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1. Introduction

Basic tools for the investigations of nonlinear systems are laboratory experiments and
simulations. In simulations periodic orbits are usually found using some version of
the Newton method, complex trajectories are observed by simply iterating the map on
a computer in machine precision. Many of these results are left without a rigorous
proof. There is no guarantee that there exist a true trajectory, which stays near the
one generated by a computer. For chaotic systems, which exhibit sensitive dependence
on initial conditions this problem is especially important. When we iterate the map
using a computer the inevitable rounding errors cause that the trajectory generated
by a computer and the true one diverge exponentially and after a certain number of
iterations become uncorrelated. The question that arises is whether numerical studies
of nonlinear systems are reliable at all.

In this paper we show that one can use a computer to obtain rigorous results. We
present a set of tools, which can be successfully implemented to rigorously investigate
nonlinear systems. The rigor is achieved by employing interval arithmetic.

We describe methods for finding all low period cycles, finding an upper bound of
the invariant and nonwandering part of a given set, finding a lower bound of a basin
of attraction of stable periodic orbits, methods for proving the existence of symbolic
dynamics embedded within the system and obtaining lower bounds for the topological
entropy of the system.

Rigorous methods for investigations of dynamical systems have been a subject of
many papers. Some of the methods and algorithms used in this work has already been
presented before by various authors. Below, we give references to some of the relevant
papers.

Usually for the problem of finding periodic orbits of a given map f, or equivalently
fixed points of f"(x) — x one chooses a number of initial points and applies a classical
iteration scheme, like Newton method. It is however uncertain whether all periodic
orbits are found. We will show that methods based on interval arithmetic, when
implemented properly are capable of finding all periodic orbits of considerably large
periods.

Other ways of attacking this problem are also possible. In [4] a fast method for
finding periodic orbits up to periods limited by the computer precision is presented.
Although the method is non-rigorous is many cases it is capable of finding all orbits.
Another methods for locating all zeros are based on adaptive refinement of the region
of interest into smaller subsets, where the set of zeros is approximated by outer
coverings [7].

Algorithms for finding upper bounds for invariant and chain recurrent of
nonwandering parts of a given set are very simple and were described in many papers.
A combinatorial procedure for finding an invariant part, isolating neighborhoods and
index pairs is presented in [19]. A method of construction of a finite approximation of a
dynamical system and a simple algorithm for localization of chain recurrent set is given
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in [17]. Subdivision techniques for computation of invariant sets, invariant measures
and unstable manifolds and given in [5, 6]. In all these algorithms a certain region of
the state space, where we want to capture the dynamics of the system is divided into
boxes (sometimes called cells). For each box a set of boxes to which a trajectory can go
from a given box is found. This information is later used for obtaining an upper bound
of invariant sets. For the method to be rigorous we need a way of ensuring that an
enclosure of the image of a box is found. In [5] the procedure is not fully rigorous since
for the computation of the image of a box a finite number of test points is used (another
problem is using a non-rigorous integration procedure). This method may by made
rigorous by using the information on local Lipschitz constants. For continuous time
systems in order to obtain rigorous results one has to use rigorous integration methods
(see [2]).

In this work we use a simpler approach based on interval computations. The image
of a box is computed in one step by evaluation the map definition on the interval vector
representing the box. All the computations are done in interval arithmetic and the
result is an interval vector containing the image of a box.

Another approach which may be used for obtaining a global view of the behavior of
a system is the method of a simple or a generalized cell mapping [12]. Once the dynamics
of the system is cast in the form of mapping between cells (boxes), simple algorithms
are used to extract the system behavior. A simple cell mapping is formed by dividing
the region of interest into a finite number of cells. Each cell is mapped into exactly
one cell, which for the purpose of analyzing of dynamical systems is chosen as the cell
containing the image of the center. This method lets us investigate the approximate
behavior of the system. In a generalized cell mapping a given cell is allowed to have
several image cells. To each image cell a probability of going into this cell is assigned.
This approach leads in a natural way to Markov chains, which may be studied in order
to extract dynamical properties of the system. In most cases it is however impossible
to get exact values for transition probabilities and hence the method cannot be used
directly for rigorous investigations of the system.

It is difficult to rigorously estimate the topological entropy of a given map.
This is a consequence of a fact that standard definitions of topological entropy using
open coverings or e-separated sets are not suited for designing rigorous numerical
procedures. Most of the rigorous methods deal with one-dimensional maps. Some non—
rigorous methods for higher dimensions are extensions of methods for one-dimensional
systems [16]. Other non-rigorous approaches are based on counting the number
of periodic points of a given period and construction of approximations of Markov
partitions. In [8] a rigorous computation method of an upper bound of topological
entropy of a map with respect to a finite partition is given. It is however difficult to
conclude from this results something about the topological entropy of the map.

In this paper we present a method for obtaining rigorous lower bound for topological
entropy based on construction of symbolic dynamics embedded within the system. The
sets on which the symbolic dynamics is defined are chosen based on the structure of
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nonwandering part of a subset of state space. Using finer division one can easily find
more complex symbolic dynamics leading to larger bound for topological entropy.

The paper is organized as follows. In Sec. 2 several interval arithmetic methods are
presented. We recall the definition of the Krawczyk operator and describe how to use it
for proving the existence of periodic orbits and to find all low-period cycles of the map.
We describe an algorithm for finding an upper-bound for the invariant and nonwandering
part of a given set and a lower-bound for the basin of attraction of a given stable periodic
orbit. We also describe a method how to prove the existence of a symbolic dynamics
embedded within the map. In Sec. 3 using these methods we investigate the Ikeda map.
For different parameter values we find all low-period cycles, locate the invariant and
nonwandering part of the trapping region, find rigorous approximations to the basin of
attraction of stable periodic orbits, prove the existence of symbolic dynamics of certain
types and find estimates for the topological entropy.

2. Interval Tools

In this section we present various methods, which can be used for rigorous investigation
of discrete dynamical systems. They share one property. All of them may be
implemented in computer interval arithmetic, which allows to obtain rigorous results
using a computer. Interval arithmetics is a method of computing intervals containing
the true values. An excellent introduction to the interval arithmetic underlying these
methods can be found in [14] or [2]. Interval arithmetic deals with closed intervals of
the form [a, b]. On the set of intervals all basic arithmetic operations are defined in such
a way that the result of a single operation is an interval containing all possible results.
For example the sum of two intervals is defined as:

[a,b] + [e,d] ={x = 21 + x9: 21 € [a,b],25 € [¢,d]} = [a+ ¢, b+ d]

Interval arithmetic is implemented rigorously on a computer by changing the rounding
modes of single operations in such a way that the computed result includes the machine
precision results and the true result (computed in infinite precision). For example, when
the sum of two intervals is computed the left endpoint (the operation a4+ c) is evaluated
in the downward rounding mode, while the right endpoint (the operation b + d) is
evaluated in the upward rounding mode.

In the following we use bold face to denote intervals, interval vectors and interval
matrices and math italic to denote real quantities. We start with the description of the
interval method, which allows to prove the existence of periodic orbits.

2.1. Emistence and uniqueness of periodic orbits

Let us first recall the definition of the Krawczyk operator [15], which can be used to
prove the existence and uniqueness of zeros of an m—dimensional map. Let us consider
a continuously differentiable map f:R™ — R™. The Krawczyk operator is defined as

K(x) = 2o — Cf(z0) = (Cf'(x) = I)(x — m), (1)
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where zg is an arbitrary point belonging to the interval vector x (usually one uses the
center of x) and C' is a preconditioning matrix. It is usually chosen as the inverse of
(o).

The Krawczyk operator is a version of the interval Newton operator [15, 1]
N(x) = xo — (f'(x)) "' f(x0). The main modification, when compared with the interval
Newton operator is the introduction of a preconditioning matrix. In consequence, one
does not need to compute the inverse of interval matrix and the Krawczyk operator can
be used for a wider class of systems.

The following theorem [15] can be used to prove the existence and uniqueness of
zeros of f.

Theorem 1. If K(x) C x then f(x) = 0 has a unique solution in x (and also in K(x)).
If K(x)Nx =0 then there are no zeros of f in x.

In order to prove the existence of a zero of f in x, one evaluates K(x) in interval
arithmetic and checks if it is enclosed in x. If this is the case the existence of a unique
zero of f within x is guaranteed. In order to prove that there are no zeros of f within
x, it suffices to show that the intersection of K(x) and x is empty. Since in interval
arithmetic one can easily find the enclosure of K(x), the assumptions of the above
theorem can be checked rigorously.

Krawczyk operator can be used for proving the existence of a period—n cycle of f
by applying it to the map g = id — f™. The better choice however is to introduce a map
F: (R™)" — (R™)" defined by

[F(2)|k = T(kt1) moa n — (k) (2)

for k=0,...,n—1, where z = (2, ...,%,_1). Zeros of F' correspond to fixed points of
f™. Using higher dimensional map F' allows to deal with longer periodic orbits.

2.2. All periodic orbits of length n

In order to find all period-n cycles of f in the region 2, we use the combination of the
generalized bisection (see [13, 7]) and the Krawczyk method described above.

At the beginning the set € is covered by boxes (m—dimensional interval vectors).
For each interval vector x we produce the sequence (x;)i~), where x; = f'(x), set
z = (Xg,...,Xn_1), and then the interval operator K(z) is evaluated. Finally, we use
the Theorem 1 to prove that there is exactly one fixed point of f” in x (if the assumption
of the first part holds) or that there are no fixed points of f™ in x (if the assumption of
the second part holds). If none of these two assumptions is fulfilled the interval vector
x is divided into smaller parts and the computations are repeated. Below we describe
this algorithm in terms of a simple model language.

procedure FindPeriodicOrbitsInBox(x)
Xp < X;
for i€ {l,...,N —1} do begin
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X; — f(Xi—1);

end

z — (X0, X1,--,Xn_1),

compute K(z);

if K(z) C z then begin
Q—Q+1;
record X;
return;

end

if K(z)Nz =0 then begin
return;

end

divide x into yi,...,¥Yom;

for i€ {1,...,2™} do begin
FindPeriodicOrbitsInBox(y;);

end

end of FindPeriodicOrbitsInBox

@ is a global variable, which at the beginning of computations is initialized to be
zero, and at the end is equal to the number of fixed points of f™ in the region considered.

Observe, that the version of the bisection algorithm presented here is different from
the one usually used. In a typical implementation of generalized bisection for finding
all zeros of the map F defined by equation (2) the division is performed on the box z.
This means that in order to find all period—n orbits of an m—dimensional map we are
searching the mn—dimensional space. Simulations show that this choice is very inefficient
and that making divisions in the original space (dividing x and then generating z) leads
to a much faster algorithm.

We can further speed up the algorithm utilizing the fact that we are searching for
periodic orbits. For the interval vector x we compute several forward and backward
(the Tkeda map is invertible) iterates f(x). First, if any of these iterates has empty
intersection with (2 then x does not contain a periodic point, for which the whole orbit
is enclosed in 2. Second, if any of these iterates is enclosed in the region for which the
algorithm was completed then there are no new periodic orbits in x. In both cases we
can skip the interval x.

Using the algorithm and the modifications presented above one can find all period-—n
orbits for a considerably large n.

Once the box enclosing the the periodic point Z is found, we can find very narrow
enclosure of its position by iterating the Krawczyk operator (z € K(x) C x). We can
also find an enclosure of the Jacobian matrix of f™ at the periodic point and decide the
stability of the orbit. In rare cases it may happen that the computed enclosure of one
of the eigenvalues contains a number with absolute value equal to 1. In such a case, we
are not sure what is the stability type.
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2.3. Invariant and nonwandering part

In this section we present a method for finding an upper bound for invariant part
and nonwandering part of a given set. Invariant and nonwandering components are
important in the study of dynamical systems. They represent stationary of repeatable
behavior.

The invariant part of a set €2 under action of f is defined as

Inv(Q) = {x: I(zk)52_, such that xg =z, zp € Q and xg11 = f(zx)} (3)

k=—o00

A point z is called nonwandering for the map f if for any neighborhood U of x there
exists n > 0 such that f"(U)NU # (). For a given set ) we define the nonwandering part
of Q as the set of nonwandering points of the map f|Inv(€2). The set of nonwandering
points is closed and it contains the closure of the set of fixed points and periodic orbits.

Now we describe an algorithm for finding the enclosure of the invariant part [19, 5]
and nonwandering part of a set. The enclosure found will be the union of e-boxes, i.e.
sets of the form

v = [kieq, (k1 + D)eq] X [koea, (ko + 1)eg] X -+« X [kmem, (km + D],  (4)

where k; are integer numbers, ¢; for 1 = 1,2,...,m are fixed positive real numbers, and
e = (e1,€2,...,6m). For a set of boxes V' = {v;}, by |V| we will denote the sum of all
boxes in V (|V| = wvy).

In order to find the invariant part of a given set {2, we first cover ) by e—boxes.
The set of boxes V' = {v;} serves as a covering of Inv(€2). Next, the set E of possible
transitions between boxes is generated.

E={(i,7): f(vi) N # 0}

If (i,j) ¢ E then a trajectory after being in v; cannot go to v;. In the course of the
procedure the set V' is decreased by removing boxes which lie outside the invariant
part. The box v; is removed from the set V' if its image has empty intersection with
V (ie., f(v;) NV = 0 or equivalently Vj (i,7) ¢ E) or if it has empty intersection
with the image of V' (i.e., v; N f(V) = () or equivalently Vj (j,7) ¢ E). This procedure
is continued until no more boxes can be removed. The remaining boxes are an upper
bound of the invariant part of 2.

procedure FindInvariantPart (V)
E «— the set of possible tramsitions ((i,7) € E if f(v;)Nv,; #0);
repeat
Done « TRUE;
for all v; € V do begin
if V5 (i,7) € E or Vj (j,i) € E then begin
remove v; from V;
Vk remove (i,k) and (k,i) from F;
Done «— FALSE;
end
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end
until not Done;
end of FindInvariantPart

The most time consuming part of the algorithm is the generation of the set of
admissible transitions F. Since the computations are done in interval arithmetic, the
found set E is the enclosure of the set of admissible transitions. In order to obtain a
possibly narrow enclosure the set f(v;) has to be found using a standard technique of
decomposing v; into several smaller boxes and finding their images under f individually.

The above procedure is stopped, when no more boxes can be removed. The obtained
set |V] is the best enclosure one can obtain for a given precision of dividing the state
space into boxes. We can easily obtain a better upper bound of the invariant part by
refining the division of V' and calling the procedure FindInvariantPart again.

Nonwandering part may be smaller than the invariant part. For example the
nonwandering part does not contain a heteroclinic connection connecting unstable
fixed point and attracting fixed point, since all trajectories from a sufficiently small
neighborhood of the heteroclinic orbit converge to the attracting fixed point. An
example for the Tkeda map will be shown in section 3.

Let us observe that if a box v; contains nonwandering points then there must exist
a closed sequence of boxes (v;,, Vi,, ..., V;, ) such that i =4y =i, and f(vy;,) Vv, #0
for j =1,2,...,k — 1. Hence, when finding an upper bound of the nonwandering part
we additionally remove boxes, for which there is no closed sequence of boxes passing
through it. The problem of finding such boxes can be reduced to decomposition of the
graph (where boxes define vertices and elements of the set E define edges) into strongly
connected components (compare also [6]). This is a standard problem in algorithmic
graph theory and has a very fast solution, which operates in a linear time [10]. Strongly
connected components consisting of a single vertex v;, such that (i,7) ¢ E correspond
to boxes, which should be removed.

The procedure for finding the nonwandering part is basically the same as the
procedure FindInvariantPart. The only modification is removing the box v; from
V' also if the box v; does not belong to any closed loop.

Studying of invariant part and nonwandering part of a given set is a very important
problem in theory of dynamical systems and the procedures presented above give very
good enclosures of these sets, as shown in the Section 3. The enclosure for invariant
or nonwandering components can also be helpful in finding periodic orbits. Since
nonwandering part of {2 contains all periodic orbits enclosed in €2 it is clear that in
the search for periodic orbits we can limit ourselves to the invariant part or even better
the nonwandering part. It is possible to further explore the structure of closed loops of
boxes in the graph used for removing boxes containing only wandering points. In order
to find all period—n orbits it is enough to generate all closed loops of boxes of length n
and check these boxes. This improvement allows us to construct a very fast algorithm
for finding all period—n cycles.
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The knowledge about nonwandering and invariant part of the trapping region
together with the position of fixed and periodic points and their basins of attraction
(see next section) let us study the structure of stable and unstable manifolds, homoclinic
and heteroclinic connections. Examples are shown in Section 3.

2.4. Basin of attraction of a stable periodic orbit

Basin of attraction of an asymptotically stable periodic orbit p, with a neighborhood
U of points converging to p is defined as the set of points, which eventually go into U.
Here we are interested in finding a possibly large subset B of a given set (), such that
B is enclosed in the basin of attraction of p.

In order to perform this task, we first find a neighborhood U of the the orbit p,
which is mapped into itself, such that trajectories of points in U converge to the periodic
orbit. This can always be done since by assumption the orbit is asymptotically stable.

Then we cover the region €2 by e-boxes of a given size. We split the covering into
two parts. The first part V is initially empty. The remaining boxes define the second
part W. During the procedure, the box is moved from the set W to V' if the box itself or
its image is enclosed in U U |V/|. Since at the beginning V' is empty we initially transfer
boxes, which are enclosed in U. Then V' becomes larger and more and more boxes can
be moved from W to V. The process is continued until V' cannot be increased.

It is clear that any trajectory starting in |V| converges to the stable periodic orbit
considered. The set of boxes V' gives us a lower bound of the basin of attraction of the
periodic orbit p. The accuracy of the representation depends on the size of boxes which
are used for covering. In order to get a better lower bound we refine the division of
W and repeat the computations. Decreasing ¢ is continued until a final accuracy ¢ is
achieved.

The procedure for finding a subset of € of points, which eventually visit U is
presented below.

procedure FindBasin(U,{2,V)
Vo — 0;
W « the set of c-boxes covering (2;
repeat
repeat
Done «— TRUE;
for all w; € W do begin
if w;, CUUIV]| or f(w;) CUU|V| then
move w; from W to V;
Done «— FALSE;
end
end
until not Done;
e «— €/2;
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W « the set of e-boxes covering W ;
until (min(e) < 9);
end of FindBasin

In Section 3 basins of attraction of stable fixed points and period—2 orbit are found.
The information about basins of attraction can also be used for searching for periodic
orbits. It is clear that the orbit p is the only periodic orbit enclosed within its basin of
attraction. Hence, once the stable periodic orbit p is located and its basin of attraction
B is found we can exclude the region B from the search space for periodic orbits of
arbitrary period.

2.5. Proving the existence of symbolic dynamics

In this section we describe a topological method, we use to prove the existence of
symbolic dynamics. The method is based on the concept of covering [20)].

For simplicity, let us assume that f is a continuous two—dimensional map. For the
description of covering relations in higher dimension see [20]. Let us choose p pairwise
disjoint quadrangles Ni, Ny, ..., N,. For each N; we choose two opposite edges and call
them “horizontal”. The two others are called “vertical”. We say that N; f-covers N;

and we use the notation NV; 2N N; if

(i) the image of V; under f has empty intersection with the horizontal edges of NV},

(ii) the images of vertical edges of N; has empty intersection with N, and they are
located geometrically on the opposite sides of N;.

To prove that a certain covering relation N; 2N N; holds, we cover the edges of NN; by
boxes of a specified size. Next, we find images of these boxes under f and check the
conditions (i) and (ii).

Once the existence of covering relations is proved, we have the existence of symbolic
dynamics, as stated by the following theorem.

Theorem 2. Let Ny, Ns, ..., N, be pairwise disjoint quadrangles. Let A = (a; ;) be

n
ij=1
a square matrix, where

: £

1 if N, = N',

aij = SN = Ny (5)
0  otherwise.

Then f is semiconjugate with the subshift on p symbols, with the transition matriz A.

Proof. The semicongugacy is a simple consequence of the existence of a trajectory
realizing a given sequence of coverings (see [9], Theorem 1). U

From the fact that f is semiconjugate with a subshift of a finite type, we can
make conclusions on the topological entropy of f. Topological entropy of a subshift of
finite type with transition matrix A equals to the logarithm of the dominant eigenvalue
A of A, ie., A\ is such that Ay > |);| for all eigenvalues of A (see [18][Theorem 1.9,
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p. 340]). The topological entropy of a map semiconjugate to a subshift is not less than
the topological entropy of this subshift. Thus, we have the following result.

Theorem 3. The topological entropy of the map f is not smaller than the logarithm of
the dominant eigenvalue of the matriz A, defined be equation (5)

H(f) > log A;. (6)

Unfortunately, according to our knowledge there is no fully automatic method for
finding sets N; on which complicated symbolic dynamics is defined. In order to find the
sets IV; we use the technique based on construction of invariant or nonwandering part
of a given set. First we find the nonwandering part of a given set. Usually this set is
connected and it does not help us much in finding the rectangles N;. To break this set
into several pieces we remove part of this set and find the invariant part of what is left.
In many cases the result is a small number of connected components, which after minor
modification can serve as the rectangles /V;.

3. Analysis of the Ikeda map

As an example, we consider the Tkeda map [11]
f(z) =p+ Bexp (ik —ia/(1+ |2]?)) 2, (7)

where z = x + iy is a complex number. This map can be written as a two—-dimensional
system in the following form:

f(z,y) = (p+ B(xcost —ysint), B(xsint + y cost)), (8)

where t = t(x,y) = k — /(1 + 2% + y?).

It is known that the ball K = B((p,0),pB/(1 — B)) is a trapping region for the
map f (i.e., f(K) C K) [11]. Furthermore it can be shown that the trajectory starting
at arbitrary point (z,y) € R? enters the ball K in finite time. Thus, we can limit our
analysis of the behavior of the system to the region K.

We consider the Ikeda map with the following parameter values: p = 1, B = 0.9,
k=04and a=3,6,7.

Let us start with non-rigorous numerical investigations. Computer generated
trajectories starting at the origin (z,y) = (0,0) for different parameter value o are
shown in Fig. 1. In the first case the trajectory converges to the fixed point. For @ = 6
one observes a chaotic trajectory. In the last case, for & = 7 the trajectory initially
behaves in a complex way but eventually converges to the period-2 orbit. In order to
be able to say something more about the dynamics of the system one has to generate
many trajectories starting in different initial conditions. This kind of analysis is rather
time consuming and does not give us full knowledge of the system, even about its stable
low-period cycles, not to mention unstable ones. A stable low-period cycle may have
very small basin of attraction (when compared to other basins) and may be not found
using this procedure and random initial conditions. For example in the case of a = 3
there is a second fixed point, but a chance of choosing an initial point in the rectangle
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Figure 1. Tkeda map, computer generated trajectory of the point (x,y) = (0,0) for
(a) a=3,(b) a=6and (c) a =7.

[—10,10] x [—10, 10] belonging to its basin of attraction is smaller than 1/500 (most
trajectories converge to the other fixed point).

In the next sections we show that it is possible, with not much effort, to analyze
the system rigorously using a computer. One can study the structure of invariant sets,
find all low period cycles and basins of attraction of stable periodic orbits. One can also
prove the existence of symbolic dynamics of the map and find rigorous bounds for its
topological entropy.

3.1. Tkeda map for a =3

First, let us consider the case a = 3. For this parameter value one observes in computer
simulations the convergence of the trajectories to one of the two stable fixed points P ».
There also exists a third saddle—type fixed point P3. The positions of these fixed points
found with the Krawczyk method are following:

Py € (2.115590405128%2, 3.5398435033989%5),
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Py € (0.562256442698503, —0.5824076479740%3),
Py € (0.591877229774475, —0.785372573586834).

10 |

|
-10 0 10

-10 ‘

Figure 2. Ikeda map, o = 3, invariant part of the trapping region, the stable fixed
points Py and P5 (X, +), the unstable fixed point Ps ().

The invariant part of the trapping region K, found with the method described in
Section 2.3 is shown in Fig. 2. The invariant part contains the three fixed points and the
heteroclinic orbits connecting the saddle type fixed point and two stable fixed points.
The area of the set of boxes containing the invariant part is 0.0465 and is very small
when compared to the area of the trapping region K, which is 79? ~ 254.5.

We have also found the upper bound of the nonwandering part of the trapping
region. The area of the boxes containing the nonwandering part is smaller than 6-1077.
It consists of three small regions. Each of them contains a single fixed point. Using the
hyperbolicity conditions in these regions it can be shown that if the trajectory stays in
one of this regions it must necessarily converge to the fixed point. Since all periodic
orbits belong to the nonwandering part, it follows that there are no other periodic orbits
for a = 3.
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Figure 3. Tkeda map, a = 3, basins of attraction of the stable fixed points P; and P;.

In order to better understand the dynamics of the system we have found basins of
attraction By, By of the stable fixed points P;, P,. First we have located trapping regions
around each of the stable fixed points. The size and the shape of the basin of attraction
is a global feature and cannot be studied by means of the Jacobian matrix at the stable
fixed point alone. However analysis of the Jacobian matrix helps us to choose the initial
trapping region. Close to the fixed point where the linear approximation based on the
Jacobian matrix is valid we may easily find a small ellipse which is a trapping region.
The matrix norm induced by the Euclidean norm for the Jacobian matrices is 1.753 for
the Jacobian matrix at P; and 1.0527 for the Jacobian matrix at P,. It means that in
the linear approximation circles are not trapping regions and in order to find a good
candidate we need to start with an ellipse. We have found the following ellipses which
are trapping regions for the map:

cos’¢  sin? sin¢  cos? g
( 72 + r2 > (.’17 - xO)Z + ( r2 =+ r2 > (y - y0)2 +
1 2 1 2
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( 3 i?> sin(2¢) (z — x0)(y — yo) < 1,

r?or3
where g = 2.11559, yo = 3.53984, r, = 2.3, ro = 14, ¢ = —0.3 for P, and
xg = 0.562256, yo = —0.582407, r; = 0.03, ro = 0.09, ¢ = 0.08 for P; .

Then using the hyperbolicity of the fixed points we have shown that the invariant
part of these trapping regions is the fixed point (all trajectories starting in the trapping
regions converge to the fixed point.

Finally using the algorithm described in Section 2.4 we have found regions belonging
to the basins of attraction. In Fig. 3 the basins of attraction of the stable fixed points
are plotted.

Since the Tkeda map is area contracting (the determinant of the Jacobian is constant
det f’(z) = B? = 0.81, which means that areas contract by B? on each iteration of the
map) it is clear that each basin of attraction must have infinite area. It is interesting
to observe that although the eigenvalues of the Jacobian matrix at the two stable fixed
points have the same magnitude the basins are very different. Most of the points belong
to the basin B;. We have shown that from the rectangle [—10, 10] x [—10, 10] the region
with area 399.039 is enclosed in B; and the region with area 0.075 is enclosed in By. The
set of remaining points contains the boundary between the two basins. The boundary
consists of the unstable fixed point and its stable manifold.

Summarizing, we have managed to perform the full analysis of the dynamics for
the considered case. We have shown that there are only three fixed points and no other
periodic orbits. We have found very good approximations of the heteroclinic connections
between the fixed points. We have also found basins of attraction of the stable fixed
points. Most points lie in the basin of attraction of the fixed point P;.

3.2. Ikeda map for o =6

For a = 6 in simulations one observes chaotic behavior. Some trajectories converge to
the stable fixed point and others display complex non-periodic oscillations.

There are three fixed points of the map. They belong to the following interval
vectors:

Py € (2.972131617910553, 4.1459464213955),
P, € (0.53275462294075s, 0.2468967727110113),
Py € (1.11426961458155, —2.285694460986153).

The first fixed point is stable and the two others are unstable. P, belongs to the
numerically observed chaotic attractor.

First, we have found sets of boxes enclosing the invariant part and the nonwandering
part of the trapping region. The results are shown in Fig. 4 and 5 respectively.

The invariant part contains the stable fixed point, unstable fixed point Ps, the
chaotic attractor observed numerically and unstable manifold of P; connecting this
point with the stable fixed point and the chaotic attractor. The area of the upper
bound of the invariant part is 2.22.
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Figure 4. Tkeda map, a = 6, the trapping region K and its invariant part (black),
basin of attraction of the stable fixed point P; (x), the unstable fixed points P» and
Py (+:%).

The enclosure of the nonwandering part is smaller. Its area is 2.01. It does not
contain the heteroclinic orbit connecting P; and P;. We were not able however to break
the connection between P; and the region containing the numerically observed attractor.

Next, we have found the basin of attraction of the stable fixed point P;. In the first
step we have shown that the ellipse (9) with xy = 2.972132, yo = 4.145946, r; = 1.2,
ro = 2.1, ¢ = 1 is a trapping region for the map and we have proved that the invariant
part of this ellipse is P; (all trajectories starting in the ellipse converge to the fixed
point). Finally, we have found a subset of the rectangle [—10, 10] x [—10, 10] enclosed
in the basin of attraction of Py (see Fig. 4). The region found has an area of 357.005.

Using the Krawczyk method, we have found all periodic orbits with period n < 15.
Periodic orbits found (apart from the stable fixed point P;) are shown in Fig 6. One can
see that low—period cycles do not fill the attractor uniformly and an interesting Cantor
set structure is formed.
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Figure 5. Ikeda map, o = 6, nonwandering part of the trapping region.

3.3. Ikeda map for a =7

As a last case we consider a parameter value a« = 7. In simulations one observes
convergence of the trajectories to one of the two stable orbits, period-1 orbit and period-
2 orbit. This is similar to the first case considered (o = 3) where we also observe two
stable periodic orbits. As we will see there are many differences between these two
cases. In this last case there exists an abundance of periodic orbits and from topological
point of view the dynamics is even more complicated than for &« = 6 — we observe more
unstable periodic orbits, which gives rise to higher topological entropy.
There are three fixed points for the map

Py € (3.24260097375821, 4.28427623517457),
P, € (0.54193072532567¢, 0.3843008522072225),
Py € (1.28933093702959, —2.578055942060137).

The first is stable and the two others are unstable. There is one stable period-2 orbit



Rigorous investigations of Ikeda map 18

1 |
0— ]
1 ]
2 ]
*
| |
0 1 2
Figure 6. Ikeda map, o = 6, periodic orbits with period n =1,...,15
(Qla QQ)

Q1 € (1.0388462702999752, —0.0944284334089¢3),
@2 € (0.0657477429499g5, —0.092458342523955).

and two unstable period-2 orbits.

As in the previous cases we have found sets containing the invariant part and the
nonwandering part of the trapping region. The nonwandering part, which is shown
in Fig. 7 consists of three connected regions. Two small regions correspond to the
stable fixed point P, and the unstable fixed point P;. The third region contains stable
period-2 orbit and infinitely many unstable periodic orbits. The invariant part contains
additionally the unstable manifolds of P3;. For this parameter value we were able to
break the nonwandering region into three parts. This was possible because the unstable
fixed point is located further away from the chaotic set. The procedure did not break
the large component into two parts. We know however that this in general should
be possible. The nonwandering part of the basin of attraction of the stable period-2
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Figure 7. Ikeda map, a = 7, nonwandering part of the trapping region, stable fixed
point (%), unstable fixed points (x), stable period-2 orbit (4)

orbit consists of just two points and this part of the nonwandering set is separated
(has nonzero distance) from the chaotic set containing infinitely many unstable periodic
orbits.

We have also found the basins of attraction of the stable periodic orbits. They are
shown in Fig. 8. The part of the basin of attraction of the stable fixed point found has
area of 347.868 within the rectangle [—10, 10] x [—10, 10], while the part of the basin
of attraction of the stable period-2 orbit has area of 0.023. This basin of attraction is
tangled up with the chaotic set (compare Fig. 9) and it is very difficult to rigorously
find the region where it is located.

Finally we have found all cycles with period n < 12. They are plotted in Fig. 9.

3.4. Topological entropy

Topological entropy of a map f is a quantitative measure of its orbit complexity.
In topological sense a dynamical system is called chaotic if its topological entropy is
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Figure 8. Ikeda map, a = 7, basin of attraction of the stable fixed point and the
stable period-2 orbit

positive. Let us recall the definition of topological entropy based on the notion of a
separated set. A set E is called (n, e)-separated if for every two different points x,y € E,
there exists 0 < j < n such that the distance between f7(z) and f7(y) is greater than e.

Topological entropy of f is defined as

H(f) = lim limsup 1 log s, (¢), 9)
e—0 n—oo N

where s,(¢) is the cardinality of a maximum (n, €)-separated set.

Under certain assumptions (see [3]) the topological entropy can be expressed in
terms of the number of periodic orbits

log P
H(f) = limsup %8

n—o00 n

where P,, denotes the number of fixed points of f™. This formula can be used as the
lower bound for the topological entropy as long as the distance between periodic orbits
of length n, which are counted is separated from zero.
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Figure 9. Periodic orbit with period n < 12 for @ = 7, unstable fixed points (%),
stable period-2 orbit (+), basin of attraction of the stable fixed point (light), basin of
attraction of the stable period-2 orbit (dark).

Hence, it is natural to estimate the topological entropy of the map using the
following formula
log P,

Hy(h) = ==,

The results on the number of low-period cycles and the estimates H,(h) for
a = 3,6, 7 are collected in Table 1 (see also Fig. 10).
For @ = 3 there exist only 3 fixed points for the map and there are no other

periodic orbits. All trajectories converge to one of the fixed points. It is clear that
the topological entropy of the Ikeda map for o« = 3 is zero. The approximation of the
topological entropy based on the number of fixed points of f™ approaches 0.

For a = 6 the approximation stabilizes as n is increased. This lets us state the
hypothesis that the topological entropy of the Ikeda map for a = 6 is H(f) = 0.6.

For a = 7 there are more periodic orbits with low period than for &« = 6 and hence
we obtain higher estimates for the topological entropy (the approximation stabilizes
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a=3 a=26 a="17
n| Qn | Pn H, | Q. P, H, | Q. P, H,
1 3| 31 1.0986 2 2 1 0.6931 2 2 1 0.6931
2 0| 310.5493 1 4 10.6931 3 8 | 1.0397
3 0] 310.3662 2 8 1 0.6931 2 8 1 0.6931
4 0| 310.2747 3 16 | 0.6931 3 20 | 0.7489
5 0| 310.2197 4 22 | 0.6182 4 22 1 0.6182
6 0| 3]0.1831 7 52 | 0.6585 7 56 | 0.6709
7 0| 31]0.1569 | 10 721 0.6110 || 14 | 100 | 0.6579
8 0| 31(0.1373 | 14| 128 0.6065 || 20 | 180 | 0.6491
9 0| 31]0.1221 | 26| 242 |0.6099 | 40 | 368 | 0.6565
10 0| 3[0.1099 | 46 | 484 | 0.6182 | 66 | 688 | 0.6534
11 0 31[0.0999| 76| 838 | 0.6119 || 104 | 1146 | 0.6404
12 0| 31]0.0916 || 110 | 1384 | 0.6027 || 216 | 2660 | 0.6572
13 0| 31]0.0845 | 194 | 2524 | 0.6026
14 0| 31]0.0785 | 317 | 4512 | 0.6010
15 0| 31]0.0732 | 566 | 8518 | 0.6033

Table 1. Q,, — number of periodic orbits with period n, P,, — number of fixed points
of f*, H, = n~'log(P,) — estimation of topological entropy.

H (f)
1 T U X 0=3 |
: —— a=6
0.8 /e a=7 |
06f KT SRk
X : : :
OAf oy R
X
02} K S
| X.-X X X X - % XX %
0 ; ; ; n
0 5 10 15

Figure 10. Estimation of topological entropy based on the number of low-period
cycles
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Figure 11. Ikeda map, o = 6, sets N; on which the symbolic dynamics on 4 symbols
exists and their images

around H(f) ~ 0.65). It appears that although in simulations we do not observe
complicated behavior the dynamics is more complicated in topological sense than for
a = 6. This complicated dynamics is concentrated on a set which repels trajectories (a
chaotic set is a repellor).

3.5. Symbolic dynamics

In this section we find symbolic dynamics for the Ikeda map. Since for a = 3 the
topological entropy is zero there is no interesting symbolic dynamics for this case. Below
we present the analysis for « = 6. For a = 7 one can use the same technique to prove the
existence of symbolic dynamics and to obtain rigorous bounds for topological entropy.

To prove the existence of symbolic dynamics, we first find the nonwandering part of
the trapping region. Then we remove boxes for which y —x > 1 or y —x < —2, and find
the invariant part of what is left. This set is then used as an initial guess for the position
of rectangles, on which the symbolic dynamics is defined. We modify the position of
these rectangles by hand, so that a possibly large number of covering relations hold.
The chosen sets and their images under the Ikeda map are shown in Fig. 11. Finally,
we check rigorously the existence of covering relations between the chosen sets.

The coverings, the existence of which was proved, correspond to the symbolic
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Figure 12. Tkeda map, o = 6, sets IN; on which the symbolic dynamics on 7 symbols
exists and their images

dynamics on four symbols with the following transition matrix:

A= (10)

It follows that the symbolic dynamics with the transition matrix (10) is embedded
in f and that the topological entropy of the Ikeda map is bounded by

H(h) > 0.19946.

In the second attempt to find the symbolic dynamics we use the same procedure
for the finer division of the state space into boxes. This leads to the symbolic dynamics
on the seven sets shown in Fig. 12 and the transition matrix
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One can see that this time the sets N; occupy larger portion of the state space. In
consequence, the estimation for the topological entropy for the Tkeda map with a =6

H(h) > 0.40181

is significantly better.
We were also able to find symbolic dynamics on 18 symbols with the following
transition matrix

1 1
11
1 1
1
1 1
1
A= ) (12)
1
1
1
1

1

1

1 111

and even higher topological entropy
H(h) > 0.48585

Let us notice that the rigorous lower-bound based on the existence of symbolic
dynamics is 20% smaller than the one based on the number of low-period cycles. This
indicates that the dynamics of the map is more complicated than the one proved here.
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