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1. Introduction

Basic tools for the investigations of nonlinear systems are laboratory experiments and

simulations. In simulations periodic orbits are usually found using some version of

the Newton method, complex trajectories are observed by simply iterating the map on

a computer in machine precision. Many of these results are left without a rigorous

proof. There is no guarantee that there exist a true trajectory, which stays near the

one generated by a computer. For chaotic systems, which exhibit sensitive dependence

on initial conditions this problem is especially important. When we iterate the map

using a computer the inevitable rounding errors cause that the trajectory generated

by a computer and the true one diverge exponentially and after a certain number of

iterations become uncorrelated. The question that arises is whether numerical studies

of nonlinear systems are reliable at all.

In this paper we show that one can use a computer to obtain rigorous results. We

present a set of tools, which can be successfully implemented to rigorously investigate

nonlinear systems. The rigor is achieved by employing interval arithmetic.

We describe methods for finding all low period cycles, finding an upper bound of

the invariant and nonwandering part of a given set, finding a lower bound of a basin

of attraction of stable periodic orbits, methods for proving the existence of symbolic

dynamics embedded within the system and obtaining lower bounds for the topological

entropy of the system.

Rigorous methods for investigations of dynamical systems have been a subject of

many papers. Some of the methods and algorithms used in this work has already been

presented before by various authors. Below, we give references to some of the relevant

papers.

Usually for the problem of finding periodic orbits of a given map f , or equivalently

fixed points of fn(x) − x one chooses a number of initial points and applies a classical

iteration scheme, like Newton method. It is however uncertain whether all periodic

orbits are found. We will show that methods based on interval arithmetic, when

implemented properly are capable of finding all periodic orbits of considerably large

periods.

Other ways of attacking this problem are also possible. In [4] a fast method for

finding periodic orbits up to periods limited by the computer precision is presented.

Although the method is non–rigorous is many cases it is capable of finding all orbits.

Another methods for locating all zeros are based on adaptive refinement of the region

of interest into smaller subsets, where the set of zeros is approximated by outer

coverings [7].

Algorithms for finding upper bounds for invariant and chain recurrent of

nonwandering parts of a given set are very simple and were described in many papers.

A combinatorial procedure for finding an invariant part, isolating neighborhoods and

index pairs is presented in [19]. A method of construction of a finite approximation of a

dynamical system and a simple algorithm for localization of chain recurrent set is given
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in [17]. Subdivision techniques for computation of invariant sets, invariant measures

and unstable manifolds and given in [5, 6]. In all these algorithms a certain region of

the state space, where we want to capture the dynamics of the system is divided into

boxes (sometimes called cells). For each box a set of boxes to which a trajectory can go

from a given box is found. This information is later used for obtaining an upper bound

of invariant sets. For the method to be rigorous we need a way of ensuring that an

enclosure of the image of a box is found. In [5] the procedure is not fully rigorous since

for the computation of the image of a box a finite number of test points is used (another

problem is using a non–rigorous integration procedure). This method may by made

rigorous by using the information on local Lipschitz constants. For continuous time

systems in order to obtain rigorous results one has to use rigorous integration methods

(see [2]).

In this work we use a simpler approach based on interval computations. The image

of a box is computed in one step by evaluation the map definition on the interval vector

representing the box. All the computations are done in interval arithmetic and the

result is an interval vector containing the image of a box.

Another approach which may be used for obtaining a global view of the behavior of

a system is the method of a simple or a generalized cell mapping [12]. Once the dynamics

of the system is cast in the form of mapping between cells (boxes), simple algorithms

are used to extract the system behavior. A simple cell mapping is formed by dividing

the region of interest into a finite number of cells. Each cell is mapped into exactly

one cell, which for the purpose of analyzing of dynamical systems is chosen as the cell

containing the image of the center. This method lets us investigate the approximate

behavior of the system. In a generalized cell mapping a given cell is allowed to have

several image cells. To each image cell a probability of going into this cell is assigned.

This approach leads in a natural way to Markov chains, which may be studied in order

to extract dynamical properties of the system. In most cases it is however impossible

to get exact values for transition probabilities and hence the method cannot be used

directly for rigorous investigations of the system.

It is difficult to rigorously estimate the topological entropy of a given map.

This is a consequence of a fact that standard definitions of topological entropy using

open coverings or ε–separated sets are not suited for designing rigorous numerical

procedures. Most of the rigorous methods deal with one–dimensional maps. Some non–

rigorous methods for higher dimensions are extensions of methods for one–dimensional

systems [16]. Other non–rigorous approaches are based on counting the number

of periodic points of a given period and construction of approximations of Markov

partitions. In [8] a rigorous computation method of an upper bound of topological

entropy of a map with respect to a finite partition is given. It is however difficult to

conclude from this results something about the topological entropy of the map.

In this paper we present a method for obtaining rigorous lower bound for topological

entropy based on construction of symbolic dynamics embedded within the system. The

sets on which the symbolic dynamics is defined are chosen based on the structure of
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nonwandering part of a subset of state space. Using finer division one can easily find

more complex symbolic dynamics leading to larger bound for topological entropy.

The paper is organized as follows. In Sec. 2 several interval arithmetic methods are

presented. We recall the definition of the Krawczyk operator and describe how to use it

for proving the existence of periodic orbits and to find all low-period cycles of the map.

We describe an algorithm for finding an upper-bound for the invariant and nonwandering

part of a given set and a lower-bound for the basin of attraction of a given stable periodic

orbit. We also describe a method how to prove the existence of a symbolic dynamics

embedded within the map. In Sec. 3 using these methods we investigate the Ikeda map.

For different parameter values we find all low-period cycles, locate the invariant and

nonwandering part of the trapping region, find rigorous approximations to the basin of

attraction of stable periodic orbits, prove the existence of symbolic dynamics of certain

types and find estimates for the topological entropy.

2. Interval Tools

In this section we present various methods, which can be used for rigorous investigation

of discrete dynamical systems. They share one property. All of them may be

implemented in computer interval arithmetic, which allows to obtain rigorous results

using a computer. Interval arithmetics is a method of computing intervals containing

the true values. An excellent introduction to the interval arithmetic underlying these

methods can be found in [14] or [2]. Interval arithmetic deals with closed intervals of

the form [a, b]. On the set of intervals all basic arithmetic operations are defined in such

a way that the result of a single operation is an interval containing all possible results.

For example the sum of two intervals is defined as:

[a, b] + [c, d] = {x = x1 + x2: x1 ∈ [a, b], x2 ∈ [c, d]} = [a + c, b + d]

Interval arithmetic is implemented rigorously on a computer by changing the rounding

modes of single operations in such a way that the computed result includes the machine

precision results and the true result (computed in infinite precision). For example, when

the sum of two intervals is computed the left endpoint (the operation a+ c) is evaluated

in the downward rounding mode, while the right endpoint (the operation b + d) is

evaluated in the upward rounding mode.

In the following we use bold face to denote intervals, interval vectors and interval

matrices and math italic to denote real quantities. We start with the description of the

interval method, which allows to prove the existence of periodic orbits.

2.1. Existence and uniqueness of periodic orbits

Let us first recall the definition of the Krawczyk operator [15], which can be used to

prove the existence and uniqueness of zeros of an m–dimensional map. Let us consider

a continuously differentiable map f : Rm 7→ R
m. The Krawczyk operator is defined as

K(x) = x0 − Cf(x0)− (Cf ′(x)− I)(x− x0), (1)
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where x0 is an arbitrary point belonging to the interval vector x (usually one uses the

center of x) and C is a preconditioning matrix. It is usually chosen as the inverse of

f ′(x0).

The Krawczyk operator is a version of the interval Newton operator [15, 1]

N(x) = x0 − (f ′(x))−1f(x0). The main modification, when compared with the interval

Newton operator is the introduction of a preconditioning matrix. In consequence, one

does not need to compute the inverse of interval matrix and the Krawczyk operator can

be used for a wider class of systems.

The following theorem [15] can be used to prove the existence and uniqueness of

zeros of f .

Theorem 1. If K(x) ⊂ x then f(x) = 0 has a unique solution in x (and also in K(x)).

If K(x) ∩ x = ∅ then there are no zeros of f in x.

In order to prove the existence of a zero of f in x, one evaluates K(x) in interval

arithmetic and checks if it is enclosed in x. If this is the case the existence of a unique

zero of f within x is guaranteed. In order to prove that there are no zeros of f within

x, it suffices to show that the intersection of K(x) and x is empty. Since in interval

arithmetic one can easily find the enclosure of K(x), the assumptions of the above

theorem can be checked rigorously.

Krawczyk operator can be used for proving the existence of a period–n cycle of f

by applying it to the map g = id− fn. The better choice however is to introduce a map

F : (Rm)n 7→ (Rm)n defined by

[F (z)]k = x(k+1) mod n − f(xk) (2)

for k = 0, . . . , n− 1, where z = (x0, . . . , xn−1). Zeros of F correspond to fixed points of

fn. Using higher dimensional map F allows to deal with longer periodic orbits.

2.2. All periodic orbits of length n

In order to find all period-n cycles of f in the region Ω, we use the combination of the

generalized bisection (see [13, 7]) and the Krawczyk method described above.

At the beginning the set Ω is covered by boxes (m–dimensional interval vectors).

For each interval vector x we produce the sequence (xi)
n−1
i=0 , where xi = f i(x), set

z = (x0, . . . ,xn−1), and then the interval operator K(z) is evaluated. Finally, we use

the Theorem 1 to prove that there is exactly one fixed point of f n in x (if the assumption

of the first part holds) or that there are no fixed points of f n in x (if the assumption of

the second part holds). If none of these two assumptions is fulfilled the interval vector

x is divided into smaller parts and the computations are repeated. Below we describe

this algorithm in terms of a simple model language.

procedure FindPeriodicOrbitsInBox(x)

x0 ← x;

for i ∈ {1, . . . , N − 1} do begin
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xi ← f(xi−1);

end

z← (x0,x1, . . . ,xn−1),

compute K(z);

if K(z) ⊂ z then begin

Q← Q + 1;

record x;

return;

end

if K(z) ∩ z = ∅ then begin

return;

end

divide x into y1, . . . ,y2m;

for i ∈ {1, . . . , 2m} do begin

FindPeriodicOrbitsInBox(yi);

end

end of FindPeriodicOrbitsInBox

Q is a global variable, which at the beginning of computations is initialized to be

zero, and at the end is equal to the number of fixed points of fn in the region considered.

Observe, that the version of the bisection algorithm presented here is different from

the one usually used. In a typical implementation of generalized bisection for finding

all zeros of the map F defined by equation (2) the division is performed on the box z.

This means that in order to find all period–n orbits of an m–dimensional map we are

searching the mn–dimensional space. Simulations show that this choice is very inefficient

and that making divisions in the original space (dividing x and then generating z) leads

to a much faster algorithm.

We can further speed up the algorithm utilizing the fact that we are searching for

periodic orbits. For the interval vector x we compute several forward and backward

(the Ikeda map is invertible) iterates f i(x). First, if any of these iterates has empty

intersection with Ω then x does not contain a periodic point, for which the whole orbit

is enclosed in Ω. Second, if any of these iterates is enclosed in the region for which the

algorithm was completed then there are no new periodic orbits in x. In both cases we

can skip the interval x.

Using the algorithm and the modifications presented above one can find all period–n

orbits for a considerably large n.

Once the box enclosing the the periodic point x̄ is found, we can find very narrow

enclosure of its position by iterating the Krawczyk operator (x̄ ∈ K(x) ⊂ x). We can

also find an enclosure of the Jacobian matrix of fn at the periodic point and decide the

stability of the orbit. In rare cases it may happen that the computed enclosure of one

of the eigenvalues contains a number with absolute value equal to 1. In such a case, we

are not sure what is the stability type.
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2.3. Invariant and nonwandering part

In this section we present a method for finding an upper bound for invariant part

and nonwandering part of a given set. Invariant and nonwandering components are

important in the study of dynamical systems. They represent stationary of repeatable

behavior.

The invariant part of a set Ω under action of f is defined as

Inv(Ω) = {x: ∃(xk)
∞

k=−∞
such that x0 = x, xk ∈ Ω and xk+1 = f(xk)}. (3)

A point x is called nonwandering for the map f if for any neighborhood U of x there

exists n > 0 such that fn(U)∩U 6= ∅. For a given set Ω we define the nonwandering part

of Ω as the set of nonwandering points of the map f |Inv(Ω). The set of nonwandering

points is closed and it contains the closure of the set of fixed points and periodic orbits.

Now we describe an algorithm for finding the enclosure of the invariant part [19, 5]

and nonwandering part of a set. The enclosure found will be the union of ε–boxes, i.e.

sets of the form

v = [k1ε1, (k1 + 1)ε1]× [k2ε2, (k2 + 1)ε2]× · · · × [kmεm, (km + 1)εm], (4)

where ki are integer numbers, εi for i = 1, 2, . . . , m are fixed positive real numbers, and

ε = (ε1, ε2, . . . , εm). For a set of boxes V = {vi}, by |V | we will denote the sum of all

boxes in V (|V | =
⋃

vi).

In order to find the invariant part of a given set Ω, we first cover Ω by ε–boxes.

The set of boxes V = {vi} serves as a covering of Inv(Ω). Next, the set E of possible

transitions between boxes is generated.

E = {(i, j): f(vi) ∩ vj 6= ∅}.

If (i, j) 6∈ E then a trajectory after being in vi cannot go to vj. In the course of the

procedure the set V is decreased by removing boxes which lie outside the invariant

part. The box vi is removed from the set V if its image has empty intersection with

V (i.e., f(vi) ∩ V = ∅ or equivalently ∀j (i, j) 6∈ E) or if it has empty intersection

with the image of V (i.e., vi ∩ f(V ) = ∅ or equivalently ∀j (j, i) 6∈ E). This procedure

is continued until no more boxes can be removed. The remaining boxes are an upper

bound of the invariant part of Ω.

procedure FindInvariantPart(V )

E ← the set of possible transitions ((i, j) ∈ E if f(vi) ∩ vj 6= ∅);

repeat

Done ← TRUE;

for all vi ∈ V do begin

if ∀j (i, j) 6∈ E or ∀j (j, i) 6∈ E then begin

remove vi from V ;

∀k remove (i, k) and (k, i) from E;

Done ← FALSE;

end
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end

until not Done;

end of FindInvariantPart

The most time consuming part of the algorithm is the generation of the set of

admissible transitions E. Since the computations are done in interval arithmetic, the

found set E is the enclosure of the set of admissible transitions. In order to obtain a

possibly narrow enclosure the set f(vi) has to be found using a standard technique of

decomposing vi into several smaller boxes and finding their images under f individually.

The above procedure is stopped, when no more boxes can be removed. The obtained

set |V | is the best enclosure one can obtain for a given precision of dividing the state

space into boxes. We can easily obtain a better upper bound of the invariant part by

refining the division of V and calling the procedure FindInvariantPart again.

Nonwandering part may be smaller than the invariant part. For example the

nonwandering part does not contain a heteroclinic connection connecting unstable

fixed point and attracting fixed point, since all trajectories from a sufficiently small

neighborhood of the heteroclinic orbit converge to the attracting fixed point. An

example for the Ikeda map will be shown in section 3.

Let us observe that if a box vi contains nonwandering points then there must exist

a closed sequence of boxes (vi1 ,vi2 , . . . ,vik) such that i = i1 = ik and f(vij )∩ vij+1
6= ∅

for j = 1, 2, . . . , k − 1. Hence, when finding an upper bound of the nonwandering part

we additionally remove boxes, for which there is no closed sequence of boxes passing

through it. The problem of finding such boxes can be reduced to decomposition of the

graph (where boxes define vertices and elements of the set E define edges) into strongly

connected components (compare also [6]). This is a standard problem in algorithmic

graph theory and has a very fast solution, which operates in a linear time [10]. Strongly

connected components consisting of a single vertex vi, such that (i, i) 6∈ E correspond

to boxes, which should be removed.

The procedure for finding the nonwandering part is basically the same as the

procedure FindInvariantPart. The only modification is removing the box vi from

V also if the box vi does not belong to any closed loop.

Studying of invariant part and nonwandering part of a given set is a very important

problem in theory of dynamical systems and the procedures presented above give very

good enclosures of these sets, as shown in the Section 3. The enclosure for invariant

or nonwandering components can also be helpful in finding periodic orbits. Since

nonwandering part of Ω contains all periodic orbits enclosed in Ω it is clear that in

the search for periodic orbits we can limit ourselves to the invariant part or even better

the nonwandering part. It is possible to further explore the structure of closed loops of

boxes in the graph used for removing boxes containing only wandering points. In order

to find all period–n orbits it is enough to generate all closed loops of boxes of length n

and check these boxes. This improvement allows us to construct a very fast algorithm

for finding all period–n cycles.
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The knowledge about nonwandering and invariant part of the trapping region

together with the position of fixed and periodic points and their basins of attraction

(see next section) let us study the structure of stable and unstable manifolds, homoclinic

and heteroclinic connections. Examples are shown in Section 3.

2.4. Basin of attraction of a stable periodic orbit

Basin of attraction of an asymptotically stable periodic orbit p, with a neighborhood

U of points converging to p is defined as the set of points, which eventually go into U .

Here we are interested in finding a possibly large subset B of a given set Ω, such that

B is enclosed in the basin of attraction of p.

In order to perform this task, we first find a neighborhood U of the the orbit p,

which is mapped into itself, such that trajectories of points in U converge to the periodic

orbit. This can always be done since by assumption the orbit is asymptotically stable.

Then we cover the region Ω by ε–boxes of a given size. We split the covering into

two parts. The first part V is initially empty. The remaining boxes define the second

part W . During the procedure, the box is moved from the set W to V if the box itself or

its image is enclosed in U ∪ |V |. Since at the beginning V is empty we initially transfer

boxes, which are enclosed in U . Then V becomes larger and more and more boxes can

be moved from W to V . The process is continued until V cannot be increased.

It is clear that any trajectory starting in |V | converges to the stable periodic orbit

considered. The set of boxes V gives us a lower bound of the basin of attraction of the

periodic orbit p. The accuracy of the representation depends on the size of boxes which

are used for covering. In order to get a better lower bound we refine the division of

W and repeat the computations. Decreasing ε is continued until a final accuracy δ is

achieved.

The procedure for finding a subset of Ω of points, which eventually visit U is

presented below.

procedure FindBasin(U,Ω,V )

V ← ∅;

W ← the set of ε-boxes covering Ω;

repeat

repeat

Done ← TRUE;

for all wi ∈ W do begin

if wi ⊂ U ∪ |V | or f(wi) ⊂ U ∪ |V | then

move wi from W to V ;

Done ← FALSE;

end

end

until not Done;

ε ← ε/2;
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W ← the set of ε-boxes covering W;

until (min(ε) < δ);

end of FindBasin

In Section 3 basins of attraction of stable fixed points and period–2 orbit are found.

The information about basins of attraction can also be used for searching for periodic

orbits. It is clear that the orbit p is the only periodic orbit enclosed within its basin of

attraction. Hence, once the stable periodic orbit p is located and its basin of attraction

B is found we can exclude the region B from the search space for periodic orbits of

arbitrary period.

2.5. Proving the existence of symbolic dynamics

In this section we describe a topological method, we use to prove the existence of

symbolic dynamics. The method is based on the concept of covering [20].

For simplicity, let us assume that f is a continuous two–dimensional map. For the

description of covering relations in higher dimension see [20]. Let us choose p pairwise

disjoint quadrangles N1, N2, . . . , Np. For each Ni we choose two opposite edges and call

them “horizontal”. The two others are called “vertical”. We say that Ni f–covers Nj

and we use the notation Ni
f
⇒ Nj if

(i) the image of Ni under f has empty intersection with the horizontal edges of Nj,

(ii) the images of vertical edges of Ni has empty intersection with Nj and they are

located geometrically on the opposite sides of Nj.

To prove that a certain covering relation Ni
f
⇒ Nj holds, we cover the edges of Ni by

boxes of a specified size. Next, we find images of these boxes under f and check the

conditions (i) and (ii).

Once the existence of covering relations is proved, we have the existence of symbolic

dynamics, as stated by the following theorem.

Theorem 2. Let N1, N2, . . . , Np be pairwise disjoint quadrangles. Let A = (ai,j)
n
i,j=1 be

a square matrix, where

ai,j =

{

1 if Ni
f
⇒ Nj,

0 otherwise.
(5)

Then f is semiconjugate with the subshift on p symbols, with the transition matrix A.

Proof. The semicongugacy is a simple consequence of the existence of a trajectory

realizing a given sequence of coverings (see [9], Theorem 1).

From the fact that f is semiconjugate with a subshift of a finite type, we can

make conclusions on the topological entropy of f . Topological entropy of a subshift of

finite type with transition matrix A equals to the logarithm of the dominant eigenvalue

λ1 of A, i.e., λ1 is such that λ1 ≥ |λj| for all eigenvalues of A (see [18][Theorem 1.9,
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p. 340]). The topological entropy of a map semiconjugate to a subshift is not less than

the topological entropy of this subshift. Thus, we have the following result.

Theorem 3. The topological entropy of the map f is not smaller than the logarithm of

the dominant eigenvalue of the matrix A, defined be equation (5)

H(f) ≥ log λ1. (6)

Unfortunately, according to our knowledge there is no fully automatic method for

finding sets Ni on which complicated symbolic dynamics is defined. In order to find the

sets Ni we use the technique based on construction of invariant or nonwandering part

of a given set. First we find the nonwandering part of a given set. Usually this set is

connected and it does not help us much in finding the rectangles Ni. To break this set

into several pieces we remove part of this set and find the invariant part of what is left.

In many cases the result is a small number of connected components, which after minor

modification can serve as the rectangles Ni.

3. Analysis of the Ikeda map

As an example, we consider the Ikeda map [11]

f(z) = p + B exp
(

iκ− iα/(1 + |z|2)
)

z, (7)

where z = x + iy is a complex number. This map can be written as a two–dimensional

system in the following form:

f(x, y) = (p + B(x cos t− y sin t), B(x sin t + y cos t)), (8)

where t = t(x, y) = κ− α/(1 + x2 + y2).

It is known that the ball K = B((p, 0), pB/(1 − B)) is a trapping region for the

map f (i.e., f(K) ⊂ K) [11]. Furthermore it can be shown that the trajectory starting

at arbitrary point (x, y) ∈ R
2 enters the ball K in finite time. Thus, we can limit our

analysis of the behavior of the system to the region K.

We consider the Ikeda map with the following parameter values: p = 1, B = 0.9,

κ = 0.4 and α = 3, 6, 7.

Let us start with non-rigorous numerical investigations. Computer generated

trajectories starting at the origin (x, y) = (0, 0) for different parameter value α are

shown in Fig. 1. In the first case the trajectory converges to the fixed point. For α = 6

one observes a chaotic trajectory. In the last case, for α = 7 the trajectory initially

behaves in a complex way but eventually converges to the period–2 orbit. In order to

be able to say something more about the dynamics of the system one has to generate

many trajectories starting in different initial conditions. This kind of analysis is rather

time consuming and does not give us full knowledge of the system, even about its stable

low-period cycles, not to mention unstable ones. A stable low-period cycle may have

very small basin of attraction (when compared to other basins) and may be not found

using this procedure and random initial conditions. For example in the case of α = 3

there is a second fixed point, but a chance of choosing an initial point in the rectangle
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Figure 1. Ikeda map, computer generated trajectory of the point (x, y) = (0, 0) for

(a) α = 3, (b) α = 6 and (c) α = 7.

[−10, 10] × [−10, 10] belonging to its basin of attraction is smaller than 1/500 (most

trajectories converge to the other fixed point).

In the next sections we show that it is possible, with not much effort, to analyze

the system rigorously using a computer. One can study the structure of invariant sets,

find all low period cycles and basins of attraction of stable periodic orbits. One can also

prove the existence of symbolic dynamics of the map and find rigorous bounds for its

topological entropy.

3.1. Ikeda map for α = 3

First, let us consider the case α = 3. For this parameter value one observes in computer

simulations the convergence of the trajectories to one of the two stable fixed points P1,2.

There also exists a third saddle–type fixed point P3. The positions of these fixed points

found with the Krawczyk method are following:

P1 ∈ (2.11559040512872
69, 3.539843503398976

52),



Rigorous investigations of Ikeda map 13

P2 ∈ (0.562256442698603
598,−0.582407647974039

53),

P3 ∈ (0.591877229774454
48,−0.785372573586831

58).

-10 0 10
-10

0

10

Figure 2. Ikeda map, α = 3, invariant part of the trapping region, the stable fixed

points P1 and P2 (×, +), the unstable fixed point P3 (+×).

The invariant part of the trapping region K, found with the method described in

Section 2.3 is shown in Fig. 2. The invariant part contains the three fixed points and the

heteroclinic orbits connecting the saddle type fixed point and two stable fixed points.

The area of the set of boxes containing the invariant part is 0.0465 and is very small

when compared to the area of the trapping region K, which is π92 ≈ 254.5.

We have also found the upper bound of the nonwandering part of the trapping

region. The area of the boxes containing the nonwandering part is smaller than 6 ·10−7.

It consists of three small regions. Each of them contains a single fixed point. Using the

hyperbolicity conditions in these regions it can be shown that if the trajectory stays in

one of this regions it must necessarily converge to the fixed point. Since all periodic

orbits belong to the nonwandering part, it follows that there are no other periodic orbits

for α = 3.
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Figure 3. Ikeda map, α = 3, basins of attraction of the stable fixed points P1 and P2.

In order to better understand the dynamics of the system we have found basins of

attraction B1, B2 of the stable fixed points P1, P2. First we have located trapping regions

around each of the stable fixed points. The size and the shape of the basin of attraction

is a global feature and cannot be studied by means of the Jacobian matrix at the stable

fixed point alone. However analysis of the Jacobian matrix helps us to choose the initial

trapping region. Close to the fixed point where the linear approximation based on the

Jacobian matrix is valid we may easily find a small ellipse which is a trapping region.

The matrix norm induced by the Euclidean norm for the Jacobian matrices is 1.753 for

the Jacobian matrix at P1 and 1.0527 for the Jacobian matrix at P2. It means that in

the linear approximation circles are not trapping regions and in order to find a good

candidate we need to start with an ellipse. We have found the following ellipses which

are trapping regions for the map:
(

cos2 ϕ

r2
1

+
sin2 ϕ

r2
2

)

(x− x0)
2 +

(

sin2 ϕ

r2
1

+
cos2 ϕ

r2
2

)

(y − y0)
2 +
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(

1

r2
1

−
1

r2
2

)

sin(2ϕ)(x− x0)(y − y0) ≤ 1,

where x0 = 2.11559, y0 = 3.53984, r1 = 2.3, r2 = 1.4, ϕ = −0.3 for P1 and

x0 = 0.562256, y0 = −0.582407, r1 = 0.03, r2 = 0.09, ϕ = 0.08 for P2 .

Then using the hyperbolicity of the fixed points we have shown that the invariant

part of these trapping regions is the fixed point (all trajectories starting in the trapping

regions converge to the fixed point.

Finally using the algorithm described in Section 2.4 we have found regions belonging

to the basins of attraction. In Fig. 3 the basins of attraction of the stable fixed points

are plotted.

Since the Ikeda map is area contracting (the determinant of the Jacobian is constant

det f ′(x) = B2 = 0.81, which means that areas contract by B2 on each iteration of the

map) it is clear that each basin of attraction must have infinite area. It is interesting

to observe that although the eigenvalues of the Jacobian matrix at the two stable fixed

points have the same magnitude the basins are very different. Most of the points belong

to the basin B1. We have shown that from the rectangle [−10, 10]× [−10, 10] the region

with area 399.039 is enclosed in B1 and the region with area 0.075 is enclosed in B2. The

set of remaining points contains the boundary between the two basins. The boundary

consists of the unstable fixed point and its stable manifold.

Summarizing, we have managed to perform the full analysis of the dynamics for

the considered case. We have shown that there are only three fixed points and no other

periodic orbits. We have found very good approximations of the heteroclinic connections

between the fixed points. We have also found basins of attraction of the stable fixed

points. Most points lie in the basin of attraction of the fixed point P1.

3.2. Ikeda map for α = 6

For α = 6 in simulations one observes chaotic behavior. Some trajectories converge to

the stable fixed point and others display complex non-periodic oscillations.

There are three fixed points of the map. They belong to the following interval

vectors:

P1 ∈ (2.972131617910571
38, 4.14594642139591

87),

P2 ∈ (0.532754622940793
88, 0.2468967727110149

12),

P3 ∈ (1.11426961458143
39,−2.285694460986145

69).

The first fixed point is stable and the two others are unstable. P2 belongs to the

numerically observed chaotic attractor.

First, we have found sets of boxes enclosing the invariant part and the nonwandering

part of the trapping region. The results are shown in Fig. 4 and 5 respectively.

The invariant part contains the stable fixed point, unstable fixed point P3, the

chaotic attractor observed numerically and unstable manifold of P3 connecting this

point with the stable fixed point and the chaotic attractor. The area of the upper

bound of the invariant part is 2.22.
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Figure 4. Ikeda map, α = 6, the trapping region K and its invariant part (black),

basin of attraction of the stable fixed point P1 (×), the unstable fixed points P2 and

P3 (+,+×).

The enclosure of the nonwandering part is smaller. Its area is 2.01. It does not

contain the heteroclinic orbit connecting P3 and P1. We were not able however to break

the connection between P3 and the region containing the numerically observed attractor.

Next, we have found the basin of attraction of the stable fixed point P1. In the first

step we have shown that the ellipse (9) with x0 = 2.972132, y0 = 4.145946, r1 = 1.2,

r2 = 2.1, ϕ = 1 is a trapping region for the map and we have proved that the invariant

part of this ellipse is P1 (all trajectories starting in the ellipse converge to the fixed

point). Finally, we have found a subset of the rectangle [−10, 10] × [−10, 10] enclosed

in the basin of attraction of P1 (see Fig. 4). The region found has an area of 357.005.

Using the Krawczyk method, we have found all periodic orbits with period n ≤ 15.

Periodic orbits found (apart from the stable fixed point P1) are shown in Fig 6. One can

see that low–period cycles do not fill the attractor uniformly and an interesting Cantor

set structure is formed.
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Figure 5. Ikeda map, α = 6, nonwandering part of the trapping region.

3.3. Ikeda map for α = 7

As a last case we consider a parameter value α = 7. In simulations one observes

convergence of the trajectories to one of the two stable orbits, period-1 orbit and period-

2 orbit. This is similar to the first case considered (α = 3) where we also observe two

stable periodic orbits. As we will see there are many differences between these two

cases. In this last case there exists an abundance of periodic orbits and from topological

point of view the dynamics is even more complicated than for α = 6 — we observe more

unstable periodic orbits, which gives rise to higher topological entropy.

There are three fixed points for the map

P1 ∈ (3.24260097375821
17, 4.28427623517432

27),

P2 ∈ (0.541930725325623
16, 0.3843008522072296

56),

P3 ∈ (1.28933093702944
39,−2.578055942060127

57).

The first is stable and the two others are unstable. There is one stable period-2 orbit
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Figure 6. Ikeda map, α = 6, periodic orbits with period n = 1, . . . , 15

(Q1, Q2)

Q1 ∈ (1.0388462702999762
25,−0.094428433408953

63),

Q2 ∈ (0.065747742949992
89,−0.092458342523947

58).

and two unstable period-2 orbits.

As in the previous cases we have found sets containing the invariant part and the

nonwandering part of the trapping region. The nonwandering part, which is shown

in Fig. 7 consists of three connected regions. Two small regions correspond to the

stable fixed point P1 and the unstable fixed point P3. The third region contains stable

period-2 orbit and infinitely many unstable periodic orbits. The invariant part contains

additionally the unstable manifolds of P3. For this parameter value we were able to

break the nonwandering region into three parts. This was possible because the unstable

fixed point is located further away from the chaotic set. The procedure did not break

the large component into two parts. We know however that this in general should

be possible. The nonwandering part of the basin of attraction of the stable period-2
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Figure 7. Ikeda map, α = 7, nonwandering part of the trapping region, stable fixed

point (+×), unstable fixed points (×), stable period-2 orbit (+)

orbit consists of just two points and this part of the nonwandering set is separated

(has nonzero distance) from the chaotic set containing infinitely many unstable periodic

orbits.

We have also found the basins of attraction of the stable periodic orbits. They are

shown in Fig. 8. The part of the basin of attraction of the stable fixed point found has

area of 347.868 within the rectangle [−10, 10] × [−10, 10], while the part of the basin

of attraction of the stable period-2 orbit has area of 0.023. This basin of attraction is

tangled up with the chaotic set (compare Fig. 9) and it is very difficult to rigorously

find the region where it is located.

Finally we have found all cycles with period n ≤ 12. They are plotted in Fig. 9.

3.4. Topological entropy

Topological entropy of a map f is a quantitative measure of its orbit complexity.

In topological sense a dynamical system is called chaotic if its topological entropy is
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Figure 8. Ikeda map, α = 7, basin of attraction of the stable fixed point and the

stable period-2 orbit

positive. Let us recall the definition of topological entropy based on the notion of a

separated set. A set E is called (n, ε)–separated if for every two different points x, y ∈ E,

there exists 0 ≤ j < n such that the distance between f j(x) and f j(y) is greater than ε.

Topological entropy of f is defined as

H(f) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε), (9)

where sn(ε) is the cardinality of a maximum (n, ε)–separated set.

Under certain assumptions (see [3]) the topological entropy can be expressed in

terms of the number of periodic orbits

H(f) = lim sup
n→∞

log Pn

n
,

where Pn denotes the number of fixed points of fn. This formula can be used as the

lower bound for the topological entropy as long as the distance between periodic orbits

of length n, which are counted is separated from zero.
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Figure 9. Periodic orbit with period n ≤ 12 for α = 7, unstable fixed points (×),

stable period-2 orbit (+), basin of attraction of the stable fixed point (light), basin of

attraction of the stable period-2 orbit (dark).

Hence, it is natural to estimate the topological entropy of the map using the

following formula

Hn(h) =
log Pn

n
.

The results on the number of low-period cycles and the estimates Hn(h) for

α = 3, 6, 7 are collected in Table 1 (see also Fig. 10).

For α = 3 there exist only 3 fixed points for the map and there are no other

periodic orbits. All trajectories converge to one of the fixed points. It is clear that

the topological entropy of the Ikeda map for α = 3 is zero. The approximation of the

topological entropy based on the number of fixed points of f n approaches 0.

For α = 6 the approximation stabilizes as n is increased. This lets us state the

hypothesis that the topological entropy of the Ikeda map for α = 6 is H(f) ≈ 0.6.

For α = 7 there are more periodic orbits with low period than for α = 6 and hence

we obtain higher estimates for the topological entropy (the approximation stabilizes
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α = 3 α = 6 α = 7

n Qn Pn Hn Qn Pn Hn Qn Pn Hn

1 3 3 1.0986 2 2 0.6931 2 2 0.6931

2 0 3 0.5493 1 4 0.6931 3 8 1.0397

3 0 3 0.3662 2 8 0.6931 2 8 0.6931

4 0 3 0.2747 3 16 0.6931 3 20 0.7489

5 0 3 0.2197 4 22 0.6182 4 22 0.6182

6 0 3 0.1831 7 52 0.6585 7 56 0.6709

7 0 3 0.1569 10 72 0.6110 14 100 0.6579

8 0 3 0.1373 14 128 0.6065 20 180 0.6491

9 0 3 0.1221 26 242 0.6099 40 368 0.6565

10 0 3 0.1099 46 484 0.6182 66 688 0.6534

11 0 3 0.0999 76 838 0.6119 104 1146 0.6404

12 0 3 0.0916 110 1384 0.6027 216 2660 0.6572

13 0 3 0.0845 194 2524 0.6026

14 0 3 0.0785 317 4512 0.6010

15 0 3 0.0732 566 8518 0.6033

Table 1. Qn — number of periodic orbits with period n, Pn — number of fixed points

of fn, Hn = n−1 log(Pn) — estimation of topological entropy.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

n

H
n
(f)

α=3
α=6
α=7

Figure 10. Estimation of topological entropy based on the number of low-period

cycles
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Figure 11. Ikeda map, α = 6, sets Ni on which the symbolic dynamics on 4 symbols

exists and their images

around H(f) ≈ 0.65). It appears that although in simulations we do not observe

complicated behavior the dynamics is more complicated in topological sense than for

α = 6. This complicated dynamics is concentrated on a set which repels trajectories (a

chaotic set is a repellor).

3.5. Symbolic dynamics

In this section we find symbolic dynamics for the Ikeda map. Since for α = 3 the

topological entropy is zero there is no interesting symbolic dynamics for this case. Below

we present the analysis for α = 6. For α = 7 one can use the same technique to prove the

existence of symbolic dynamics and to obtain rigorous bounds for topological entropy.

To prove the existence of symbolic dynamics, we first find the nonwandering part of

the trapping region. Then we remove boxes for which y−x > 1 or y−x < −2, and find

the invariant part of what is left. This set is then used as an initial guess for the position

of rectangles, on which the symbolic dynamics is defined. We modify the position of

these rectangles by hand, so that a possibly large number of covering relations hold.

The chosen sets and their images under the Ikeda map are shown in Fig. 11. Finally,

we check rigorously the existence of covering relations between the chosen sets.

The coverings, the existence of which was proved, correspond to the symbolic
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Figure 12. Ikeda map, α = 6, sets Ni on which the symbolic dynamics on 7 symbols

exists and their images

dynamics on four symbols with the following transition matrix:

A =











1

1

1 1

1











, (10)

It follows that the symbolic dynamics with the transition matrix (10) is embedded

in f and that the topological entropy of the Ikeda map is bounded by

H(h) > 0.19946.

In the second attempt to find the symbolic dynamics we use the same procedure

for the finer division of the state space into boxes. This leads to the symbolic dynamics

on the seven sets shown in Fig. 12 and the transition matrix

A =























1

1 1 1

1 1

1

1

1

1 1























. (11)



Rigorous investigations of Ikeda map 25

One can see that this time the sets Ni occupy larger portion of the state space. In

consequence, the estimation for the topological entropy for the Ikeda map with α = 6

H(h) > 0.40181

is significantly better.

We were also able to find symbolic dynamics on 18 symbols with the following

transition matrix

A =









































































1 1

1 1
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1 1

1

1 1

1

1

1 1

1

1

1

1 1

1

1 1

1 1

1 1 1 1









































































. (12)

and even higher topological entropy

H(h) > 0.48585

Let us notice that the rigorous lower-bound based on the existence of symbolic

dynamics is 20% smaller than the one based on the number of low-period cycles. This

indicates that the dynamics of the map is more complicated than the one proved here.
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