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Abstract

In this paper, we present a method that can be used to find very long periodic
orbits for one–dimensional maps. This new approach is a combination of the inter-
val Newton method and the shooting technique. We also describe how to use this
approach to find better approximation of position of computer generated pseudo–
periodic orbit. As an example, we find very long periodic orbits for the logistic map
and we calculate the Lyapunov exponents of these orbits. Finally, we investigate the
performance of this method used for finding all short period cycles.
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1 Introduction

Periodic orbits carry a lot of vital information about the underlying dynamical
system (Auerbach et al., 1987). A great deal of research on periodic orbits
relies on computer simulations. It is usually an easy task to find numerically
an approximate position of a periodic orbit using for example the standard
Newton method. It is however much more difficult to prove the existence of
a true periodic orbit in a neighborhood of the one generated by a computer.
Since the round-off errors may introduce new kind of behavior, in general one
cannot be certain that the true periodic orbit exists. This problem is especially
pivotal for chaotic systems, as due to sensitive dependence on initial conditions
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chaotic trajectories starting from arbitrarily close initial conditions usually
diverge exponentially from one another.

In the present work, we develop a technique for proving the existence of a
true periodic orbits near a pseudo–periodic orbit found in computer simula-
tions. This approach is based on the interval Newton method (Alefeld, 1994;
Neumaier, 1990) and the shooting technique. A complete introduction to the
interval arithmetic underlying the interval Newton method is given in Moore
(1979) or Alefeld and Herzberger (1983). Interval computations allow to use
a computer to obtain rigorous results, by ensuring that the results obtained
enclose the true solution (together with the rounding errors). In this paper, we
use boldface to denote intervals, interval vectors and matrices, and the usual
math italics to denote point quantities.

The interval Newton method can be applied to prove the existence of zeros of
m–dimensional maps. In this method in order to investigate the existence of ze-
ros of a continuously differentiable function f : R

m 7→ R
m in an m-dimensional

interval x ⊂ R
m one evaluates the interval Newton operator:

N(x) = x̂ − f ′(x)−1f(x̂), (1)

where f ′(x)−1 is the interval matrix containing all matrices of the form f ′(x)−1

for x ∈ x and x̂ is an arbitrary point belonging to the interval vector x. Usually
one chooses x̂ to be the center of x. The interval Newton method is based on
the two following properties of the operator N:
Theorem 1.

1. If N(x) ⊂ x then there exists exactly one point x ∈ N(x) such that f(x) = 0.
2. If N(x) ∩ x = ∅ then there is no zeros of f in x.

A simple proof of the above facts can be found in (Alefeld, 1994) or (Galias,
2001). The first property allows to prove the existence of a unique zero in a
given m–dimensional interval vector x, while the second one can be used as a
simple non–existence criterion.

The interval Newton method combined with the generalized bisection can be
used to find all low period cycles for discrete–time dynamical systems (Galias,
1999a, 2001), or to prove the existence of periodic orbits for continuous–time
systems (Galias, 1999b,c). When we try to use this method directly for very
long periodic orbits we face the problem of efficient computation of the interval
operator.

In this paper, we use shooting technique for evaluation of the interval New-
ton operator, which makes the method applicable to long periodic orbits. As
an example, we consider the logistic map, for which we find extremely long
periodic orbits.
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2 Interval Newton method for finding long periodic orbits of 1D

maps

In this section, we present a combination of the global interval Newton method
and backward shooting which may be useful for proving the existence of very
long periodic orbits for one–dimensional maps f : R 7→ R. Backward shooting
is a popular technique and was used in the context of finding true periodic
trajectories shadowing computer generated ones (Coomes et al., 1996). Here,
we apply this technique for efficient evaluation of the interval Newton operator.

2.1 Interval Newton method

Let us consider a one–dimensional continuously differentiable map f : R 7→ R.
In order to prove the existence of a period–n cycle of f one may apply the
interval Newton operator to the map g(x) = x − fn(x). This technique is
useful for small n only. For larger n the intervals g(x̂) and g ′(x) have large
diameter, due to the “wrapping effect” and for unstable orbits additionally
due to a positive Lyapunov exponent. In consequence the condition N(x) ⊂ x

is not satisfied, no matter how x is chosen. To handle long periodic orbits one
can use the global map F : R

n 7→ R
n defined by

[F (z)]1 = x2 − f(x1),

[F (z)]2 = x3 − f(x2), (2)

. . .

[F (z)]n = x1 − f(xn),

where z = (x1, . . . , xn). Observe that z is a zero of F if and only if x1 is a
fixed point of fn. The Jacobian of F at z = (x1, . . . , xn) can be computed as

F ′(z) =





















−f ′(x1) 1 0 . . . 0

0 −f ′(x2) 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . −f ′(xn)





















. (3)

In order to prove the existence of a unique periodic orbit in the interval vector
z = (x1,x2, . . . ,xn), we choose ẑ ∈ z and show that the interval vector

N(z) = ẑ − F ′(z)−1F (ẑ)

is enclosed in z. From the Theorem 1 it follows that there exists exactly one
periodic orbit in z. Once the existence is proved, it is possible to iterate the
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interval Newton operator to narrow down the set in which the periodic orbit
exists.

The main problem we encounter is the necessity of computation of the term
F ′(z)−1F (ẑ). Computation of the interval matrix inverse of F ′(z) can be done
only for small n. Here, because the matrix F ′(z) has a special form, we can
use the technique described below to find N(z).

2.2 Backward shooting

First, let us describe briefly the backward shooting technique for the compu-
tation of h = F ′(z)−1F (ẑ), where z and ẑ are n–dimensional (real) vectors.
This problem is equivalent to solving the equation

F ′(z)h = F (ẑ). (4)

We can rewrite the above equation in the following form:

−f ′(x1)h1 + h2 = x̂2 − f(x̂1),

−f ′(x2)h2 + h3 = x̂3 − f(x̂2), (5)

. . .

−f ′(xn)hn + h1 = x̂1 − f(x̂n),

Let ak = f ′(xk) and gk = f(x̂k) − x̂k mod n+1. Assuming that ak 6= 0 the
equation (5) can be written as

h1 = a−1
1 (h2 + g1),

h2 = a−1
2 (h3 + g2), (6)

. . .

hn = a−1
n (h1 + gn).

In order to find h1, we substitute hi from the ith equation into the (i − 1)th
equation, starting from the last equation. After n− 1 substitutions, we obtain

h1 = a−1
1 (a−1

2 (a−1
3 (. . . a−1

n−1(a
−1
n (h1 + gn) + gn−1) . . . + g3)) + g2) + g1). (7)

Hence, h1 can be computed as

h1 =
(

1 − a−1
1 a−1

2 . . . a−1
n

)

−1
n

∑

i=1

a−1
1 . . . a−1

i gi. (8)

One can find hn, hn−1, . . . , h2 by backward recursion using formula (6).

Before we proceed with the interval version of backward shooting, let us in-
troduce the following notation. Let s be a continuous real–valued function of
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m variables and let y1,y1, . . . ,ym be intervals. In the sequel, the expression

s(y1,y2, . . . ,ym) = {s(y1, y2, . . . , ym) : yk ∈ yk, 1 ≤ k ≤ m},

will denote the interval of all values of s, when yk ∈ yk, 1 ≤ k ≤ m. For
example using this notation the condition f ′(x) ⊂ a means that f ′(x) ∈ a for
all x ∈ x.

The backward shooting method can be modified to find the enclosure h of
F ′(z)−1F (ẑ) and for the rigorous evaluation of the interval Newton operator.
This is stated in the following theorem.
Theorem 2. Let z = (x1,x2, . . . ,xn), ẑ = (x̂1, x̂2, . . . , x̂n) ∈ z. Let us assume

that the intervals ak, gk, and hk, k = 1, 2, . . . , n are such that

0 6∈ ak, k = 1, . . . , n, (9)

f ′(xk) ⊂ ak, k = 1, . . . , n, (10)

f(x̂k) − x̂k mod n+1 ∈ gk, k = 1, . . . , n, (11)
(

1 − a−1
1 a−1

2 · · ·a−1
n

)

−1
n

∑

i=1

a−1
1 · · ·a−1

i gi ⊂ h1 (12)

a−1
k (hk mod n+1 + gk) ⊂ hk, k = n, . . . , 2. (13)

Then F ′(z)−1F (ẑ) ⊂ h and ẑ − h is the enclosure of N(z).

Proof. Let us choose an arbitrary point z = (x1, x2, . . . , xn) ∈ z. Since f ′(xk) ∈
ak and 0 6∈ ak, it follows that ak = f ′(xk) 6= 0 for 1 ≤ k ≤ n. Hence
h = (h1, h2, . . . , hn) computed according to formulas (8) and (6) satisfy the
equation h = F ′(z)−1F (ẑ).

From the assumptions (10–13) it follows that h ∈ h = (h1,h2, . . . ,hn). It
is clear that F ′(z)−1F (ẑ) ⊂ h. In consequence N(z) = ẑ − F ′(z)−1F (ẑ) ⊂
ẑ − h.

The above theorem can be used for implementation of the interval Newton
method based on backward shooting. First, we find intervals ak, gk, and hk

such that the assumption of the theorem are satisfied. If the condition ẑ−h ⊂ z

holds then since ẑ −h encloses N(z) it follows from the Theorem 1 that there
exist a unique period–n orbit in z.

In practice the intervals ak, gk and hk are found by a computer using interval
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evaluations of the following formulas:

ak = f ′(xk), k = 1, . . . , n, (14)

gk = f(x̂k) − x̂k mod n+1, k = 1, . . . , n, (15)

h1 =
(

1 − a−1
1 a−1

2 · · ·a−1
n

)

−1
n

∑

i=1

a−1
1 · · ·a−1

i gi (16)

hk = a−1

k (hk mod n+1 + gk), k = n, . . . , 2. (17)

The interval evaluation of an arithmetic expression is obtained from the given
expression by replacing all operands by intervals and all operations by corre-
sponding interval operations. From the inclusion property of interval evalua-
tions (Alefeld and Herzberger, 1983) it follows that interval evaluation of a
function s over the intervals y1, y2, . . . , ym includes the set {s(y1, . . . , ym) : yk ∈
yk, 1 ≤ k ≤ m}. Hence the conditions (10–13) are automatically satisfied.

Computation of the interval Newton operator based on the shooting technique
is very efficient. For a chaotic map and an unstable periodic orbit, we expect
that ak = f ′(xk) has on average the absolute value larger than 1. In this
case multiplication by a−1

k reduces the diameter of the product and we avoid
the “wrapping effect”. Hence by using formula (16), we obtain a very narrow
enclosure of h1. Also the backward recursion does not produce wide intervals
due to the existence of the factor a−1

k in (17).

The amount of memory needed to implement the method and the computation
time depend linearly on the length of the orbit. Hence periodic orbits of length
of order 1000000 are easily handled.

2.3 Finding a candidate for z

Backward shooting is very efficient for evaluation of the interval Newton oper-
ator. Another problem is how to obtain a good candidate for z. In this section
we describe how to improve the pseudo-periodic orbit found by a computer,
so that its position can be used as the center of z.

Before we proceed, let us recall the definition of a δ–pseudo–periodic orbit. One
says that a sequence (x1, x2, . . . , xn) is a δ–pseudo–orbit for f if |f(xi)−xi+1| ≤
δ for 1 ≤ i < n. A δ–pseudo–orbit (x1, x2, . . . , xn) is called a δ–pseudo–periodic

orbit if additionally |f(xn) − x1| ≤ δ.

Computer generated trajectories are pseudo–orbits with the error |f(xi)−xi+1|
of evaluating the single iteration close to the machine precision. In order to
find a δ–pseudo–periodic orbit we monitor the trajectory until the condition
|f(xn)−x1| < δ holds. The pseudo–periodic orbit z = (x1, x2, . . . , xn) obtained
in this way usually cannot serve as a center of z because the distance between

6



f(xn) and x1 is typically much larger than the machine precision. In order to
obtain a better pseudo–periodic orbit with a smaller global error

δ = max
i=1,...,n

|f(xi) − xi mod n+1| (18)

we evaluate the interval Newton operator over the point interval vector z =
([x1, x1], . . . , [xn, xn]). Since we do not want to prove the existence at this stage
we may use the standard Newton operator or equivalently the interval Newton
operator with a point interval as an input. If the initial approximation z is
good enough then N(z) is a better approximation of the position of a true
periodic orbit. We may repeat this procedure several times in order to further
improve the approximation. Usually after 3 to 5 iterations, we do not observe
further improvements. Finally as a candidate, we choose the interval vector
z = (x1, . . . ,xn) = ([x1 − ε, x1 + ε], . . . , [xn − ε, xn + ε]) centered around the
position of the pseudo–periodic orbit we obtained from the interval Newton
operator. We use the uniform radius ε of the intervals xi along the orbit. The
radius ε must be chosen in such a way that the condition 0 6∈ f ′(xi) holds for
all i. In case of the logistic map with one maximum at c = 0.5 we have to
choose

ε < εmax = min
i=1,...,n

|xi − c|. (19)

If there are no clues for the value of ε we may find the proper value by trial-
and-error.

3 Computation of the Lyapunov exponents of periodic orbits

The behavior of solutions in a small neighborhood of a periodic orbit is de-
termined by the Lyapunov (characteristic) exponents of the orbit (Gucken-
heimer and Holmes, 1983). If one of the Lyapunov exponents is positive then
the periodic orbit is unstable and a typical trajectory is repelled from the
orbit. The Lyapunov exponent of the periodic orbit (x1, x2, . . . , xk) for the
one–dimensional map f is defined by

λ =
1

n
log |(fn)′(x1)| (20)

=
1

n
log |f ′(xn) . . . f ′(x2)f

′(x1)| (21)

=
1

n

n
∑

i=1

log |f ′(xi)|. (22)

If we know that the point xi belongs to the interval xi, we may easily find the
interval enclosing the Lyapunov exponent of the orbit using the last equation.
Observe that although formulas (21) and (22) are mathematically equivalent
the latter one is much more useful for computation of the accurate bound for
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the Lyapunov exponent of the orbit. The reason is that the first formula con-
tains the product of n intervals, which when evaluated in interval arithmetic
may produce very large errors.

0 0.5 1
0

0.5

1

Fig. 1. Trajectory of the logistic map composed of 1000 points.

4 Long periodic orbits for the logistic map

In this section, we apply the method described previously to the logistic map

f(x) = ax(1 − x), (23)

with the parameter value a = 3.9. For this value of the parameter a chaotic
behavior is observed. A trajectory of the logistic map consisting of 1000 points
is plotted in Fig. 1.

First let us illustrate the method for a short periodic orbit. For this case all
assumptions of theorem 2 can be checked without help of a computer.
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0 0.5 1
0
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1

0 0.5 1
0

0.5

1

Fig. 2. Periodic orbits for the logistic map, (a) period 701 orbit, (b) period 11348
orbit.
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In computer simulation one observes the following pseudo–periodic orbit: z =
(0.44871, 0.96474, 0.13265). Let us choose an interval vector z and a point
ẑ ∈ z for which we apply the interval Newton method to prove the existence
of period–3 orbit in a neighborhood of z:

z = (x1,x2,x3) = ([0.44, 0.46], [0.95.97], [0.12, 0.14]),

ẑ = (x̂1, x̂2, x̂3) = (0.45, 0.96, 0.13).

Next we find intervals ak, gk, and hk satisfying the assumptions of the Theo-
rem 2.

f ′(x1) = a(1 − 2x1) = [0.312, 0.468] ⊂ a1 = [0.311, 0.469],

f ′(x2) = a(1 − 2x2) = [−3.666,−3.510] ⊂ a2 = [−3.667,−3.509],

f ′(x3) = a(1 − 2x3) = [2.808, 2.964] ⊂ a3 = [2.807, 2.965],

f(x̂1) − x̂2 = 0.00525 ∈ g1 = [0.00524, 0.00526],

f(x̂2) − x̂3 = 0.01976 ∈ g2 = [0.0195, 0.01977],

f(x̂3) − x̂1 = −0.00891 ∈ g3 = [−0.00892,−0.00890],

a−1
1 a−1

2 a−1
3 ⊂ a = [−0.327,−0.196],

a−1
1 g1 + a−1

1 a−1
2 g2 + a−1

1 a−1
2 a−1

3 g3 ⊂ b = [−0.01, 0.01]],

(1 − a)−1b ⊂ h1 = [−0.009, 0.009],

a−1
3 (h1 + g3) ⊂ h3 = [−0.008, 0.001],

a−1
2 (h3 + g2) ⊂ h2 = [−0.006,−0.003],

ẑ − h ⊂ R = ([0.441, 0.459]; [0.963, 0.966]; [0.129, 0.138]).

It can be easily checked that R ⊂ z. From the Theorem 2 it follows that
N(z) ⊂ z and in consequence there exist a unique periodic orbit within N(z).
Observe that all conditions for existence of periodic orbit are of the form of
inequalities, and can be checked rigorously using interval arithmetic imple-
mented on a computer.

When we iterate the interval Newton operator starting with z0 = z we obtain
the following sequence of interval vectors zi+1 = N(zi) containing the solution:
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z0 =([0.44, 0.46], [0.95.97], [0.12, 0.14]),

z1 =(0.4543
431, 0.96544

411, 0.13469
069),

z2 =(0.448740
697, 0.96474556

134, 0.1326603
452),

z3 =(0.44871775356
282, 0.964743511571

498, 0.13265252723
696),

z4 =(0.4487177531952604
597, 0.964743511534365328

216, 0.132652527098158585
307),

z5 =(0.4487177531952604
597, 0.964743511534365328

216, 0.132652527098158585
307).

After five iterations the sequence stabilizes, and we obtain a very narrow
enclosure of the true periodic orbit. The center of the last interval vector is
the approximation of the position of the true periodic orbit with the error
smaller than 3 · 10−16.

The strength of the method lies in the fact that all assumptions of the existence
theorem can be rigorously checked by a computer. Now, we show an example
how to find and prove the existence of a very long periodic orbit. First, we
need to find a pseudo–periodic orbit. In this particular example, we choose
x1 = 0.66 as the initial point. After n = 5480633 iterations, the computer
generated trajectory returns to the small neighborhood of the initial point

δ1 = |x5480634 − x1| < 2.21 · 10−7.

After two iterations of the interval Newton operator with point interval as an
input, we obtain a better approximation (x1, x2, . . . , xn) of the periodic orbit
with the global error near the machine precision

δ2 = max
i=1,...,n

|f(xi) − xi mod n+1| < 4.16 · 10−16.

The distance between the maximum point c = 0.5 and the pseudo–periodic
orbit is

εmax = min
i=1,...,n

|xi − c| = 4.9 · 10−8.

The radius of the interval vector z have to be smaller than 4.9 · 10−8. Next,
we create the interval vector z = (x1,x2, . . . ,xn) where xi = [xi − ε, xi + ε]
with ε = 10−8. Finally, using the methods described in the previous section the
interval Newton operator is evaluated on z, and we check that N(z) ⊂ z. In this
way, we prove that there exist a unique periodic orbit within z. By iterating
the interval Newton operator twice, we obtain the approximate position of the
true periodic orbit with uncertainty smaller than δ3 = 2.08 · 10−10 at every
point along the orbit. As 5480633 is a prime number, we are sure that this is
the principal period of the orbit. In this way, we have shown that there exists
a true periodic trajectory near the one generated by a computer. In particular,
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we know that the interval

x1 =[0.6599999999999998, 0.66000000000000026]

contains a periodic point with period 5480633. Time necessary to complete the
existence proof is 87.14 seconds. Its main part is the time needed to evaluate
the interval Newton operator. Computations were performed on a Pentium III
computer with 500MHz processor. Program was written in C++ (gcc version
egcs-2.91.66). In the program, we used the Bias/Profil packages for interval
computations (Knüppel, 1993).

n x1 δ1 p δ2 ε δ3 t [s]

1 701 0.70 4.20 · 10−5 3 3.05 · 10−16 10−3 9.50 · 10−15 0.01

2 11348 0.70 3.45 · 10−6 2 3.89 · 10−16 10−6 3.38 · 10−12 0.12

3 723543 0.70 2.23 · 10−7 2 4.02 · 10−16 10−6 1.15 · 10−11 7.96

4 1921687 0.60 1.56 · 10−7 2 4.16 · 10−16 10−7 1.61 · 10−11 20.95

5 2444017 0.64 2.56 · 10−7 3 4.16 · 10−16 10−8 2.08 · 10−10 27.29

6 5480633 0.66 2.21 · 10−7 2 4.16 · 10−16 10−8 2.08 · 10−10 87.14

7 8076157 0.62 8.18 · 10−8 2 4.16 · 10−16 10−8 7.03 · 10−10 166.00

Table 1
Examples of long periodic orbits for the logistic map, n is the period of the orbit,
x1 is a start point of the computer generated δ1–pseudo–periodic orbit, t is the
computation time necessary to prove the existence (see complete explanation in the
text).

In a similar way, we have found several other long periodic orbits for the
logistic map. Two of these orbits (with periods 701 and 11348) are plotted
in Fig 2. Computation details are collected in Table 1, where n denotes the
period of the orbit, x1 is the initial point of the computer generated δ1–pseudo–
periodic orbit (xk)

n
k=1 (|f(xn) − x1| < δ1). After p iterations of the Newton

operator, we obtain a very good approximation of periodic orbit with errors
|f(xk mod n+1)−xk| < δ2 for k = 1, . . . , n. ε is the uniform radius of the interval
vector z (xi = [xi−ε, xi +ε]) used as an input to the interval Newton operator
and δ3 is the maximum radius of the intervals for which the existence of the
periodic orbit is proved — it is the accuracy of the position of the periodic
orbit found. In the last column, we give the time necessary to complete the
existence proof.

In Table 2 several parameters of the orbits are given. Using equation (22),
we have computed the interval λ containing the Lyapunov exponent of the
orbit (for example 0.49614251

49 denotes the interval [0.49614249, 0.49614251]).
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In order to see how densely the orbit fills the attractor, we compute two
numbers. The value of dmax which is the maximum gap between the points
belonging to the orbit gives us the global information about the system. If
there exists an attracting periodic orbit for the map then basin of its attraction
cannot contain an interval with diameter larger than dmax. dmin is the minimum
distance between the centers of intervals xi. One can clearly see that the
distance between the centers is much less than the maximum radius of these
intervals (δ3 in the Table 1). This means that the intervals xi overlap.

λ dmax dmin

1 0.5030428303869
7 0.014 2.83 · 10−7

2 0.49837574647
4 0.0012 2.08 · 10−9

3 0.4961488386
4 2.75 · 10−5 2.02 · 10−13

4 0.4956026786
4 1.11 · 10−5 7.92 · 10−14

5 0.495535309
5 9.11 · 10−6 1.40 · 10−14

6 0.495894569
5 4.70 · 10−6 1.75 · 10−14

7 0.49614251
49 3.15 · 10−6 2.78 · 10−15

Table 2
Properties of long periodic orbits for the logistic map, λ is the enclosure of the
Lyapunov exponent of the orbit, dmax is the maximum gap between the points
belonging to the orbit, dmin is the minimum distance between the points in the
orbit.

5 Performance of the method for short orbits

Interval methods for proving the existence of periodic orbits are capable of
finding all short period cycles. The method for finding all period–n cycles is
a combination of the interval Newton method and generalized bisection tech-
nique (Galias, 2001). First the region under investigation is covered by a finite
number of boxes (intervals in the one–dimensional case). For each of these
boxes the interval Newton operator is evaluated. If the existence condition is
fulfilled the box contains exactly one periodic orbit. If the non-existence con-
dition holds there are no period–n orbits within the box considered. If none of
these two conditions is true the box is divided into smaller parts and the com-
putations are repeated. This method allows to find very good approximations
of the positions of all period–n cycles and to find the exact number of period–
n cycles contained in the given region. As an interval operator one may use
the interval Newton operator, the Krawczyk operator or the Hansen–Sengupta
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operator (Neumaier, 1990) in its standard or global version. In the standard
version one evaluates the interval operator for the map g(x) = f n(x) − x,
while in the global version the method is applied to the global map (2). It ap-
pears that the global version is more suitable for investigation of longer cycles
(Galias, 2001).

Global Newton method with backward shooting
n Qn Pn

In time [s] In time [s]

1 2 2 9 0.01 15 0.00

2 1 4 47 0.03 41 0.01

3 2 8 137 0.09 129 0.02

4 1 8 381 0.23 269 0.03

5 2 12 1043 0.69 759 0.07

6 3 28 3121 2.49 2143 0.25

7 6 44 10197 9.03 6589 0.79

8 9 80 36301 37.03 22789 3.04

9 14 134 119519 141.71 72447 10.55

10 21 224 433467 578.35 255247 40.93

11 34 376 1588405 2442.86 940733 163.47

12 52 656 5970917 10619.64 3519917 652.01

13 86 1120 23321301 46500.98 13599583 2670.59

14 133 1908 — — 48137901 10001.56

Table 3
Comparison of performance of the global Newton method and its modification using
backward shooting for finding all low–period cycles for the logistic map for a = 3.9.
Qn — number of periodic orbits with period n, Pn — number of fixed points of fn,
In is the number of intervals into which the domain of the map is divided in order
to find all period–n cycles.

In this section, we compare the performance of the global Newton method and
its version based on backward shooting for finding all low period cycles of the
logistic map.

The results are summarized in Table 3. Qn and Pn denote the number of
periodic orbits with period n and the number of fixed points of fn, respectively.
In the table, we report the number of intervals into which the domain of
the map is divided in order to find all period–n cycles and the computation
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Fig. 3. Time necessary to find all period–n cycles with global Newton method and
the version using backward shooting.

time (also plotted in Fig. 3). One can see that the number of rectangles is
smaller (almost twice for larger n) for the method using backward shooting.
The difference in the computation time is even more significant (the improved
version is approximately 17 times faster for n = 13). The evaluation of the
backward shooting version of the Newton operator is much faster, and the
difference grows with n. This is due to the fact that the improved method
does not use n × n matrices, which are extensively used by the unmodified
version. In consequence, using the method with backward shooting, we are
able in the same time to find all periodic orbits for n larger by 2.

6 Conclusions

In this paper, we have described how to prove the existence of a true periodic
orbit in a neighborhood of the one generated by a computer using the interval
Newton method and the backward shooting technique. We have applied this
method to show the existence of very long periodic orbits for the logistic map.
We have also shown that the modification using the shooting technique is
superior to the unmodified version when they are applied to the problem of
finding all low–period cycles.
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