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Abstract

We describe a method for stabilisation of periodic orbits in chaotic systems for the case when the

control parameter can assume two values only. We prove that the method can be successfully

implemented if the unstable eigenvalue of the stabilized periodic orbit is smaller than 2 in absolute

value. We present several simulation examples.

1 Introduction

There are several approaches to the problem of controlling chaotic dynamical systems [3]. In this paper

we consider the approach, introduced in [4], based on the observation that the unstable periodic orbits

�ll densely the chaotic attractor. Ott, Grebogi and Yorke proposed a method (referred to as the OGY

method) of controlling chaos by stabilizing one of unstable periodic orbits embedded in the chaotic

attractor. For the method one needs one accessible system parameter, which can be perturbed within

small interval around its nominal value.

In the �rst part we recall the original OGY control method. Then we describe the modi�cation of this

method, called the bang-bang control, for the case when the control parameter can assume two values

only. Such type of control is much easier to implement in real systems than the standard method, where

the control parameter is changed continuously over the interval. We prove a theorem determining the

possibilities of the usage of the new method. Finally we show several simulation examples of application

of this method.

2 Main results

We will describe our aproach for the case of stabilization of �xed points in two-dimensional discrete

systems. The extension of the method for three-dimensional continuous-time systems and for periodic

orbits is straightforward [1, 4].
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Let us �rst brie
y recall the OGY control method. In order to stabilize the �xed point �

F

we monitor

the system trajectory. If the distance between the trajectory and the stablized �xed point is small we

modify the control parameter in order to push the trajectory in the next step onto the stable manifold

of the �xed point. The control formula is given by:
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We will modify the above method to make it usable also in the case when the control parameter can

take two values only. Let us assume that the acceptable values of the control parameters are p

1

and p
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,
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The bang-bang control idea is straightforward. If we want to stabilize the �xed point we compute p

using formula (3) and we apply the parameter:
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Now we will discuss the problem, when is it possible to stabilize the �xed point using the described

method. We will need the following Lemma:
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As an important consequence of the above Lemma we obtain the following theorem.

Theorem 2 Let P be a map de�ned by (1). Let us assume that j�
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To explain the statement of the above theorem let us choose a positive real value " and let us assume

that the unstable eigenvalue of the �xed point is smaller than 2 in absolute value. Then we can �nd an

arbitrary small neighbourhood U of �

F

such that every trajectory which enters U will stay in it for ever

due to the control action. As the chaotic system is ergodic and the �xed point belongs to the attractor

the trajectory will fall into the neighbourhood U in �nite time and will never escape from it. It follows

from Lemma 1 that in such case for smaller �

p

the stabilized trajectory remains closer to the �xed point.

It is possible to keep the trajectory arbitrarily close to the �xed point. Hence the described method will

work properly.

It is easy to extend this result for continuous-time systems. If we consider a transversal section

intersecting the periodic orbit we can use Theorem 2 for the Poincar�e map associated with the continuous


ow.

We want to stress that these results are valid for ideal systems only. In the case of system with noise

it is not possible to guarantee the condition (6) for arbitrarily small neighbourhoods. Because the control

signal ��

p

must exceed the level of noise the size � of the neighbourhood U cannot be very small (�

depends linearly on �

p

).

3 Simulation results

First we present the stabilization of a �xed point of H�enon map [2] de�ned by:
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where a = 1:4, b = 0:3. The parameter a with the initial value a

0

= 1:4 is chosen as the control parameter.



The linearization of the H�enon map in the neighborhood of (x
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According to Theorem 2 the successful control should be possible (absolute value of the unstable eigen-

value is smaller than 2). In Fig. 1 we show the results of stabilization of the �xed point of the H�enon map

using the bang-bang control method. With this kind of control we cannot obtain the convergence of the

trajectory towards the stabilized periodic orbit, but only remaining of the trajectory in a small neigh-

bourhood of it. In the �rst experiment we have used �

p

= 0:015, and in the second one �

p

= 0:005. One

can easily see, that in the second example, when the control signal is three times smaller, the trajectory

�nally stays closer to the stabilized �xed point. But in this case the transient time is usually longer. In

our examples the trajectory starting from the same initial point has been stabilized in the �rst case after

250 iterations, and in the second one after approximately 1650 iterations.
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Figure 1: Stabilization of the �xed point of H�enon map using the bang-bang control method, (a) �

p

=

0:015, (b) �

p

= 0:005

As the second example we consider the Chua's circuit, with the dynamics described by the following

state equation:

C

1

dx

dt

= �g(x) + z

C

2

dy

dt

= �Gy + z (11)

L

dz

dt

= �x � y � Rz

where g(�) is a piece-wise linear function: g(x) = G

b

x + 0:5(G

a

� G

b

)(jx + 1j � jx � 1j). As the control

parameter we used parameter C

1

. We have tried to stabilize two periodic orbits, namely the short orbit






1;0

with one winding around the nonzero equilibrium of the system and the longer symmetric one 


2;2

with two windings around each of the nonzero equilibria of the Chua's system. This time periodic orbits

and their Jacobians were found without knowledge of the state equation using the three dimensional time

series obtained by numerical integration of the equation (11). We were not able to stabilize the orbit 


1;0

using single-point control method (we computed the unstable eigenvalue of the Jacobian of the periodic

orbit 


1;0

to be approximately�2:73, which is greater than 2 in absolute value). The successful control is

possible when the control parameter is modi�ed three times per period. In Fig. 2a we present the result

of stabilization of the orbit 


1;0

. In Fig. 2b one can see the successful stabilization of the orbit 


2;2

using

eight-point method.
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Figure 2: Stabilization of periodic orbits of Chua's circuit using the bang-bang control method, (a)

periodic orbit 


1;0

, n = 3, �

p

= 0:002, (b) periodic orbit 


2;2

, n = 8, �

p

= 0:0025

4 Conclusions

We have presented the bang-bang control method, which can be used for the stabilization of periodic

orbits in chaotic systems in the case when the control parameter can take two values only. We have

proved the theorem, stating conditions under which the successful control is guaranteed. We tested the

method presented in this paper on several examples. First we have considered the H�enon map. We have

stabilized the �xed point using di�erent values of the control signal �

p

. We con�rmed that for smaller

�

p

the trajectory remains closer to the periodic orbit, but usually the transient time before we can start

the control is longer. The second example considered was the Chua's circuit. We were able to stabilize

several periodic orbits in the double-scroll attractor using multipoint bang-bang method.
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