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A Fast Method to Find Periodic Orbits in Chaotic
Attractors With Applications to the Rössler System

Zbigniew Galias , Senior Member, IEEE

Abstract—A systematic method to find short unstable periodic
orbits embedded in chaotic attractors is proposed. The method is
based on the construction of symbolic representations of trajec-
tories, which are used to limit the number of symbol sequences
considered to find periodic orbits with a given period and also to
find candidates of periodic orbits. The Newton method is applied
to find accurate positions of periodic orbits. Using the Rössler
system as an example, it is shown that the proposed method out-
performs existing methods in terms of the number of periodic
orbits found and the computation time.

Index Terms—Chaos, nonlinear dynamical systems, numerical
simulation, Newton method, Rössler system.

I. INTRODUCTION

UNDER certain assumptions a chaotic attractor is densely
filled by unstable periodic orbits. Low period orbits give

good approximations to the mean properties of chaotic trajec-
tories [1], [2]. In this brief, we consider the problem of finding
unstable periodic orbits embedded in chaotic attractors. For
discrete-time dynamical systems, we assume that the system is
defined by the map P. For continuous-time dynamical systems
the problem under study is first reduced to the discrete time
by selecting a return map P. In both cases, the goal is to find
periodic orbits of P with periods p ≤ pmax.

The standard method to find period-p orbits of a nonlinear
map P (or fixed points of Pp) is based on the Newton method
to find zeros of a nonlinear function. In this approach one
constructs a function F whose zeros correspond to periodic
orbits of P, selects an initial guess for the position of a periodic
orbit and applies the Newton iteration in the hope that the
method converges. The function F may be defined as

F(u)k = w(k+1) mod p − P(wk), k = 0, 1, . . . , p − 1. (1)

where u = (w0, w1, . . . , wp−1). It is clear that u is a zero of
F if and only if (w0, w1, . . . , wp−1) is a periodic orbit of P.

The Newton method is an iterative process in which succes-
sive approximations u(k) after the initial guess u(0) are obtained
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by applying the formula

u(k+1) = u(k) − (F′(u(k)))−1F(u(k)). (2)

The convergence of the Newton method depends on the quality
of the initial guess. If u(0) is close to the true position of a
zero of F then the Newton method converges very fast.

For a general nonlinear map P one can find periodic orbits
by using different initial guesses. Common choices are to
select them randomly or to locate them on a uniform grid.

To find periodic orbits embedded in a chaotic attractor
usually a better choice is to use the trajectory monitoring
approach [1], where one looks for pseudo periodic orbits in a
long trajectory (wi)

N−1
i=0 of the map P, where wi+1 = P(wi).

The sequence (wi)
k+p−1
i=k is called a δ pseudo periodic orbit

if ‖wk+p − wk‖ ≤ δ. Pseudo periodic orbit are used as ini-
tial guesses for the Newton method applied to the map (1).
This method was successfully applied to find short periodic
orbit for the Chua’s circuit with a cubic nonlinearity [3], [4].
The main drawback of this method is that a given orbit may be
found several times, which slows down the search process. For
specific classes of discrete and continuous dynamical systems
more efficient methods have been proposed [5], [6], [7], [8].

In this brief, we propose a systematic method to find short
unstable periodic orbits embedded in a chaotic attractor. The
method is based on the construction of a symbolic represen-
tation of trajectories belonging to the attractor and can be
applied to a wide class of dynamical systems. As an exam-
ple we study the existence of periodic orbits for the Rössler
system [9]. Studying dynamical phenomena including the exis-
tence of periodic orbits for the Rössler system is an active field
of research. Low order periodic orbits for the Rössler system
are extracted and encoding of periodic orbits by symbolic
dynamics is studied in [10]. Rigorous analysis of the existence
of short periodic orbits is carried out in [11]. Different routes
to chaos and different kinds of chaotic attractors existing for
this system are studied in [12]. Averaged properties of unsta-
ble periodic orbits existing in the Rössler attractor are studied
in [2]. Unbounded dynamics and the homoclinic chaos in the
Rössler model is observed in [13], [14]. The existence of chaos
and hyperchaos in the 4D Rössler system is proved in [15].
The origin of homoclinic chaos in the classical Rössler model
is studied in [14]. Conditions for the existence of a periodic
solution bifurcating from the zero-Hopf equilibrium are formu-
lated in [16]. The existence of infinitely many periodic orbits in
the Rössler system for two sets of parameter values is proved
in [17]. Practical applications of the Rössler system are con-
sidered in [18]. Nonlinear dynamics in weakly-synchronized
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Rössler system is investigated in [19]. Information transfer
with respect to relative entropy in the Rössler system is studied
in [20].

The remainder of this brief is organized as follows. In
Section II a systematic method to find unstable periodic orbits
is described in detail. The results obtained by applying this
method to the analysis of the Rössler system are presented
in Section III. The classical case with a symbolic dynamics
defined on two symbols and a more complex case with a sym-
bolic dynamics using three symbols are considered. For both
cases a symbolic representation of trajectories is constructed
and the proposed method is used to find low period orbits.
The last section concludes the study.

II. FINDING UNSTABLE PERIODIC ORBITS

In this section a systematic procedure to find unstable peri-
odic orbits embedded in a chaotic attractor is presented. The
map P with a chaotic attractor is either a map defining a
discrete time system or a return map for a continuous time
system. The proposed procedure to find period-p orbits of P
with p ∈ {1, 2, . . . , pmax} consists of the following steps:

1) define a symbolic representation of trajectories,
2) find short forbidden symbol sequences,
3) generate non-forbidden symbol sequences with peri-

ods p ∈ {1, 2, . . . , pmax},
4) for each non-forbidden sequence s find a candidate ũ for

the position of the corresponding periodic orbit based on
symbolic dynamic information,

5) for each candidate ũ apply the Newton operator to
find the position ū of the orbit, the convergence of
the Newton method to the position ū with the symbol
sequence s confirms the existence of a periodic orbit,

6) verify that all periodic orbits found are different.
In the following part of this section, the steps listed above

are described in detail.
The proposed method can be applied to systems for which

a symbolic representation of trajectories exists. Defining a
symbolic representation of trajectories is perhaps the most dif-
ficult part of the procedure. We seek for a splitting of the
state space into m regions R1, R2, . . . , Rm such that there is
a one-to-one correspondence between trajectories and symbol
sequences (see also [10], [21]). For a trajectory (wi) the cor-
responding symbol sequence (σi) is defined by the condition
wi ∈ Rσi . Since we are interested in finding short periodic
orbits embedded in the attractor we can relax the condition on
the correspondence between trajectories and symbol sequences
and require that different symbol sequences are observed not
for all trajectories but only for periodic orbits of interest.

Here, we propose a simple method to define symbolic
dynamics for narrow attractors. The method is based on
attractor parametrization. For simplicity, we assume that the
attractor can be parameterized using one of the system vari-
ables, for example y. The construction of a symbolic dynamics
starts by computing a long trajectory of P. If the attractor is
narrow then the plot of yk+1 versus yk resembles a plot of a
one-dimensional map. Positions of extreme values in this plot
are used to divide the state space into regions corresponding to

different symbols. Two examples of this procedure for the case
of symbolic dynamics with 2 and 3 symbols are presented in
Section III. Using the Rössler system as an example, we show
that the proposed method works fine in case of narrow attrac-
tors. For systems with more complex attractors other methods
to define symbolic dynamics on the attractor may be used.

Let us assume that each periodic orbit of P with the period
p ≤ pmax has a distinct symbolic representation with m sym-
bols. The number of symbol sequences with the length p
is mp. Symbol sequences s = (s0, s1, . . . , sp−1) and t =
(t0, t1, . . . , tp−1) of the length p are called cyclically different
if maxp−1

i=0 |t(i+k) mod p − si| > 0 for each k. Points belonging
to a given periodic orbit have symbolic representations which
are not cyclically different. The period of a symbol sequence
s = (s0, s1, . . . , sp−1) is the smallest positive integer k such
that s(i+k) mod p = si for each i = 0, 1, 2, . . . , p − 1. A sym-
bol sequence s = (s0, s1, . . . , sp−1) with the period k < p
is equivalent to the symbol sequence t = (s0, s1, . . . , sk−1)

and corresponds to a period-k orbit. To find all period-p
orbits of P it is sufficient to consider Sall(p) = p−1(mp −∑p−1

k=1,p mod k=0 kSall(k)) cyclically different symbol sequences
with the period p.

Considering all cyclically different symbol sequences with
the period p may be infeasible for large p due to the fast growth
of Sall(p) (it grows with p roughly as fast as p−1mp). Usually,
it is possible to limit the number of symbol sequences which
have to be considered. The idea is to identify short forbidden
sequences and skip symbol sequences containing forbidden
sequences. Forbidden sequences can be identified by monitor-
ing a long trajectory (wi)

N−1
i=0 . First, we select the maximum

length lmax of forbidden sequences which we search for. Next,
for each l = 2, 3, . . . , lmax we find symbol sequences of the
length l which are not present in the trajectory. Such sequences
which do not contain forbidden sequences of a shorter length
are added to the list of forbidden sequences. The idea of using
forbidden sequences is based on the assumption that if a given
short symbol sequence is not present in a long trajectory then it
is perhaps not admissible by the dynamical system. The num-
ber of symbol sequences of the length l is ml. It follows that
the length N of a trajectory which has to be considered to cor-
rectly detect all forbidden sequences with the length l ≤ lmax
grows exponentially with lmax. One should also note that short
forbidden sequences eliminate much more symbol sequences
than the long ones. Therefore, it is usually sufficient to select
a small value of lmax, for example lmax ≤ 10.

Now, we describe how to find a periodic orbit
ū = (w̄0, w̄1, . . . , w̄p−1) with the symbol sequence s =
(s0, s1, . . . , sp−1). To obtain a good initial guess for the
Newton method we use a trajectory (wi)

N−1
i=0 with the sym-

bol sequence σ = (σi)
N−1
i=0 . Let us select h ≥ 0. For

k = 0, 1, . . . , p − 1 we find a position jk in the sequence
σ such that s(k+i) mod p = σjk+i for all i = −h,−h +
1, . . . , imax and that imax is as large as possible. The point
ũ = (w̃0, w̃1, . . . , w̃p−1) = (wj0 , wj1 , . . . , wjp−1) is used as an
initial guess for the Newton method to find the periodic orbit
with the symbol sequence s = (s0, s1, . . . , sp−1).

To explain why this method works let us first assume
that h = 0. The sequence (σjk+i)

N−jk
i=0 matches the sequence
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Fig. 1. Trajectories of the Rössler system; (a) a = 5.7, b = 0.2, (b) a = 5.7,
b = 0.32.

(s(k+i) mod p)
∞
i=0 for the first imax + 1 elements, which means

that trajectories starting at wjk and at the periodic point w̄k

have the same future symbol sequences up to the position
imax. The larger value of imax, the smaller is the distance
between wjk and w̄k. To make sure that we obtain long matched
sequences (large imax) for all admissible periodic orbit we have
to consider a sufficiently long trajectory (wi)

N−1
i=0 .

Selecting h = 0 works fine when the attractor is very nar-
row and the plot of yk+1 versus yk is close to a plot of a
one-dimensional map. If this is not the case and branches in
the plot of yk+1 versus yk are far apart then one should select
h > 0. This way we force that symbols of preimages of wjk
and w̄k agree, which ensures that we select a correct branch
of the attractor. In the examples considered in Section III it
is sufficient to use h = 1. For h = 0 some of the existing
periodic orbits are not found due to the lack of convergence
of the Newton method.

In the final step, the Newton method with the initial guess
u(0) = ũ is applied to find the position of the periodic orbit.
Convergence of the Newton method to a periodic orbit ū with
the symbol sequence s confirms the existence of the periodic
orbit in question.

III. SHORT PERIODIC ORBITS FOR THE RÖSSLER SYSTEM

As an example let consider the Rössler system [9] defined
by the following set of ordinary differential equations:

ẋ = −y − z,

ẏ = x + by,

ż = b + z(x − a). (3)

We study the system with two sets of parameter values
(a, b) = (5.7, 0.2) and (a, b) = (5.7, 0.32). Example trajecto-
ries are shown in Fig. 1.

We choose the return map P defined by the plane � =
{v = (x, y, z) ∈ R

3 : x = 0, ẋ > 0}. On the plane � we
use the local coordinate system w = (y, z) ∈ R

2. The return
map is defined as follows. Let us select w = (y, z) ∈ R

2 such
that v = (0, y, z) ∈ �. The image of w = (y, z) ∈ R

2 under
the map P is P((y, z)) = (ȳ, z̄), where (0, ȳ, z̄) = ϕ(τ(v), v),
ϕ(t, v) is the trajectory of the system (3) based at v and τ(v) is
the return time after which the trajectory ϕ(t, v) returns to �.

A. The Classical Case a = 5.7, b = 0.2

Let us first consider the classical parameter values a = 5.7,
b = 0.2. A trajectory of the return map P is plotted in
Fig. 2(a). Fig. 2(b) shows a plot of yn+1 versus yn.

Fig. 2. Trajectory of the return map, a = 5.7, b = 0.2, symbolic dynamics
is defined by the threshold value y = −6.73872.

Fig. 3. Trajectory of the return map, a = 5.7, b = 0.32, symbolic dynamics
is defined by threshold values y = −9.7042958 and y = −5.7424029.

The plot presented in Fig. 2(b) is visually indistinguishable
from a plot of a one-dimensional map with a single minimum.
It is therefore natural to construct a symbolic dynamics with
two symbols using the coordinates of the minimum to define
the splitting of the state space into regions corresponding to
different symbols. From a trajectory (wk)

N−1
k=0 with N = 106

we select the point wm0 with the minimum value of the y
coordinate (ym0 ≈ −10.57497). The value ym0−1 ≈ −6.73872
is selected to define the symbolic dynamics with two symbols.
The symbol associated with the point w = (y, z) is

σ =
{

0 if y < −6.73872,

1 if y ≥ −6.73872.

The splitting of the state space into regions corresponding to
different symbols is shown in Fig. 3(b) with a red vertical line.

In the second part of the procedure forbidden sequences
are found. This is done by scanning a trajectory (wk)

N−1
k=0 with

N = 107 and identifying symbol sequences which are not
present in this trajectory. The search for forbidden sequences
is limited to sequences of the length l ≤ 14. Seven forbidden
sequences are found: (111), (1100), (110101), (11010001),
(1101000001), (1101000000011), (11010000000100).

Next, all non-forbidden cyclically different symbol
sequences with periods p = 1, 2, . . . , pmax = 30 are gener-
ated. In Table I, we report the numbers Sall(p) of all symbol
sequences and the numbers Snf(p) of non-forbidden symbol
sequences with the period p. One can see that Sall(p) grows
much faster than Snf(p). It follows that removing forbidden
sequences is an important part of the procedure since it
permits elimination of many sequences and thus reduces the
computation time needed to find all periodic orbits with a
given period.

In the final step of the search procedure, for each non-
forbidden sequence a candidate for the position of the peri-
odic orbit is constructed based on the symbolic dynamics
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TABLE I
PERIODIC ORBITS FOR a = 5.7, b = 0.2. Sall(p) ARE Snf(p) THE NUMBERS

OF ALL CYCLICALLY DIFFERENT SYMBOL SEQUENCES AND

NON-FORBIDDEN CYCLICALLY DIFFERENT SYMBOL SEQUENCES

WITH THE PERIOD p. Psd(p) AND Ptr(p) ARE THE NUMBERS OF

PERIOD-p ORBITS FOUND USING THE PROPOSED METHOD

AND THE TRAJECTORY MONITORING APPROACH. ntr(p) IS THE

LENGTH OF A TRAJECTORY NEEDED TO FIND ALL PERIOD–p
ORBITS USING THE TRAJECTORY MONITORING APPROACH

information in the way described in Section II and the Newton
method is applied to find the position of the corresponding
periodic orbit. The numbers Psd(p) of period-p orbits found are
given in Table I. The total number of periodic orbits found is
386887. The total computation time needed to find all period-p
orbits with p ≤ pmax is 136 seconds for pmax = 20, 16 minutes
for pmax = 25 and 3.5 hours for pmax = 30. The most time
consuming parts of the search procedure are steps 4 and 5 (see
Section II), which for pmax = 30 require 39.5% and 59.7% of
the total computation time, respectively. Other steps are fast
and require less than 1% of the total computation time.

The number of periodic orbits found with the period p ≤ 20
is 3655. This is in agreement with the results reported in [11],
where all periodic orbits with periods p ≤ 20 were found
using rigorous interval arithmetic based calculations. This con-
sistence confirms that the proposed method is successful in
finding all short periodic orbits.

For comparison, we also report results obtained using the
trajectory monitoring approach where initial guesses for the
Newton method are δ pseudo periodic orbits with δ = 0.05
found in a chaotic trajectory of the length N = 2·107. The total
computation time is 40 hours. The numbers Ptr(p) of period–
p orbits found are presented in Table I. The total number of
periodic orbits found is Ptr(≤ 30) = 102813, which is 26%
of the number Psd(≤ 30) = 391018 of orbits found using the

symbolic dynamics based method. This is in spite of the fact
that the computation time is several times longer.

The numbers of periodic orbits found using both methods
are the same for p ≤ 18. The length ntr(p) of a trajec-
tory needed to find all period–p orbits using the trajectory
monitoring approach grows exponentially with p and exceeds
N = 2 · 107 for p > 18. The inferior performance of the
trajectory monitoring approach is a consequence of multiple
application of the Newton method to find a given periodic
orbit, whereas in the symbolic dynamics based approach each
symbol sequence is considered only once.

B. The Case a = 5.7, b = 0.32

Let us now consider the case a = 5.7, b = 0.32. A tra-
jectory of the return map P is plotted in Fig. 3(a). The plot
of yn+1 versus yn presented in Fig. 3(b) has two extreme
values. Based on this plot, we define the symbolic represen-
tation of trajectories with three symbols. From a trajectory
(wk)

N−1
k=0 = (xk, yk, zk)

N−1
k=0 with N = 106 we find the points

wm0 and wm1 with the maximum and minimum value of the
y coordinate (ym0 ≈ −1.904864 and ym1 ≈ −12.852833).
The y coordinates of the preimages wm0−1 and wm1−1 are
selected to define the symbolic dynamics with three symbols:
ym0−1 ≈ −9.7042958 and ym1−1 ≈ −5.7424029. Based on
these threshold values the symbol associated with the point
w = (y, z) is defined as

σ =
⎧
⎨

⎩

0 if y < −9.7042958,

1 if y ∈ [−9.7042958,−5.7424029),

2 if y ≥ −5.7424029.

The division of the state space into regions corresponding
to different symbols is shown in Fig. 3(b). In the region s = 1
one can see two branches of the attractor.

Scanning a trajectory with the length N = 107, we find
11 forbidden sequences with the length l ≤ lmax = 8:
(00), (012), (221), (222), (0110), (2202), (01112), (220101),
(0101111), (0201111), (01111011). The numbers Snf(p) of
non-forbidden cyclically different symbol sequences with
period p are reported in Table II.

Due to a much larger number of short periodic orbits the
search for periodic orbits is limited to periodic orbits with
periods p ≤ pmax = 20. The numbers Psd(p) of period-p orbits
found are presented in Table II. The total number of periodic
orbits found is Psd(≤ 20) = 985572. The total time needed to
find all periodic orbits with periods p ≤ pmax is 9 minutes for
pmax = 15 and 8.2 hours for pmax = 20.

For comparison, the trajectory monitoring approach with a
trajectory of the length N = 4 · 107 is applied to find peri-
odic orbits with periods p ≤ 20. The total computation time
is 19.5 hours. The number Ptr(p) of periodic orbits found
using this method is the same as for the symbolic dynamics
based method for p ≤ 10. The total number of periodic orbits
found using the trajectory monitoring approach is Ptr(≤ 20) =
246739, which is 25% of the number Psd(≤ 20) = 985572.

C. Topological Entropy

Based on the number of periodic orbits, one may esti-
mate the value of the topological entropy of the return map
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TABLE II
PERIODIC ORBITS FOR a = 5.7, b = 0.32

Fig. 4. Topological entropy of the return map P for a = 5.7, b = 0.2 (blue
circles), and for a = 5.7, b = 0.32 (red stars).

P using the formula h(P) = lim supp→∞ p−1 log Qp, where
Qp is the number of fixed points of Pp [21]. The esti-
mates hp = p−1 log Qp obtained from the results presented
in Tables I and II are plotted in Fig. 4. The convergence of
the estimates hp is another indication that the proposed method
is successful in finding the majority of short periodic orbits
embedded in a chaotic attractor.

From the results obtained, it follows that the topological
entropy of the return map P is approximately h(P) ≈ 0.5098
for the classical case and h(P) ≈ 0.808 for the second case.
We may conclude that the dynamics for the second case is
topologically much more complex than for the classical case.

IV. CONCLUSION

A systematic method to find unstable periodic orbits embed-
ded in chaotic attractors was proposed. The method is based on
symbolic representation of trajectories belonging to the attrac-
tor. Symbolic representations are used to find non-forbidden
sequences and to construct initial guesses for the Newton
method. The Newton method is applied to find accurate posi-
tions of unstable periodic orbits. The method was applied to
the analysis of the Rössler system. Two cases were considered
with symbolic representations defined on two and three sym-
bols, respectively. It was confirmed that the method is capable
of finding the majority (perhaps all) of short periodic orbits in

a relatively short time. It was shown that the proposed method
outperforms the trajectory monitoring based approach both in
terms of the number of periodic orbits found and the com-
putation time. The proposed method is applicable to a wide
class of discrete and continuous dynamical system for which
a symbolic representation of trajectories can be defined.
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