are

plotted in Fig 2. Computation details are ol-

leted in Table I. n is the period of the orbit,

x

1

is a start point of the omputer generated Æ

1

{

pseudoperiodi orbit (x

k

)

n

k=1

(jf(x

n

)� x

1

j < Æ

1

).

After p iterations of Newton operator we obtain

a very good approximation of periodi orbit with

errors jf(x

kmodn+1

) � x

k

j < Æ

2

for k = 1; : : : ; n.

" is the uniform radius of the interval vetor z

(x

i

= [x

i

� "; x

i

+ "℄) used as an input to the in-

terval Newton operator and Æ

3

is the maximum

radius of the intervals for whih the existene of

the periodi orbit was proved | it is the au-

ray of the position of the periodi orbit found.

In the last olumn we give the time neessary to

omplete the existene proof.

In Table II several parameters of the orbits

are given. We have omputed the interval �

ontaining the Lyapunov exponent of the or-

bit (for example 0:496142

51

49

denotes the interval

[0:49614249; 0:49614251℄). In order to see how

densely the orbit �lls the attrator we ompute

two numbers. The value of d

max

whih is the

maximum gap between the points belonging to



n x

1

Æ

1

p Æ

2

" Æ

3

t [s℄

1 701 0.70 4:20 � 10

�5

3 3:05 � 10

�16

10

�3

9:50 � 10

�15

0.01

2 11348 0.70 3:45 � 10

�6

2 3:89 � 10

�16

10

�6

3:38 � 10

�12

0.12

3 723543 0.70 2:23 � 10

�7

2 4:02 � 10

�16

10

�6

1:15 � 10

�11

7.96

4 1921687 0.60 1:56 � 10

�7

2 4:16 � 10

�16

10

�7

1:61 � 10

�11

20.95

5 2444017 0.64 2:56 � 10

�7

3 4:16 � 10

�16

10

�8

2:08 � 10

�10

27.29

6 5480633 0.66 2:21 � 10

�7

2 4:16 � 10

�16

10

�8

2:08 � 10

�10

87.14

7 8076157 0.62 8:18 � 10

�8

2 4:16 � 10

�16

10

�8

7:03 � 10

�10

166.00

TABLE I

Examples of long periodi orbits for the logisti map, n is the period of the orbit, x

1

is a start point of the

omputer generated Æ

1

{pseudoperiodi orbit, p is the number of iterations of Newton operator after whih we

obtain a very good approximation of periodi orbit with uniform error Æ

2

, " is the uniform radius of the

interval vetor z, Æ

3

is the maximum radius of the intervals x

i

, t is the omputation time neessary to prove

the existene.

the orbit gives us the global information about

the system. If there exists an attrating periodi

orbit for the map then basin of its attration an-

not ontain an interval with diameter larger than

d

max

. d

min

is the minimum distane between the

enters of intervals x

i

. One an learly see that

the distane between the enters is muh less than

the maximum radius of these intervals (Æ

3

in the

Table I. This means that the intervals x

i

overlap.

� d

max

d

min

1 0:503042830386

9

7

0.014 2:83 � 10

�7

2 0:4983757464

7

4

0.0012 2:08 � 10

�9

3 0:496148838

6

4

2:75 � 10

�5

2:02 � 10

�13

4 0:495602678

6

4

1:11 � 10

�5

7:92 � 10

�14

5 0:49553530

9

5

9:11 � 10

�6

1:40 � 10

�14

6 0:49589456

9

5

4:70 � 10

�6

1:75 � 10

�14

7 0:496142

51

49

3:15 � 10

�6

2:78 � 10

�15

TABLE II

Properties of long periodi orbits for the logisti

map, � is the enlosure of the Lyapunov exponent of

the orbit, d

max

is the maximum gap between the

points belonging to the orbit, d

min

is the minimum

distane between the points in the orbit.

V. Conlusions

In this paper we have desribed how to prove

the existene of a true periodi orbit in the neigh-

borhood of a omputer generated one using the

interval Newton method and the bakward shoot-

ing tehnique. We have applied this method to

show the existene of very long periodi orbit for

the logisti map.
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