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Abstract: In this paper we perform a rigorous study of the Hénon map. We prove
with computer assistance the existence of symbolic dynamics for h? and h” and the
existence of periodic orbits of all periods but 3 and 5.

Key Words: chaos, computer assisted proof, interval arithmetic.

1 Introduction

In this paper we consider the Hénon map given by (1) with the “classical”
parameter values: ¢« = 1.4 and b = 0.3.

In the first part of the paper we prove the existence of symbolic dynamics for
h? and what follows the existence of periodic points of kA with all even periods.

In [7] the dynamics of topological horseshoe was proved for h7. From this
follows the existence of symbolic dynamics for A7 and the existence of periodic
orbits of h of period 7n for all natural n.

In the second part of the paper we repeat the proof performed by Zgliczynski
using interval arithmetic. We show that using interval arithmetic the number of
points for which we must check certain conditions can be significantly reduced.
Then checking some more conditions we prove the existence of periodic points
with period 8 and all periods greater or equal to 10.

Finally by means of the interval Newton method we prove that within the
region [—5, 5] x [—5, 5] there exists no periodic point with period 3 and 5 and we
prove that within this region there exist periodic points with period 9.

The symbolic dynamics for A% and A” is proved for invariant sets embedded
in the strange attractor observed numerically. Also all the periodic orbits the
existence of which is proved (apart from one of the fixed points) lie in the region
where the strange attractor is observed. This indicates that the dynamics of
the system is very complicated. However the existence of a strange attractor for
classical values of parameters still remains an open problem.

2 Main results

The Hénon map [5] is defined by the following equation:
h(z,y) = (1 +y — azx? bx). (1)

The above equation is considered with the “classical” parameter values: a = 1.4
and b = 0.3. In this paper we show rigorously with computer assistance that



subshift on two symbols with the transition matrix (2) (this corresponds to
the deformed topological horseshoe [2]) is embedded in h?,

full shift on two symbols with the transition matrix (3) (the topological
horseshoe) is embedded in h”,

h has periodic points of all periods but 3 and 5,

h has no periodic points with periods 3 and 5 within the set [—5,5] x [—5, 5].
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2.1 Symbolic dynamics for h?2

Items A and B of the above list are proved by means of the technique of TS-
maps (topological shifts) introduced by Zgliczyniski in [7]. For the proof of part
A we define the sets N; as follows: Ny 1s a quadrangle A; A;AsAs and Ny
is the quadrangle AsAgA7As, where A; = (—0.82,0.29), A2 = (—0.82,0.39),
As = (—0.26,0.34), Ay = (—0.26,0.24), A5 = (0,0.19), A¢ = (0.08,0.29),
A7 = (0.42,0.2) and As = (0.34,0.1). We also define sets FEy, Fy and Eq ly-
ing respectively to the left, between and to the right of the sets Ny and Nj.

With the computer assistance we have proved that the image of the Ny
“covers horizontally” NyU N7 and the image of the N7 “covers horizontally” Ny.
This is formally written in the following lemma.

Lemmal. Let the Hénon map h be defined by Eq. (1). Let a = 1.4 and b = 0.3.

1. hz(AlAz) C E5 and hz(A3A4) C Ey,
2. hz(A5A6) C Ey and hz(A7Ag) C Ey,
3. h2(AAy), h2(Apds), h2(AsAs), h2(AsAz) C W = NoU Ny U Ey U Ey UEs.

Proof. During the proof we use the procedures for interval computations form
BIAS and PROFIL packages [6]. For the proof of 1 and 2 we have covered
the vertical edges Ay As, AsAs, AsAs and A7Ag by 1, 1, 1 and 3 rectangles
respectively. Using interval arithmetic we have proved that their images under
h? are enclosed in the appropriate sets F;.

For the proof of 3 we have covered the horizontal edges A1 A4, A2 As, AsAs
and AgA7 by 9, 11, 4 and 4 rectangles respectively. We have proved that each
of the images is enclosed within the set W.

From Lemma 1 using the theorem on TS-maps [7] one can conclude that the
subshift on two symbols with the transition matrix
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is embedded within the map h?| Ny U Ny .
For the whole proof of the existence of symbolic dynamics for A2 we needed
to compute images of 34 rectangles under h2.



2.2 Symbolic dynamics for h”

In [7] Zgliczytiski introduced the quadrangles Ny, Ny (different to the sets defined
above), the sets Fy, F1 and Es lying to the left, between and to the right of the
sets Ny and Ny and the set W = Ng U Ny U EqgU E1 U E5. For these sets using
the technique of TS-maps he proved the existence of the topological horseshoe.
He proved that the full shift on two symbols with the transition matrix
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is embedded within the map h7. This proof required the computation of A7 for
approximately 60000 points.

Using the same sets N; and E; we have repeated the proof. In order to prove
the existence of symbolic dynamics associated to the full shift we have to prove
that the images of Ny and N; under A" cover horizontally the set Ny U Nj.
Namely, we have proved the following lemma.

Lemma?2. The map h is defined by Eq. (1), a = 1.4 and b = 0.3.

1. h7(A1A2) C Ey and h7(A3A4) C Ey,
2. h7(A5A6) C Ey and h7(A7A8) C Es,
3. h7(A1A4), h7(A2A3), h7(A5A8), h7(A6A7) CcW.

Proof. Our proof was performed using interval arithmetic. For the proof of the
existence of topological horseshoe within the sets N; we computed the images of
131 rectangles under A" proving that they lie within appropriate subsets.

Notice that the number of points at which the image 1s computed is sig-
nificantly reduced in comparison with the original proof. Probably Zgliczynski
overestimated the error (he did not use the interval arithmetic).

2.3 Periodic points with all natural periods but 3 and 5

In Lemma 2 we have proved that the images of sets N; under h” covers hori-
zontally the sets Ny and Ni. Now we extend this result. We have checked the
positions of horizontal and vertical edges of Ny and Ny under h? fori=1,...,6.
The results are shown in Table 1.

From these results one can easily prove the existence of periodic points for
all periods greater or equal to 7 with the exception of period 9.

Lemma 3. For every integer n > 7, n # 9 there exist periodic point of h with
pertod n.

So far we have shown that there exist periodic points with all periods but
1, 3, 5 and 9. The existence of a fixed point can be proved analytically. In
fact there exist two such points (21,bx1) and (9, bxs) where z1, = (b— 1%

(1 —=5)%2 4+ 4a)/(2a). One of the fixed points is embedded within the numeri-
cally observed strange attractor.

In order to decide the existence of periodic points with periods 3, 5 and 9 we
have used the interval Newton method [1]. We have proved the following lemma.
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Table 1: Images of Ny and Ny under h (z =1,. o 7). In the last two columns the sets
which are covered horizontally by h*(Ng) and h'(N1) are given

Lemmad4. Let M = [-5,5] x [-5,5].

1. There exists no periodic point with period 3 within the set M .
2. There exists no periodic point with period 5 within the set M.
3. There exist 6 period-9 orbits within the set M.

Proof. To prove part 1 we have covered the set M by 493 rectangles. Using the
interval Newton method we have proved that there are no period-3 orbits within
each of these rectangles. Similarly using 4241 rectangles to cover the set M we
have proved that there are no period-5 orbits within the set M. For the proof
of part 3 we have covered the set M by 2974053 rectangles. We have proved the
existence of exactly b4 periodic points with period 9 within M which corresponds
to 6 different period-9 orbits.
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