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In this work we describe how to prove with computer assistance the existence of
fixed points and periodic orbits for infinite dimensional discrete dynamical systems.

The method is based on Krawczyk operator. As an example we prove the existence

of three fixed points, one period–2 and one period–4 orbit for the Kot-Schaffer
growth-dispersal model.

1. Introduction

Interval methods6,5 provide very powerful methods for proving the existence
of periodic orbits and finding all short cycles of finite dimensional discrete
dynamical systems2,3. In this work we use a modified version of Krawczyk
operator to prove the existence of periodic orbits for an infinite dimensional
dynamical system.

We consider the Kot-Schaffer growth-dispersal model Φ : L2([−π, π]) →
L2([−π, π])

Φ(a)(y) =
1
2π

∫ π

−π

b(x, y)µa(x)
(

1− a(x)
c(x)

)
dx, (1)

where µ > 0 and b(x, y) = b(x− y).
Elements of L2([−π, π]) are represented using the basis ek = eikx. Let

ak, bk and ck be the coefficients of Fourier expansion of functions a, b and
1/c. Since the functions a, b and c are real valued we have a−k = ak,
b−k = bk and c−k = ck. In the basis (ek) Eq. (1) is equivalent to the
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following set of maps

fk(a) = µbk

ak −
∑

j+l+n=k

cjajal

 , k ∈ Z. (2)

Our study is devoted to the system (2). It was studied in Ref. 1 with the
aim of proving the existence of complicated dynamics using Conley index
theory. Here we develop tools, which allow to prove the existence of fixed
points and periodic orbits for infinite dimensional maps.

In this work we consider the following parameter values: µ = 3.5, bk =
2−k, c0 = 0.8, c1 = −0.2, ck = 0 for k > 1. For these parameter values
in simulations of Galerkin projections of (2) one observes chaotic behavior.
The size of the attractor in the kth variable decreases very fast with k.

We use bold letters (e.g. x, A) to denote intervals, interval vectors and
matrices and usual math italic to denote real quantities.

2. Analysis of finite dimensional system by means of
Krawczyk operator

In this section we describe the Krawczyk operator in finite dimension and
present analysis of fixed points of Galerkin projections of the system (2)
using this operator.

Let us assume that F : Rn → Rn is a C1–function. Let x ⊂ Rn be an
interval vector (i.e. a product of intervals), let us choose x̂ ∈ x and an
invertible matrix C ∈ Rn×n.

The Krawczyk operator is defined as

K(x) = x̂− CF (x̂) + (I − CF ′(x))(x− x̂). (3)

Krawczyk operator is simply a mean value form evaluation of the modified
Newton operator N(x) = x − CF (x). The preconditioning matrix C is
usually chosen as the inverse of F ′(x̂).

The most important properties of the Krawczyk operator are5

1. if K(x) ∩ x = ∅ then F (x) 6= 0 for all x ∈ x,
2. if K(x) ⊂ intx then there exists exactly one zero of F in x.

The above properties provide a powerful method for proving the existence
of a unique zero in a given interval vector and for construction of a simple
nonexistence criterion. The existence of fixed points of F in x can be
studied by applying the Krawczyk operator to the map G = F − id

K(x) = x̂− C(f(x̂)− x̂) + (I − C(f ′(x)− I))(x− x̂). (4)
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Table 1. Intervals containing first coordinates of fixed points for the
Galerkin projection with m modes.

m First coordinates

1 0.8928571428571433
25

2 0.1716878258262893
0 0.5132025279256849

39 1.011538217676599
7

3 0.2530076025685830
26 0.5841670785891094

80 1.016847126042068
6

4 0.2651714080979157
2 0.6173407239624675

59 1.017008600770327
5

5 0.2655868873343301
295 0.6229270079895682

65 1.017012164806444
2

6 0.2655867687590022
16 0.6236956799120044

27 1.017012223932998
6

7 0.2655869358741997
0 0.6237579643717149

30 1.017012224691262
0

8 0.2655869463592223
16 0.6237616856965181

62 1.017012224698914
2

9 0.2655869464928243
36 0.6237618514428578

57 1.017012224698976
4

10 0.2655869464931045
37 0.6237618573010194

74 1.017012224698976
4

Let m be the number of modes of the Galerkin projection. Let
us start with investigation of fixed points in the interval vector a =
(a0,a1, . . . ,am−1), where ak = [−2−k, 2−k] for k ≥ 0. Using Krawczyk
method and generalized bisection algorithm we have found all fixed points in
the interval vector a for Galerkin projections with m = 1, 2, . . . , 10 modes.

Apart from the trivial fixed point a = (0, 0, . . . , 0) we found one fixed
point for the Galerkin projection with one mode and three fixed points for
Galerkin projections with m = 2, 3, . . . , 10 modes. The intervals containing
first coordinates of these fixed points are given in Table 1. One can see
that positions of the fixed points do not change much when adding higher
modes. This indicated that it may be possible to prove the existence of fixed
points and periodic orbits of the infinite dimensional system by investigating
its Galerkin projection with a certain number of modes and keeping into
account errors caused by neglecting the higher modes.

3. The Krawczyk method in infinite dimension

Let x = (x0,x1, . . .) be an infinite dimensional interval vector, x̂ ∈ x, and
C = (Cij)∞i,j=0 be an infinite dimensional matrix. We define the infinite
dimensional Krawczyk operator as

K(x) = x̂− CF (x̂) + (I − CF ′(x))(x− x̂). (5)

The kth element of the vector K(x) can be computed as

Kk(x) = x̂k −
∞∑

j=0

CkjFj(x̂) +
∞∑

j=0

(
δkj −

∞∑
i=0

Cki
∂Fi

∂xj
(x)

)
(xj − x̂j). (6)
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We make several assumptions on x and F to make the above definition
valid. We assume that

∑
k x2

k < ∞, for all xk ∈ xk. We assume that the
function x 7→ F (x) is continuous on x and that the derivative ∂Fi

∂xj
: x 7→ R is

continuous for every i, j. Further, we assume that
∑∞

j=1 dij supx,y∈x |xj −
yj | < ∞ for every i, where dij = maxx∈x

∣∣∣∂Fi

∂xj
(x)
∣∣∣.

In Ref. 4 we have proved that for the infinite dimensional Krawczyk
operator (5) there is a similar property on existence of a unique zero as for
the standard Krawczyk operator. Namely, we have shown that if

Kk(x) = (x̂− CF (x̂) + (I − CF ′(x))(x− x̂))k ⊂ intxk, (7)

for all k ≥ 0 then there exists a unique x ∈ x, such that F (x) = 0.
Proof of this fact is similar to the proof of properties of Krawczyk op-

erator in finite dimension. There is a number of technical assumptions
necessary to carry out the proof. We assume that the entries in the matrix
C are bounded and they are zero far from the diagonal (i.e. there exists d

such that Cij = 0 if |i− j| > d). We also assume that the matrix C has the
property Cx = 0 ⇒ x = 0. Observe that all the assumptions on matrix C

are automatically fulfilled by the choice of C given in the next section. We
also assume that the inclusion (7) is satisfied uniformly in the sense that
there exists ε > 0 such that for all k ≥ 0

diam (Kk(x))
diam (xk)

≤ 1− ε < 1. (8)

For the precise formulation, the proof and other details see Ref. 4.

4. Proving the existence of fixed points

To prove the existence of a unique fixed point of f in a = (a0,a1,a2, . . .)
we use the infinite dimensional Krawczyk operator for the map f − id.

K(a) = â− C(f(â)− â) + (I − C(f ′(a)− I))(a− â). (9)

An infinite dimensional interval vector a is represented as the finite
dimensional interval vector (a0,a1, . . . ,aM−1) of length M and the tail.
The tail is stored as two positive real numbers s and A such that −As−k ≤
ak ≤ As−k for all ak ∈ ak and k ≥ M .

Now let us describe how we choose C and â. Let m ≤ M be a positive
integer. m is the number of modes in the Galerkin projection based on
which we choose the preconditioning matrix C. If m is sufficiently large
then the other variables are not very important.
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Let C(m) be the preconditioning matrix obtained in the Krawczyk
method for the mth projection. C is defined as

Ci,j =


C

(m)
i,j for i, j < m

−1 for i = j ≥ m

0 otherwise
(10)

Let us assume that 0 ∈ ak for k ≥ M . The point â is chosen as
âk = mid (ak) for k < M and âk = 0 for k ≥ M .

In order to carry out the existence proof we have to check the condition
Kk(a) ⊂ ak for each k ≥ 0. Each of the first M conditions is checked
independently. To obtain an enclosure for Kk(a), we evaluate Eq. (6).
Elements containing only terms of order smaller than M are computed
in interval arithmetic. It is necessary to derive analytically estimates for
infinite sums containing higher order terms. These estimates are inserted
into formulas for Kk, allowing us to obtain enclosures for the Kk(a).

Conditions for k ≥ M are checked all at once. We construct numbers
A′ and s′ = s representing the tail of K(a).

Once this is done checking the assumption of the existence theorem is
equivalent to checking the following conditions: Kk(a) ⊂ ak for k < M and
A′ < A.

5. The existence of fixed point and periodic orbits

As a first example we have shown the existence of a fixed point. Namely
with computer assistance we have proved the following theorem.

Theorem 5.1. There exists a single fixed point in a = (a0,a1,a2, . . .),
where a0 = 1.0175

65, a1 = 0.1947
0, a2 = 0.0308

2, a3 = 0.0042
35, ak =

[−As−k, As−k] for k ≥ 4, A = 0.1, s = 2.

In the proof we have used M = 13 and m = 4. We have shown that
Kk(a) ⊂ intak for k < M . We have also proved that the tail of K(a) can be
represented by s = 2 and A′ = 0.089158 < A. By iterating the Krawczyk
operator we obtained the sharp bound for the position of the fixed point.
The details of the computer assisted proof are reported in Table 2.

In a similar way we have proved the existence of three other fixed points.
In fact we have proved that there are exactly 4 fixed points in the interval
vector a = (a0,a1, . . .), where ak = [−2, 2] · 2−k.

We have also proved the existence of a period–2 orbit.
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Table 2. Details of the computer assisted proof of existence of the fixed point.

k ak Kk(a) sharp bound

0 [1.0165, 1.0175] [1.01660, 1.01742] 1.0170122258
36

1 [0.194, 0.1947] [0.19406, 0.19460] 0.1943373373
61

2 [0.0302, 0.0308] [0.030278, 0.030741] 0.03051898555
08

3 [0.0035, 0.0042] [0.0035517, 0.00418302] 0.00388416822
01

4 0.00625[−1, 1] [−0.0047240, 0.0056177] 0.0004066902
896

5 0.003125[−1, 1] [−0.0018224, 0.0018881] 3.596874
59 · 10−5

6 0.0015625[−1, 1] [−0.00051562, 0.00051946] 2.75316
09 · 10−6

7 0.00078125[−1, 1] [−0.00013436, 0.00013453] 1.8582
75 · 10−7

8 0.000390625[−1, 1] 3.53435 · 10−5[−1, 1] 1.128
13 · 10−8

9 0.0001953125[−1, 1] 9.35659 · 10−6[−1, 1] [3.36, 8.86] · 10−10

10 9.765625 · 10−5[−1, 1] 2.46934 · 10−6[−1, 1] [−0.988, 1.049] · 10−9

11 4.8828125 · 10−5[−1, 1] 6.49886 · 10−7[−1, 1] [−3.233, 3.237] · 10−9

12 2.44140625 · 10−5[−1, 1] 1.70616 · 10−7[−1, 1] [−8.621, 8.623] · 10−9

M A = 0.1 A′ = 0.089158 A′ = 0.08908

Theorem 5.2. There exists a single period two orbit in a0,a1, where a0
0 =

0.6204
044, a0

1 = 0.2435
375, a0

2 = 0.0437
17, a0

3 = 0.0046
26, a1

0 = 1.20561956, a1
1 = 0.1935

895,
a1

2 = 0.0192
80, a1

3 = 0.0036
22, a0

k = a1
k = [−0.1, 0.1] · 2−k for k ≥ 4.

In the proof we used m = 5, M = 14. Iterating the Krawczyk operator we
have found intervals with diameter below 10−7 containing the orbit.

Similarly we have proved the existence of one period–4 orbit.
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