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SUMMARY

In this paper we consider the problem of synchronization of coupled chaotic systems. Synchronization is studied by
means of local transversal Lyapunov exponents. We show that they can be successfully used in investigations of
synchronization properties. A criterion for synchronization based on this concept is developed and discussed. Using
examples of coupled HeH non maps and coupled hyperchaotic electronic systems we compare this technique with other
methods for investigation of synchronization properties. Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that when chaotic systems are coupled, they may demonstrate identical oscillations
associated with the onset of synchronization.1~3 The source of this synchronization is additional dissipation
introduced when the variables are not following the same trajectories. Recently, there has been a considerable
interest in using the concept of synchronization of chaos to develop spread spectrum communication
systems. In applications concerning extraction of information from transmitted chaotic signal, a response
system must be synchronized with the signal. Therefore, the problem of synchronization of chaotic systems is
of very high importance.

In this paper we study synchronization of unidirectionally coupled chaotic systems. We will consider
coupled discrete-time systems

x (t#1)"F (x(t)) (1a)

y(t#1)"F (y(t)#d ) (x (t)!y (t))) (1b)

and coupled continuous-time systems

x5 (t)"F(x(t)) (2a)

y5 (t)"F(y(t))#d ) (x(t)!y (t)) (2b)

where x"(x
1
,2,x

n
), y"(y

1
,2, y

n
) are the state variables of the drive and response systems and d is

a diagonal matrix with diagonal elements d
1
,2, d

n
being the coupling coe$cients.



We say that the systems synchronize if Ey(t)!x(t)EP0 as tPR (the trajectory of system (1) or (2)
converges to the synchronization subspace x"y). It is clear that if the coupling coe$cients are large enough
the systems will synchronize. For communication tasks one usually chooses systems where only one of the
coupling coe$cients is non-zero (otherwise one needs to send more signals in order to extract the
information).

There are several methods for investigating the synchronization problem. The "rst criterion for successful
synchronization, introduced in Reference 3, is based on conditional Lyapunov exponents calculated along
typical trajectory of the system (we will call them global transversal Lyapunov exponents). When all global
transversal Lyapunov exponents of system (1b) driven by the signal x (t) are negative then one expects that the
systems synchronize. This may not be true expecially in the presence of noise.4~6 It may happen that in the
neighbourhood of an unstable periodic orbit there exist a region where the trajectories are pushed away from
the synchronization subspace. Such a situation occurs when one of the Lyapunov exponents associated with
the measure supported by the periodic orbit is positive. In this case small noise inevitable in real systems
could force the trajectory to enter such a region. This in turn could lead to a desynchronization burst. This is
observed in many computer and laboratory experiments.4~6 When there is no noise in the system (or the
noise level is very low) one observes synchronization. But when the noise level is increased desynchronization
bursts occur.

Using the above argument one could develop another criterion of successful synchronization based on
transversal Lyapunov exponents computed along periodic orbits. In order to ensure synchronization one
should compute transversal Lyapunov exponents for all periodic orbits and check whether they are negative.
This is rather di$cult and computationally expensive task. There is also another drawback of this method.
Even if the periodic orbit attracts the trajectory to the synchronization space globally it is possible that it
repels trajectories locally. Examples of such orbits are given in Reference 7. This may also cause desynchorn-
ization bursts.

In this paper we use a method based on the local transversal Lyapunov exponents. In Section 2 we recall
the notion of local Lyapunov exponents and explain why local properties may be of some interest to
synchronization. In Section 3 we observe behaviour of coupled HeH non maps in the presence of noise. In
Section 4 we study synchronization of coupled HeH non maps using di!erent techniques. First, we compute
global transversal Lyapunov exponents. Then we "nd periodic orbits with period n)13 and compute
Lyapunov exponents associated with these periodic orbits. As the last method we use local transversal
Lyapunov exponents and develop a new synchronization criterion. Finally, we compare the performance of
these three methods and discuss their advantages. In Section 5 we investigate synchronization of hyper-
chaotic circuits in the presence of noise. In Section 6 we try to explain the synchronization behaviour using
several methods. We use global Lyapunov function method, the method based on transversal Lyapunov
exponents, transversal Lyapunov exponents along unstable periodic orbits and "nally local transversal
Lyapunov exponents.

2. LOCAL TRANSVERSAL LYAPUNOV EXPONENTS

First, we will brie#y recall the notions of local Lyapunov exponents and transversal Lyapunov expo-
nents.3,8~10

¸yapunov exponents j
i
(x) of a trajectory based at x are the logarithms of the eigenvalues of the matrix:

"(x)" lim
L?=

([TL(x)]TTL(x))1@2L (3)

where for discrete-time systems

TL (x)"DF(FL~1(x))2DF(F (x))DF(x) (4)
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is the composition of ¸ Jacobians and for continuous-time systems TL (x) is the matrix of partial derivatives of
the time-¸ map induced by the continuous-time system.

¸ocal ¸yapunov exponents j
i
(x, ¸) are the logarithms of the eigenvalues of the matrix:

"(x, ¸)"([TL (x)]TTL(x))1@2L (5)

Local Lyapunov exponents say how rapidly perturbations of the initial point x changes in ¸ steps from the
moment of perturbation. From multiplicative ergodic theorem of Oseledec8 it follows that local Lyapunov
exponents tend to global exponents as ¸ goes to in"nity (for a typical point on the chaotic attractor, i.e. for
almost all points with respect to the natural measure, global Lyapunov exponents do not depend on the
initial point).

¸ocal transversal ¸yapunov exponents are the local Lyapunov exponents corresponding to eigenvectors
transversal to the synchronization subspace. It turns out that they are very useful in studies of synchroniza-
tion of chaotic systems, especially in the presence of noise.

Global transversal Lyapunov exponents, which are frequently used for investigation of synchronization
give us stability information which is averaged over the whole attractor. On the other hand, local transversal
Lyapunov exponents tell us how trajectories of the coupled system are repelled or attracted to the
synchronization subspace in time ¸. By investigating the average value of maximum local transversal
exponent we are able to "nd out how on an average, trajectories are repelled or attracted to the synchroniza-
tion subspace in time ¸. Obviously, local transversal Lyapunov exponents may vary signi"cantly with the
point on the synchronization subspace, especially for small ¸. Hence using local exponents we are able to "nd
regions, where synchronization behaviour is less robust and where noise could easily destroy the demanded
behaviour. For synchronization problem we are mainly interested whether local transversal Lyapunov
exponents are negative. If for a given point on a synchronization subspace and a given value of ¸ all local
transversal Lyapunov exponents are negative then in the neighbourhood of the considered point trajectories
are attract to the synchronization subspace in time t3[0, ¸]. Using this observation we will develop
a criterion for robust synchronization based on local transversal Lyapunov exponents.

In the subsequent sections we consider two examples of coupled systems and show how synchronization
can be studied using this technique.

3. SYNCHRONIZATION OF HED NON MAPS

As the "rst example we consider uni-directionally coupled HeH non maps. The drive system is the HeH non map
de"ned by

h (x, y)"(1#y!ax2, bx) (6a)

where a"1)4 and b"0)3 are standard parameter values. A typical trajectory of the HeH non map is shown in
Figure 3(a).

The response system is

h (x@, y@ )"h (x@#d
1
(x!x@), y@#d

2
(y!y@)) (6b)

where d
1

and d
2

are the coupling coe$cients. We will consider the case when only d
1

is non-zero.
In the "rst experiment we test synchronization of system (6) in a noise free environment. We have

considered four values of coupling coe$cient: d
1
"0)4, 0)5, 0)6, 0)8. For all cases the system eventually

synchronizes.
In the second experiment we have checked the behaviour of the system in the case when the driving signal

is corrupted by random noise of amplitude 0)1. The results are shown in Figure 1. For d
1
"0)4 one observes

frequent desynchronization bursts. For d
1
"0)5, 0)6 one can see only very short desynchronization pulses

and for d
1
"0)8 the error signal is of the noise level.
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Figure 1. Synchronization error for di!erent coupling coe$cient d
1
, driving signal perturbed by additive noise

4. STUDY OF SYNCHRONIZATION

In this section we explain the behaviour of coupled HeH non maps observed in the previous section.

4.1. Global transversal ¸yapunov exponents

First, we investigate synchronization in terms of global transversal Lyapunov exponents.
According to the criterion for successful synchronization based on global transversal Lyapunov expo-

nents3 systems (6a) and (6b) synchronize if all transversal Lyapunov exponents are negative. We have
computed transversal Lyapunov exponents for d

1
3[0, 2]. During the computations we have used the

algorithms proposed in Reference 8. The maximum transversal Lyapunov exponents j
.!9

versus d
1
is plotted

in Figure 2. One can see that j
.!9

is negative for d
1
3[0)34, 1)68]. This explains synchronization of HeH non

maps in a noise free environment for d
1
"0)4, 0)5, 0)6, 0)8. Global transversal Lyapunov exponents cannot

explain the phenomena of loss of synchronization observed when the driving signal is perturbed by noise.

4.2. ¹ransversal ¸yapunov exponents associated with periodic orbits

As mentioned before desynchronization bursts can be explained by the existence of positive transversal
Lyapunov exponents computed along periodic trajectories embedded within chaotic attractor.

First using the interval Newton method11 we have found for the HeH non map all periodic orbits with period
n)13 in the trapping region Q shown in Figure 3(a). For the details see Reference 12. The number Q(n) of
periodic orbits with principal period n is shown in Table I. There are 97 periodic orbits (and hence 1055
periodic points) with period n)13 embedded within HeH non attractor. All these orbits lie within the attractor
observed numerically. They are shown in Figure 3(b).

For all these periodic orbits we have computed transversal Lyapunov exponents for several d
1
3[0, 2].

The maximum transversal Lyapunov exponents are plotted in Figure 4.
For d

1
3[0)51, 1)45] transversal Lyapunov exponents corresponding to these periodic orbits are negative.

One can see that the largest transversal Lyapunov exponents are associated with two shortest periodic orbits,
namely period-1 and period-2 orbits. Period-1 orbit gives the strongest condition for d

1
(1 while period-2

orbit is the most restrictive for d
1
'1. Now, we can explain very frequent desynchronization bursts occurring

for d
1
"0)4 (cf. Figure 1). For d

1
"0)4, 0)5 the maximum transversal exponents of period-1 orbit is positive
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Figure 2. Maximum global transversal Lyapunov exponent

Figure 3. (a) Trajectory of the HeH non map consisting of 10,000 points, the quadrangle )*a trapping region for the HeH non map,
(b) cycles with period n)13 for the HeH non map, period-1 and period-2 points are plotted with a star and a circle symbols, respectively

Table I. Periodic orbits for the HeH non map in the trapping region ).
Q(n) is the number of cycles with principal period n, P (n) is the number

of "xed points of hn

n Q(n) P(n)

1 1 1
2 1 3
3 * 1
4 1 7
5 * 1
6 2 15
7 4 29
8 7 63
9 6 55

10 10 103
11 14 155
12 19 247
13 32 417
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Figure 4. Maximum transversal Lyapunov exponent for cycles with period n)13

(for d
1
"0)4 we have j

.!9
"0)19). It is clear that criterion based on periodic orbits is stronger than condition

obtained using global transversal Lyapunov exponents. Usually, in order to obtain a reliable condition for
synchronization it is su$cient to compute transversal Lyapunov exponents for low-period orbits. Lyapunov
exponents of longer periodic orbits are usually close to global Lyapunov exponents. However, one is never
sure whether a very long periodic orbits with a positive transversal Lyapunov exponents does not exist.

The main drawback of this method is the necessity of "nding periodic orbits, which may be di$cult for
more complex systems. Another problem is that low-period orbits do not "ll the attractor completely
(compare Figures 3(a) and 3(b)). Hence using the method we do not obtain any information about the
behavior of the system in parts of attractor not visited by low-period cycles.

In the next subsection we discuss a method which is free of the problems mentioned above.

4.3. ¸ocal transversal ¸yapunov exponents

Here, we use local transversal Lyapunov exponents for the analysis of the synchronization properties.
First, let us discuss how local Lyapunov exponents j

i
(x, ¸) depend on ¸. In Figure 5 we show histograms

of maximum local transversal Lyapunov exponents j
1
(x, ¸) for di!erent number of steps ¸. The eigenvalues

of matrix (5) have been computed for 50,000 points on the attractor.
In the construction of histograms we have chosen bins of the length 0)05 covering the interval [!2, 1]. For

each bin the number of points for which the maximum Lyapunov exponents belongs to the bin is plotted. For
small ¸ the spectrum is rather wide, while for greater ¸ it becomes narrower and much higher. In the limit
¸PR there should be a very narrow peak at the value of the maximum global transversal Lyapunov
exponent.

One can also see that for ¸"1 there are number of points on the attractor with j
1
(x, 1)'0. This is an

explanation for the existence of desynchronization bursts observed in the presence of noise.
In Figure 6 we show how the histogram changes when the coupling coe$cient d

1
is modi"ed. For d

1
"0)6

large part of the histogram lies above zero. For stronger coupling d
1
"0)70 the part of the histogram above

zero is smaller and for coupling d
1
"0)75 the whole histogram lies below zero (cf. Figure 6).

In order to "nd the value of d
1

for which all local transversal Lyapunov exponents are negative we have
computed local transversal Lyapunov exponents at 50,000 points along the attractor (for d

1
3[0, 2] with the

step 0)01). At each point we have chosen the maximum local transversal Lyapunov exponent. For each d
1

we
computed the minimum, average and maximum of these maximum exponents. The results are plotted in
Figure 7.

One can clearly see the continuous change of these values with the change of the coupling coe$cient. The
average value (solid line) is negative for d

1
3[0)38, 1)62] while the maximum value (dashed line) is negative

for d
1
3[0)73, 1)27]. It is clear that when there is no noise in the system one can achieve synchronization with

d
1
3[0)38, 1)62] (the average value is very close to maximum global transversal Lyapunov exponent).
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Figure 5. Histograms of maximum local transversal Lyapunov exponent for di!erent time ¸ (local exponents computed at 50,000
points, d

1
"0)5)

Figure 6. Histograms of maximum local transversal Lyapunov exponent for di!erent coupling coe$cient d
1

(local exponents computed
at 50,000 points, ¸"1)
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Figure 7. Maximum local transversal Lyapunov exponent. Average, maximum and minimum values are plotted as solid, dashed and
dotted lines, respectively. The number of steps ¸"1

Table II. Conditions for synchronization obtained using di!erent methods

Method Condition

Global Lyapunov exponents d
1
3[0)34, 1)68]

Lyapunov exponents for cycles d
1
3[0)51, 1)45]

Local Lyapunov exponents d
1
3[0)73, 1)27]

However if due to some noise the trajectory is pushed away from the synchronization subspace and this
happens in the region where the maximum local transversal Lyapunov exponents is positive then the
trajectory will be repelled form the synchronization subspace and synchronization burst will occur. In order
to avoid this possibility we must ensure that local transversal Lyapunov exponents are negative everywhere
on the attractor. This condition is true for d

1
3[0)73, 1)27].

Based on the above discussion we propose to use the following criterion.

Criterion 1 (synchronization of discrete-time systems). If for a long trajectory (covering densely the attractor)
all of the local transversal ¸yapunov exponents j (x, 1) are smaller than zero then the chaotic systems will
synchronize. In this case noise of a small amplitude will not in-uence the synchronization behaviour (synchroni-
zation is robust).

In Table II we collect conditions for synchronization obtained using three di!erent techniques. It is
evident that the method based on local transversal Lyapunov exponents gives the condition stronger than
the two other methods. Its main advantage is that local Lyapunov exponents can be easily computed and we
do not need to "nd periodic orbits, which is necessary for the second method. It may seem that the condition
obtained using the last technique is too restrictive. What we gain is the robustness of synchronization. If local
transversal Lyapunov exponents are everywhere negative then we are sure that in the neighbourhood of the
synchronization subspace the trajectory is attracted to this subspace.

5. SYNCHRONIZATION OF HYPERCHAOTIC CIRCUITS IN THE PRESENCE OF NOISE

As a second example let us consider a four-dimensional electronic circuit13 de"ned by the following state
equation:

C
1
vR
1
"f (v

2
!v

1
)!i

1
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Figure 8. Synchronization of hyperchaotic circuits: (a) transmitted signal, The synchronization error v
1
!v@

1
for d

3
"0)6 (b), d

3
"1 (c),

and d
3
"2 (d)

C
2
vR
2
"!f (v

2
!v

1
)!i

2

¸
1
iQ
1
"v

1
#Ri

1

¸
2
iQ
2
"v

2
(7a)

where f is given by

f (x)"m
0
x#0)5(m

1
!m

0
)( Dx#1D!Dx!1D) (7b)

For parameters C
1
"0)5, C

2
"0)05, ¸

1
"1, ¸

2
"2/3, R"1, m

0
"3 and m

1
"!0)2 system (7) has

a hyperchaotic attractor with two positive Lyapunov exponents: j
1
+0)25, j

2
+0)07, j

3
"0 and

j
4
+!53)2.
Two identical systems are connected by means of unidirectional coupling. Let us denote the state variables

of the response system by v@
1
, v@

2
, i@

1
, i@

2
and the &&error'' variables by e

1
"v

1
!v@

1
, e

2
"v

2
!v@

2
, e

3
"i

1
!i@

1
and

e
4
"i

2
!i@

2
. The unidirectional coupling is obtained by introducing the error feedback term d

i
e
i
in the ith

equation. We consider the case when only d
3
O0 and d

1
"d

2
"d

4
"0.

In this section we investigate the in#uence of noise added to the transmitted signal on the synchronization
behaviour.

In the "rst experiment we drive the response system with the driving signal not corrupted by noise (see
Figure 8(a)). Synchronization error v

1
!v@

1
for di!erent d

3
is shown in Figures 8(b)}8(d). For all values of

coupling constant (d
3
"0)6, 1, 2) the synchronization takes place eventually. However for d

3
"0)6 the time

necessary to obtain the synchronization is rather long (t'150).
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Figure 9. Synchronization of hyperchaotic circuits in the presence of channel noise: (a) transmitted signal with additive noise of
amplitude 0)1, The synchronization error v

1
!v@

1
for d

3
"0)6 (b), d

3
"1 (c), and d

3
"2 (d)

Next, we consider synchronization behaviour in a more realistic situation when additive noise with
amplitude 0)1 is present in the channel. The driving signal (containing the noise) is shown in Figure 9(a). In
Figures 9(b)}9(d) the synchronization error for three di!erent values of d

3
is plotted. For d

3
"0)6 large

desynchronization bursts are observed (see Figure 9(b)). For d
3
"1 we observe almost perfect synchroniza-

tion. Only one desynchronization burst with a small amplitude is visible. For d
3
"2 the synchronization

error remains small for the whole experiment.
Finally, we consider synchronization with the driving signal contaminated by additive noise of amplitude

1 (cf. Figure 10(a)). For weak coupling d
3
"0)6 one can see frequent desynchronization bursts of large

amplitude (Figure 10(b)). For d
3
"1 amplitude of bursts is lower and bursts are less frequent. For strong

coupling d
3
"2 non-coherent behaviour is quickly damped, although small bursts are still visible.

6. ANALYSIS OF SYNCHRONIZATION

In this section we analyse the synchronization using a Lyapunov function, global transversal Lyapunov
exponents, transversal exponents of periodic orbits and local transversal Lyapunov exponents.

6.1. Global ¸yapunov function method

Using the method of a global Lyapunov function one can show14 that if d
1
'!2m

1
, d

2
'!2m

1
, d

3
'R

and d
4
'0 then for all initial conditions the drive and response systems synchronize. As a Lyapunov function

one may choose <(e
1
, e

2
, e

3
, e

4
)"1

2
(C

1
e2
1
#C

2
e2
2
#¸

1
e2
3
#¸

2
e2
4
). Observe that in order to obtain negative
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Figure 10. Synchronization of hyperchaotic circuits in the presence of channel noise: (a) transmitted signal with additive noise of
amplitude 1, The synchronization error v

1
!v@

1
for d

3
"0)6 (b), d

3
"1 (c), and d

3
"2 (d)

derivative of the Lyapunov function along the trajectory we have to use four positive coupling coe$cients.
We were not able to "nd a global Lyapunov function for the case of a single driving variable.

6.2. Global transversal ¸yapunov exponents

In order to analyse the coupled system when only one coupling coe$cient is positive we have computed
global transversal Lyapunov exponents as a function of d

3
3[0, 2] (d

1
"d

2
"d

4
"0). The results are shown

in Figure 11. For the values of the coupling strength d
3

considered in the previous section global transversal
Lyapunov exponents are all negative. For d

3
"0)6 the largest transversal Lyapunov exponents j

.!9
is only

slightly negative j
.!9

+!0)02. For d
3
"1 and d

3
"2 the largest transversal Lyapunov exponent is

j
.!9

+!0)15 and !0)37, respectively. Thus one could expect synchronization. We have already seen that
this is true but only when the driving signal is not contaminated by noise (cf. Figure 8). In order to explain the
behaviour of the coupled systems in the presence of noise we will use two other methods.

6.3. ¹ransversal ¸yapunov exponents of unstable periodic orbits

In order to "nd short periodic orbits we have generated a trajectory of the uncoupled system on the plane
v
1
"0 consisting of 500,000 points. Then using the method of close returns15 we have located several

periodic orbits of the PoincareH map. Positions of these orbits were then sharpened by means of the Newton
method. Their projections onto the plane (v

2
, i

2
) are shown in Figure 12(b). In this way, we have found

approximate positions of 52 short periodic orbits for system (7) with length ¹(50. See that the periodic
orbits found do not visit some parts of the attractor (cf. Figure 12(a)).
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Figure 11. The maximum global transversal Lyapunov exponent of coupled circuits for di!erent values of coupling coe$cient d
3

(d
1
"d

2
"d

4
"0)

Figure 12. (a) projection onto the plane (v
2
, i

2
) of a trajectory of a PoincareH map with the transversal plane v

1
"0 associated with #ow

(7), (b) positions of 52 short periodic orbits (248 points) of the system (7)

Figure 13. The maximum transversal global Lyapunov exponent for short cycles as a function of d
3

(d
1
"d

2
"d

4
"0)

For each of these orbits transversal Lyapunov exponents of the coupled system have been computed for
di!erent values of coupling d

3
. The results are shown in Figure 13, where for each orbit the maximum

transversal Lyapunov exponent j
.!9

versus d
3

is plotted. The largest maximum transversal Lyapunov
exponent is observed for the shortest orbit with period ¹+4)86.
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Figure 14. Histogram of maximum local transversal Lyapunov exponent for ¸"2

6.4. ¸ocal transversal ¸yapunov exponents

Now, we present the results of computation of local transversal Lyapunov exponents for three di!erent
values of ¸. Local Lyapunov exponents have been computed using the method proposed in Reference 10.
First we choose the time ¸"2. Local transversal Lyapunov exponents have been computed at 1000 points
on the attractor. Then we have constructed histograms of the largest of them. In the construction of
histograms we have used bins of the length 0)05. The results are presented in Figure 14. One can clearly see
that the spectrum moves to negative values as the coupling coe$cient is increased. For d

3
"0)6 the average

value is positive j
!7%3

+0)11. For only 39% points local transversal Lyapunov exponents are all negative.
This explains desynchronization bursts in Figure 9(b). For d

3
"2 the average value is negative j

!7%3
+!0)31

and more than 90% of the spectrum lies below zero. This is an indication that for this coupling the
synchronized behaviour is more robust (cf. Figure 9(b)).

In Figure 15 we show histograms of maximum local transversal Lyapunov exponents computed for time
¸"6. Spectrum is narrower (in comparison with ¸"2) and shifted slightly towards negative values. For
d
3
"0)6 the average value is still positive j

!7%3
+0)012. Now for approximately 57% points on the attractor

all local transversal Lyapunov exponents are negative. For d
3
"2 the average value is j

!7%3
+!0)35 and

97% of the spectrum lies below zero.
Finally, we have computed local transversal Lyapunov exponents for ¸"20 (see Figure 16). For d

3
"0)6

the average value is still slightly positive j
!7%3

+0)004. For strong coupling d
3
"2 the whole spectrum is

situated below zero and the average value is j
!7%3

+!0)37. If we further increase the value of ¸ we will
observe a narrow peak at the value of the maximum global transversal Lyapunov exponent.

For investigations of synchronization one should consult the histogram of local transversal Lyapunov
exponents. The size of the part of the histogram lying above zero tells us how frequently (with respect to the
natural measure on the attractor) trajectories are repelled from the synchronization subspace.

In the last experiment we have computed maximum transversal local Lyapunov exponent over a long
trajectory as a function of the coupling strength d

3
for di!erent time ¸. The results are shown in Figure 17.

See that the for ¸"0 the maximum transversal local Lyapunov exponent practically does not depend on the
coupling strength. When we increase ¸ the maximum transversal local Lyapunov exponent decreases and
approaches the maximum global transversal Lyapunov exponent (¸"R).
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Figure 15. Histogram of maximum local transversal Lyapunov exponent for ¸"6

Figure 16. Histogram of maximum local transversal Lyapunov exponent for ¸"20

In order to use local Lyapunov exponents for analysis of synchronization one should choose the time
¸ properly. The time ¸ cannot be too large as this would protect us from obtaining any information about
the systems behaviour in short time (for ¸PR local exponents converge to global exponents).

This leads us in a natural way to the following synchronization criterion:5

Criterion 2 (Synchronization of continuous-time systems). Synchronization is ensured if all local transversal
¸yapunov exponents sampled over the entire attractor are negative in the limit ¸P0.

Using the above criterion we have found the coupling values ensuring synchronization behaviour. For our
system due to its piecewise linearity it is possible to derive these conditions by computing the eigenvalues of
the response system in all linear regions.5
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Figure 17. The maximum transversal local Lyapunov exponent of the four-dimensional synchronized circuit for di!erent values of d
3
,

and di!erent time delay ¸

With a single driving variable (one non-zero coupling coe$cient) one cannot choose coupling values to
ful"l the condition in Criterion 2. It becomes possible when we allow two non-zero coupling coe$cients. The
examples are: d

1
"0, d

2
"4)2, d

3
"1)7, d

4
"0 or d

1
"0, d

2
"0, d

3
"2)5, d

4
"4. With equal coupling

coe$cients the condition in Criterion 2 holds for d
1
"d

2
"d

3
"d

4
'1)995.

We believe that Criterion 2 is too restrictive. One can obtain synchronization behaviour not sensitive to
the channel noise for systems not ful"lling conditions in criterion 1. In particular criterion 1 does not hold for
the coupling coe$cients d

1
"0)5, d

2
"0)5, d

3
"1)1, d

4
"0)1 for which synchronization is ensured according

to the existence of a global Lyapunov function. We suggest using local transversal Lyapunov exponents with
time ¸ separated from zero. In our opinion it is usually a good choice to use the following:

Criterion 3 (Synchronization of continuous-time systems) Synchronization is robust if all local transversal
¸yapunov exponents samples over the entire attractor are negative for ¸ being approximately the 0natural1
period of the system or the length of the shortest unstable periodic orbit embedded within the chaotic attractor.

Obviously, the above heuristic criterion is not strictly a su$cient condition for robust synchronization.
See that in our case none of the two above criteria is ful"lled for a single driving variable. Local transversal

Lyapunov exponents are all negative for ¸'20 and d
3
'2 (cf. Figure 17) while the period of the shortest

orbit is approximately ¹"4)86.

7. CONCLUSIONS

In this paper we have discussed the possibility of using local transversal Lyapunov exponents for characteriza-
tion of synchronization of coupled chaotic systems. We have shown that there is a strong correlation between
local transversal Lyapunov exponents and behaviour of coupled chaotic systems. We have shown that local
transversal Lyapunov exponents could be e!ectively used for prediction of synchronization behaviour,
especially in the presence of noise. Their main advantage is that they could be easily computed. It is not
necessary to "nd periodic orbits and compute their transversal Lyapunov exponents to investigate synchroni-
zation properties. We have developed a criterion for synchronization based on local transversal Lyapunov
exponents and con"rmed that it is useful in analysis of synchronization of both discrete-time and continuous-
time systems. For continuous-time systems we have also discussed the problem of choosing the time ¸ for
which local Lyapunov exponents are evaluated. It is clear that this technique is not limited to uni-directionally
coupled systems considered in this paper and can be easily generalized for other coupling types.
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