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Abstract| In this paper we investigate periodic

orbits for the H�enon map. We �nd all low period (n �

15) cycles belonging to a set containing the trapping

region and the attractor observed numerically. Using

this result we estimate the topological entropy of the

H�enon map.

I. INTRODUCTION

In this paper we study rigorously the existence of pe-

riodic orbits for the H�enon map [1]:

h(x; y) = (1 + y � ax

2

; bx); (1)

where a = 1:4 and b = 0:3.

Analysis of chaotic systems in terms of periodic or-

bits has many advantages. One of the main features

of chaotic attractors is the existence of in�nitely many

periodic orbits. Periodic orbits determine the spatial

layout of the chaotic attractor. Short periodic orbits

give good approximation of the attractor while by re-

covering more unstable cycles one obtains better ap-

proximations [2].

Hence the methods for extraction of periodic orbits

and proving their existence are of very high impor-

tance. One of the well{known methods for �nding pe-

riodic orbits is the method of close returns [2]. Its

main advantage is that it allows to �nd periodic orbits

from experimental data. It is however not possible to

use this method to prove the existence of periodic orbit

(one cannot be sure whether a real periodic orbit actu-

ally exists in a neighborhood of the "{pseudo periodic

orbit).

As a main tool in our study we use the interval New-

ton method [3], which allows to prove with computer

assistance the existence and uniqueness of periodic or-

bits within a given interval. In order to investigate the

existence of zeros of a function R

n

3 x 7! f (x) 2 R

n

in an n-dimensional interval X one has to evaluate the

interval Newton operator

N(X) = x

0

� (Df (X))

�1

f (x

0

); (2)

where (Df (X))

�1

is the interval matrix containing all

matrices of the form (Df (x))

�1

for x 2 X and x

0

is
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Figure 1: Invariant quadrangle 
 and its image under

the H�enon map.

an arbitrary point belonging to the interval X. One

usually chooses x

0

to be the center of X.

The following theorem [3] states the relation be-

tween the zeros of f in X and the position of N(X)

with respect to X.

Theorem 1 If N(X) � X then there exist exactly

one point x 2 X such that f(x) = 0. If N(X)\X = ;

then there are no zeros of f in X.

The above theorem can be used to prove both the exis-

tence and uniqueness of zeros. By iterating the method

one can easily sharpen the bounds of solutions.

During the computer assisted proof we have used the

procedures for interval computations form BIAS and

PROFIL packages. Programs were compiled using gnu

C++ compiler (gcc version 2.7.2.1) and run on Sun

Ultra 1 computer. Program code is available at the

following www location: http://fractal.zet.agh.

edu.pl/�galias/int.html.

II. PERIODIC ORBITS

Let us denote by 
 the quadrangle ABCD, where A =

(�1:33; 0:42), B = (1:32; 0:133), C = (1:245;�0:14)

and D = (�1:06;�0:5). One can easily show [1] that


 is a trapping region: h(
) � 
. The sets 
 and its
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Figure 2: Fixed points of h

n

for n = 1; : : : ; 15 within M = [�5; 5]� [�5; 5]. See for example that for n = 1,

n = 3 and n = 5 the number of �xed points of h

n

is the same, which means that there are no period{3 and

period{5 points of h within M . The last picture shows the trajectory of the H�enon map consisting of 10000

points.



n Q(n) P (n) H

n

(h) R(n)

1 2 2 0:693 81

2 1 4 0:693 225

3 | 2 0:231 273

4 1 8 0:519 1905

5 | 2 0:138 3061

6 2 16 0:462 21657

7 4 30 0:485 67093

8 7 64 0:519 353945

9 6 56 0:447 1019625

10 10 104 0:464 3767613

11 14 156 0:459 11445321

12 19 248 0:459 44520813

13 32 418 0:464 140036237

14 44 648 0:462 533037209

15 72 1082 0:466 1742355589

Table 1: Periodic orbits for the H�enon map. Q(n) is

the number of cycles with principle period n, P (n) is

the number of �xed points of h

n

, H

n

(h) = log(P (n))=n

is the estimation of topological entropy of h based on

P (n), R(n) is the number of rectangles at which the

interval Newton operator was evaluated.

image under h are shown in Fig. 1. The invariant set


 encloses the attractor observed numerically.

In our investigations we consider the region M =

[�5; 5]� [�5; 5], which encloses the trapping region 


and hence the H�enon attractor.

In order to �nd �xed points of h

n

we use the fol-

lowing procedure. The set M is divided into several

rectangles (the number of them increases with n).

For each rectangle X the interval Newton operator

for the map id� h

n

is computed:

N(X) = x

0

� (I �Dh

n

(X))

�1

(x

0

� h

n

(x

0

)) ; (3)

where x

0

is the center of X. If N(X) � X then there

exists exactly one �xed point of h

n

with period belong-

ing toX. IfN(X)\X = ; then there is no �xed points

of h

n

inX. The remaining rectangles for which none of

the above cases is true are covered by larger rectangles

and we try to apply Theorem 1 again. If this action is

not successful we divide the remaining rectangles into

smaller parts and repeat the computations.

We have applied the above procedure for n =

1; : : : ; 15. Positions of the �xed points of h

n

for dif-

ferent n are shown in Fig. 2. For the reference in the

lower right corner of Fig. 2 we show the trajectory of

the H�enon map consisting of 10000 points. One can

see that the collection of longer periodic orbits gives

better approximation of the attractor.

The numbers P (n) of �xed points of h

n

and the

numbers Q(n) of cycles with principle period n are

collected in Table 1. There are two �xed points (this
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Figure 3: All periodic orbits with period n � 15. Posi-

tions of �xed points are denoted by stars. All periodic

orbits, apart from one of the �xed points lie on the

strange attractor observed numerically.

result can be also proven analytically):

x

1

� (0:6314; 0:1894);x

2

� (�1:1314;�0:3394): (4)

First of the �xed points belongs to the trapping set,

while the second one lies outside of it. There is one

period{2 orbit. There are no period{3 and period{5

orbits within the region M .

For n = 12; : : : ; 15 the results are not complete as we

were not able to prove the uniqueness of the �xed point

of h

n

in a very small neighborhood of the �xed point

x

2

lying outside of the trapping set. Strictly speaking

for n = 1; : : : ; 11 we have found all �xed points of h

n

in M , while for n = 12; : : : ; 15 we have found all �xed

points of h

n

in M n B(x

2

; 2 � 10

�8

).

In Fig. 3 we plot all periodic orbits found. One can

see that all of them (apart from one of the �xed points)

lie on the strange attractor observed numerically. For

all of these periodic orbits we have computed the Flo-

quet multipliers proving that they are of a saddle type.

III. ESTIMATION OF TOPOLOGICAL

ENTROPY

In this section we use the number of periodic orbits

for the estimation of topological entropy of the H�enon

map.

Topological entropy H(f) of a map f characterizes

\mixing" of points by the map f . One of the equiva-

lent de�nitions of topological entropy is based on the

notion of (n; "){separated sets (see [4]).

De�nition 1 A set E � X is called (n; "){separated

if for every two di�erent points x; y 2 E, there exists

0 � j < n such that the distance between f

j

(x) and

f

j

(y) is greater than ". Let us de�ne the number s

n

(")

as the cardinality of a maximum (n; "){separated set:

s

n

(") = maxf cardE : E is (n; ")-separatedg



The number

H(f) = lim

"!0

lim sup

n!1

1

n

log s

n

("); (5)

is called the topological entropy of the map f .

The number of periodic orbits is closely related to the

topological entropy. For axiom A di�eomorphisms we

have

H(f) = lim

n!1

logC(f

n

)

n

;

where C(f

n

) denotes the number of �xed points of f

n

.

It is also possible to use the number of periodic orbits

for the estimation of topological entropy when there

exists a symbolic dynamics for the map.

Using the existence of symbolic dynamics for h

7

one

can prove that (compare [5, 6]):

H(h) >

1

7

log2 > 0:099:

Similarly one can obtain the estimation of topological

entropy based on the existence of symbolic dynamics

for h

2

(compare [6]):

H(h) >

1

2

log

p

5 + 1

2

> 0:24:

Here we use the formula H

n

(h) = log(P (n))=n

as the aproximation of topological entropy. We be-

lieve that for the H�enon map in the limit we have

H(h) = lim

n!1

H

n

(h). The results are plotted in

Fig. 4 (see also Table 1). One can see that H

n

(h)

is almost constant for n � 10. This let us state the

hypothesis that the topological entropy of the H�enon

map is close to 0:46.

In Fig. 4 we also plot the curves log(P (n) � n)=n

and log(P (n)+n)=n, which would be H

n

(h) if there is

one less or one more cycle of period n. They give the

maximum accuracy one can obtain in computation of

topological entropy for given n using H

n

(h).

IV. CONCLUSIONS

In this paper we have studied periodic orbits for the

H�enon map. We have found all cycles with period

n � 15 in the trapping region enclosing the attractor

observed numerically. Using the number of low{period

cycles we have estimated that the topological entropy

of the map is approximately 0:46, which shows that the

dynamics of the H�enon map may be more complicated

than the one reported in [6].
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Figure 4: Estimation of topological entropy of the

H�enon map based on the number of low{period cycles.
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