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ABSTRACT

The aim of this paper is to describe various types of syn-
chronization phenomena discovered in our earlier studies of
dynamics of Cellular Nonlinear Networks composed of lo-
cally interconnected chaotic circuits. In our computer ex-
periments we confirmed existence of many types of clusters
of cells showing different dynamics, e.g. synchronized pe-
riodic trajectories of different types, synchronized chaotic
states; different lengths of synchronized clusters. Existence
of synchronization and its type depends basically on the
connection strengths.

1. INTRODUCTION

Cellular Nonlinear Networks can be composed of first- or
higher-order cells. They provide an universal model for a
variety of phenomena observed in real physical systems.
Networks of locally coupled oscillators has become an ex-
tensively studied subject in the last decade [3, 4]. Kaneko
[2] introduced some basic notions to distinguish between
different types of spatio-temporal behaviors. Depending on
the connection type and strength of coupling a variety of
interesting phenomena can be observed. This includes syn-
chronization behavior, when all cells behave in the same
manner and clustering, when some cells in the network are
fully synchronized. [5, 2, 6]

Clustering is a very interesting and intriguing phenomenon.
The question how and under what conditions some particu-
lar network or a part of a network of interconnected dynam-
ical elements shows behaviors coherent in time can have
very important consequences for understanding the func-
tionality of the nervous system, ecosystems, group behavior
of humans and animals or any systems composed of a large
number interacting subsystems. Just considering the enor-
mous amount of possible clustering states in a large net-
work one can imagine its possible coding capabilities for
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information engineering. Clustering is also the basic phe-
nomenon responsible for pattern formation as observed in
the spatial domain in arrays of coupled systems - the net-
work becomes ”self-organized”. Particular type of synchro-
nization between the cells, formation of specific types of
clusters is predefined by properties of the system itself.

One can influence the behavior by changing the network
parameters (e.g. connection strengths) or initial conditions
(which can be considered as external inputs to the individual
cells).

Analytical tools are not available for cluster formation
analysis we have to rely on numerical experiments. For the
purpose of this study a set of software tools have been de-
veloped (see http://chopin.zet.agh.edu.pl/∼galias/nets/).

For simplicity we study the behavior of a ring of coupled
chaotic oscillators. In our earlier studies we found examples
of full synchronization, clustering and weak synchroniza-
tion in this network. Here we discuss further details of syn-
chronized states – synchronization of various cells is a spa-
tial phenomenon. Looking in the time domain the signals
are coherent but can represent various types of dynamics
from period-1, period-2, higher-order periodic behaviors to
various kinds of chaos (Roessler type 1 and type 2, double
scroll etc.)

2. DYNAMICS OF THE NETWORK

Let us consider a one–dimensional CNN composed of sim-
ple third–order electronic oscillators (Chua’s circuits). The
circuits are coupled by means of conductances G1. Every
circuit is connected with its two nearest neighbors. The dy-
namics of the one–dimensional lattice composed of n cir-
cuits can be described by the following set of equations:

C2ẋi = G(zi − xi) − yi + G1(xi−1 − 2xi + xi+1),

Lẏi = xi, (1)

C1żi = G(xi − zi) − f(zi),
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Figure 1: “Steady–state” behavior for (a) G1 = 0, (b) G1 = 50, (c) G1 = 100

where i = 1, 2, . . . , n and where xi and zi denotes the volt-
ages across the capacitances C2 and C1 respectively, and yi

is the current through the inductance L in the ith circuit. f
is a five–segment piecewise linear function:

f(z) = m2z +
m1−m2

2
(|z+Bp2

| − |z−Bp2
|)

+
m0−m1

2
(|z+Bp1

| − |z−Bp1
|). (2)

The lattice forms a ring, i.e. xn+1 = x1, zn+1 = z1,
x0 = xn, z0 = zn. In our study we use typical parameter
values for which an isolated circuit generates chaotic oscil-
lations — the “double scroll” attractor (C1 = 1/9, C2 = 1,
L = 1/7, G = 0.7, m0 = −0.8, m1 = −0.5, m2 = 0.8,
Bp1

= 1, Bp2
= 2). In this work we consider the network

composed of n=15 cells.

3. SYNCHRONOUS STATES

In the first experiment we show transition from asyn-
chronous to synchronous chaotic motion. We start the net-
work from a point close to the synchronization space and
observe its behavior for different values of coupling strength.
The long term behavior (a trajectory for t ∈ [1300, 1400])
is shown in Fig. 1. For each simulation we show two lines
of plots. The upper line shows individual trajectories of cir-
cuits, i.e., projection of the trajectory in a single cell onto the
plane zi, yi. In the second line in the ith plot we show the zi

variable versus the variable zi+1 from the next cell. By in-
specting this plot we can easily check whether neighboring
cells are synchronized. In case of perfect synchronization
between cells i and i + 1 the plot is on the diagonal line.



For G1 = 0 the circuits are not coupled and hence
they are oscillating independently. Each circuit forms the
double–scroll attractor but their trajectories are uncorrelated.

For G1 = 50 the steady state of the system becomes
periodic (see Fig. 1(b)). The network consists of two clus-
ters of cells with trajectories in the upper or lower part of
the state space. In each cluster the cells are fully synchro-
nized (diagonal lines in the second row of plots). There
is a phase offset between the clusters corresponding to the
“eight”-type trajectory. For G1 = 100 the trajectories again
are synchronized (see Fig. 1(c)) but in each cell the double–
scroll attractor is formed, and all cells oscillate in a full syn-
chrony.

We studied in more depth how the network synchroniza-
tion depends on the number of coupled cells. Fig.2 gives us
some insight into such a dependence. The graph shows what
is the connection strength threshold value to observe full
synchrony for different number of cells in the ring (5 – 15).
In general the more cells are coupled in a ring the stronger
the coupling must be to ensure full synchronization.

Figure 2: Dependence of the threshold value for connec-
tion strength for which full synchronization of all cells is
observed on the actual length of the ring (number of cells).

4. CLUSTER TYPES

Above we have seen an example of existence of clusters in
the network, where cells oscillate synchronously, although
the network as a whole is not synchronized (see Fig. 1(b)).
In the second part of the paper we study properties of the
system in this dynamic state and investigate the process of
cluster formation.

We have run a number of simulations, where the sys-
tem was started from a perturbed synchronized state, i.e.
the synchronous state was modified by adding a small ran-
dom number to each system variable. Initially the cells were
strongly connected (G1 = 100). In each simulation we ap-
ply a series of changes to the coupling strength (coupling
changes in time).

In the first experiment we have changed the coupling
conductance to G1 = 50 at t = 30 and back to 100 at
time t = 650. Different unstable clusters can be observed
before the steady state is observed. Initially clusters of 2
and 13 cells is formed. This structure is unstable and after
a short time some cells lying on the border of the larger
cluster switch the scroll and leave the cluster – one can see
two clusters with sizes 5 and 10. After some more time
the larger cluster decreases to have 8 cells and this state is
stable in the sense that in quite a long integration time no
cell changes the scroll and the cluster structure persists. The
trajectory in the steady state is periodic (see Fig. 3(a)).

In Fig. 3(b) one can see the results of another simulation.
This time the cluster structure is quite different. The num-
ber of clusters is much larger. Clusters have sizes 2,3 and 4
and they are separated by single cells operating in a different
region of the state space. For G1 = 50 in the steady state
the circuits display quasi-periodic trajectory. After increas-
ing the connection strength to G1 = 100 the cluster struc-
ture is unaltered. The steady state however changes from
quasiperiodic one to the period-2. The cells in the clusters
become fully synchronized.

In Fig. 3(c) we show the results of simulation when we
did not wait until a steady state develops for the smaller con-
nection strength. Initially G1 = 100, at t ∈ [50, 70] connec-
tion strengths were decreased to G1 = 50 and at t = 70 it
was changed to the initial value G1 = 100. In consequence
for G1 = 50 the steady state was not obtained and the large
cluster with 12 cells survived. From the observation of the
steady state for G1 = 100 it follows that such a cluster is
stable for this connection strength. In the steady state all
cells within the cluster are fully synchronized, but contrary
to the previous cases the steady state is chaotic. There is no
generalized synchronization between the clusters, i.e. there
is no one-to-one relation between the states (see the zi ver-
sus zi+1 plot on the border of the cluster).

5. CONCLUSIONS

We have performed a series of simulations of a ring of lo-
cally connected chaotic oscillators. From these experiments
one can draw several conclusions about full synchroniza-
tion and cluster formation. Full synchronization is only
possible for large coupling. For smaller values of coupling
strength clusters are formed. Large clusters however are
not stable and they loose border cells until maximum sta-
ble size is achieved. In this case cells within a cluster may
be fully synchronized. Trajectories of individual cells may
form periodic orbits ), quasiperiodic orbits or chaotic or-
bits. Individual cells may oscillate periodically (period–1,
see Fig. 3(a)), period–2, see Fig. 3(b)) or chaotically (see
Fig. 3(c)). There exists a strong dependence between the
coupling strength and the maximum size of observed stable
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Figure 3: Different temporal behaviors within clusters. Period 1 (a), period 2 (b), Roessler-type chaos (c)

cluster. The maximum size of the stable cluster increases
with the connection strength.
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