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Periodic Orbits of the Logistic Map in Single and
Double Precision Implementations
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Abstract—In finite precision implementations of chaotic maps
all trajectories are eventually periodic. The goal of this brief
is to develop methods for systematic study of effects of finite
precision computations on dynamical behaviors of discrete maps
and to carry out a study of the logistic map in this context.
In particular, we are interested in finding all cycles when the
logistic map is implemented in single and double precision and
studying properties of these cycles including the size of the basin
of attraction, and the maximum and average convergence times.

Index Terms—Nonlinear dynamical systems, numerical simu-
lation, floating-point arithmetic.

I. INTRODUCTION

WHEN chaotic maps are implemented using finite
precision computations, the quantization causes

dynamical degradation. The number of available states is
finite and as a consequence all trajectories are eventually
periodic (enter a cycle after the transient process). This
may lead to wrong conclusions when using finite precision
computations to study systems defined with infinite precision
in a continuous domain. For example, when the maximum
Lyapunov exponent is computed the result converges to the
maximum Lyapunov exponent of one of the cycles, none
of which is the correct result. Under certain assumptions
chaotic attractors are densely filled by unstable periodic
orbits. Therefore, one may expect that some short periodic
orbits may be observed as steady states in finite precision
computations. It may be difficult to find such orbits starting
from randomly selected initial conditions due to possibly
small basins of attraction of these orbits.

Implementations of chaotic maps in the digital domain are
widely used in various applications, including pseudo random
number generators [1], [2], [3], [4], chaos-based encryption [5]
and secure communication [6], [7]. Finite precision computa-
tions may lead to unwanted phenomena, especially when the
period of the steady state cycle is low. Various methods have
been proposed to handle this problem including perturbing
chaotic states or system parameters along trajectories or using
cascades of chaotic systems [8], [9], [10].
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The problem of cycle detection in finite precision imple-
mentations of chaotic maps is therefore important from both
theoretical and practical points of view. The most common
approach to solve this problem is based on computing trajec-
tories for randomly or uniformly selected initial conditions. In
this approach one considers a large number of initial condi-
tions and finds the corresponding steady states. This approach
permits finding cycles (periodic orbits) with large basins of
attraction and estimating the convergence probability. The
problems related to cycle detection in finite precision repre-
sentations of the logistic map have been studied extensively.
Exhaustive search for cycles existing in 32-bit floating-point
implementation of the logistic map is carried out in [11].
Cycles observed in 64-bit floating-point implementations of
the logistic map are studied numerically in [6], [12], [13].
Statistical study of double precision errors in the logistic map
is presented in [14]. Fixed-point n-bit representations with
n ≤ 44 are used in [15] to study the existence of cycles and
transient lengths in the logistic map. Dynamical analysis of
chaotic maps in the digital domain using the state-mapping
network approach is presented in [16]. Properties of sequences
generated by the logistic map over the finite field are studied
in [17]. None of the existing methods can be used to find all
cycles when the precision is high.

The goal of this brief is to develop methods to find all cycles
existing in finite precision implementations of one-dimensional
maps. As a representative example, we consider the logistic
map [18] with 32-bit (single precision) and 64-bit (double
precision) floating-point implementations. As it will be show,
the research problem to find all cycles is very challenging
due to the size of the state space. For the 32-bit implemen-
tation the size of the state space is relatively small (of order
107 − 109 and the dynamics of the map can be represented
using a graph structure. This approach allows us to efficiently
find all cycles after visiting each possible state only once. For
the 64-bit implementation the size of the state space is much
larger (of order 1016 − 1019). In this case it is necessary to
eliminate a large number of initial condition from the search
space.

The remainder of this brief is organized as follows. In
Section II the definition and certain properties of the logis-
tic map are recalled and floating-point data types considered
in this brief are described. In Section III two methods to
find all cycles for finite precision implementations of one-
dimensional maps are proposed and results obtained for single
and double precision implementations of the logistic map
are presented. The results including the number of cycles,
their periods, sizes of basins of attraction, and average con-
vergence times are reported. The last section concludes the
study.
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TABLE I
STATE SPACE OF THE LOGISTIC MAP IN FINITE PRECISION

COMPUTATIONS

II. FINITE PRECISION IMPLEMENTATIONS OF THE

LOGISTIC MAP

The logistic map is a classical example of a simple nonlinear
map with complex dynamics [18]. It is defined by

fa(x) = ax(1 − x), (1)

where x ∈ [0, 1] and a ∈ [0, 4].
We consider two cases: a = 3.9 and a = 4, for which

chaotic behavior is observed in computer simulations. For
a = 4 the map fa is topologically conjugate [19] to the tent
map g(x) = 1 − 2|x − 0.5| and is known to be chaotic [20].
The value a = 3.9 does not belong to any short periodic win-
dow and therefore the map f3.9 is very likely to be chaotic
(compare [21], [22]).

The logistic map has a single maximum at c = 0.5. The
interval I = [f 2

a (c), fa(c)] is invariant [19], i.e., fa(I) = I. It is
the state space of the dynamical system defined by the map fa.
The invariant interval is I = [0.0950625, 0.975] for a = 3.9
and I = [0, 1] for a = 4.

The most natural way of implementing the logistic map is
to use the computational formula fa(x) = a ∗ x ∗ (1 − x).
Note that other computational formulas although equivalent
from the mathematical point of view (for example fa(x) =
a∗(1−x)∗x) usually lead to different results in finite precision
implementations (compare [13]).

In this brief we consider two of the most common floating-
point formats used nowadays: the binary32 (single precision)
and binary64 (double precision). These formats are defined in
the IEEE 754 standard [23]. According to this standard basic
arithmetic operations (addition, subtraction, multiplication and
division) must round correctly. It follows that computations
conforming to this standard should give reproducible results.

For finite precision implementations the state space is a set
of representable numbers belonging to a certain interval �.
Endpoints of these intervals for a = 3.9 and a = 4 when using
single and double precision computations are given in Table I.
For each case we also report the state space size S, which is
the number of representable numbers (floats or doubles) which
belong to �.

It is interesting to note that for a = 3.9 in both cases the
maximum value (the right endpoint of �) is not obtained
for x = c = 0.5. For example, when computations are car-
ried out in single precision then fa(0.5) = 0.9750000238 and
fa(0.4999999106) = 0.9750000834 > 0.9750000238.

For a = 4 the state space is much larger than for a = 3.9.
This is related to the fact that representable numbers fill
the intervals close to zero much more densely than intervals
located far away from zero. For example, the number of

floats in the intervals [0, 0.1], [0.1, 0.2], and [0.2, 0.3] is
1036831950, 8388609, and 5033166, respectively.

In the following sections a systematic study of dynamical
behaviors of the logistic map with a = 3.9 and a = 4
implemented in the single and double precision floating-point
formats using the computational formula fa(x) = a∗x∗ (1−x)
is carried out.

III. FINDING ALL CYCLES AND THEIR BASINS OF

ATTRACTIONS

In this section two methods to find all cycles and analyse
their properties including the size of the basin of attrac-
tion [19], [24] and average convergence times are presented.
The basin of attraction of a given cycle is defined as the sub-
set of the state space containing points which converge to this
cycle. The basin size s is defined as the number of points
belonging to the basin of attraction. An important number
characterizing the basin of attraction of a cycle is the rela-
tive basin size r defined as the ratio of the basin size s and the
state space size S. The relative basin size is equal to the prob-
ability of convergence to a given cycle starting from random
initial conditions belonging to the state space. For a given ini-
tial point x the convergence time τ(x) is defined as the number
of iterations needed to reach the steady state.

The first method to find all cycles, which will be referred
to as the graph-based method, is based on the construction
of a graph structure representing the dynamics of the map
over the state space. In this approach each point in the state
space is a graph vertex. Graph edges correspond to transitions
between points as defined by the action of the map in finite
precision computations. For a given point xk let us denote
by bk the index of the basin of attraction it belongs to and
by τk = τ(xk) the convergence time. At the beginning of the
procedure all graph vertices are marked as non-visited. During
the procedure we select a non-visited vertex xk and compute
a trajectory starting from this vertex until we reach a visited
vertex (denote it by xl). Based on bl and τl the values bi and τi
are updated for all vertices belonging to the trajectory starting
at xk and ending at xl. The procedure ends when the set of
non-visited vertices is empty. Once this is done, we can easily
compute the number of cycles, their periods, basin sizes and
the average convergence times. It will be shown that the graph
based approach works well for single precision computations
for which the size of the state space is small.

If it is impossible to store all states in a computer memory
then another method has to be used. The simplest idea to find
all cycles is to carry out an exhaustive search in which for
each point in the state space the corresponding steady state
(cycle) is found. This method is not feasible when the num-
ber of initial points is large due to extremely long computation
times. To make this method work we need to limit the number
of initial conditions to be considered. The first idea is to stop
computation of a trajectory (f k(x0))k=1,2,... when f k(x0) > x0.
This will significantly speed up computations since for many
initial points the stop condition is satisfied for a small k. This
idea can be extended to skip whole intervals of initial points
using the interval arithmetic approach [25]. In interval arith-
metic, all calculations are performed on intervals in such a
way that the true result is always enclosed within the interval
calculated by the computer. This is achieved by setting proper
rounding modes when carrying out arithmetic operations on
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interval endpoints. The second method to find all cycles, which
will be referred to as the trajectory based approach, works as
follows. In the first step, the state space � is split into several
test intervals. For each test interval x0 = [x0, x0] enclosures
yk = [y

k
, yk] of f k(x0) for k = 1, 2, . . . , kmax are computed

using interval arithmetic methods. If for some k ≤ kmax the
condition y

k
> x0 is satisfied then the interval x0 is skipped.

In the second step, for the remaining initial conditions x0 tra-
jectories (f k(x0))k=1,2,... are computed until either f k(x0) > x0
or a cycle is found.

Sizes of basins of attraction and average convergence times
of cycles can be estimated using a statistical approach. In this
approach n initial conditions are selected randomly. For each
initial condition xk the corresponding steady state is found,
the basin index bk to which xk belongs to is identified and
the convergence time τk is computed. Using this data one
can estimate the relative basin size for the basin with the
index b as r = ∑n

k=1 δ(b, bk)/n, where δ(i, j) denotes the
Kronecker delta (δ(i, j) = 1 if i = j and δ(i, j) = 0 oth-
erwise). The average convergence time can be estimated as
τaver ≈ (

∑n
k=1 τk · δ(b, bk))/(

∑n
k=1 δ(b, bk)).

The statistical approach works only for cycles with large
basins. When the basin of attraction is small compared to the
state space then usually none of the randomly selected initial
points belongs to the basin. In this case one may use a graph
based approach. In this approach one construct a graph rep-
resentation of the basin. The basin is initialized as the set of
points belonging to the cycle. During the procedure for each
point in the basin its preimage under the map fa is computed
and added to the basin. The algorithm is continued until no
more points can be added. This method permits finding the
exact values of the relative basin size and the average con-
vergence time. One has to be careful when computing f −1

a
in a finite precision. In the infinite precision the preimage of
y ∈ I can be computed as x = f −1

a (x) = {0.5 ± √
0.25 − y/a}.

f −1
a (y) is a single point for y = fa(c) and contains two points

otherwise. In a finite precision the preimage of a single point
can be empty. It can also be very large, especially for points
close to y = fa(c).

A. Single Precision Computations

For the single precision case the size of the state space is
relatively small (compare Table I) and the graph based method
can be used. The results are presented in Table II. For each
cycle we report its period p, the maximum position xmax, the
Lyapunov exponent λ, the basin size s, the relative basin size r,
the maximum convergence time τmax, and the average conver-
gence time τaver. The Lyapunov exponent for the cycle (xk)

p−1
k=0

is calculated using the formula λ = p−1 ∑p−1
k=0 log(f ′

a(xk)).
For a = 4 the state space size is much larger than for a =

3.9 (compare Table I) and hence longer computation time and
more computer memory are needed to solve the problem. The
computation time is approximately 550 seconds for a = 4 and
less than 10 seconds for a = 3.9.

For a = 3.9 there are 11 cycles with periods varying from 2
to 1415. Most trajectories converge to the period–1031 solu-
tion. The shortest orbit has the smallest basin of attraction.
Lyapunov exponents computed along the cycles differ signif-
icantly. The smallest value λ = 0.4196 and the largest value

TABLE II
CYCLES EXISTING FOR a = 3.9 AND a = 4 FOR SINGLE PRECISION

COMPUTATIONS, p IS THE PERIOD, λ IS THE LYAPUNOV EXPONENT, s IS

THE BASIN SIZE, r IS THE RELATIVE BASIN SIZE, τMAX AND τAVER ARE

THE MAXIMUM AND AVERAGE CONVERGENCE TIMES

λ = 0.6134 are observed for the period-65 cycle and the
period-2 cycle, respectively.

For a = 4 case there are 10 cycles. More than 66% of
trajectories converge to the longest period–4344 cycle. Two
cycles have period 1 (x = 0 and x = 0.75). They are unstable
fixed points for the infinite precision system. Their basins of
attraction are quite different. The basin of attraction of the
fixed point x = 0.75 contains 64 points; the chance to reach
this fixed point starting from random initial conditions is very
low. On the other hand the basin of attraction of the fixed point
x = 0 is relatively large. Almost 19% of initial conditions from
the interval [0, 1] lead to this fixed point. For a = 4, Lyapunov
exponents of all cycles are practically the same (λ = 0.693)
with the exception of the fixed point x = 0 for which the
Lyapunov exponent is λ = 1.386.

B. Double Precision Computations

For the double precision case the graph based approach
cannot be used due to a very large state space.

The trajectory based approach is applied to find all cycles
existing for a = 3.9. In the elimination step the number of ini-
tial conditions is reduced from 1.54 · 1017 to 4.59 · 1013 (more
than 99.7% of initial conditions are eliminated). Trajectories
for the remaining initial conditions are computed and all cycles
are found. The total computation time using a single core 4.1
GHz processor is approximately 600 days. Parallel computa-
tions are utilized to speed up the process. A statistical approach
with n = 105 initial conditions is used to estimate basin sizes
and average convergence times for the first seven cycles. For
the remaining cycles their basins are found using the graph
based approach. The results obtained are reported in the first
part of Table III.

For a = 3.9 there are 16 cycles with periods varying from
8 to 60858285. Four shortest cycles are shown in Fig. 1.
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TABLE III
CYCLES EXISTING FOR a = 3.9 AND a = 4 FOR DOUBLE PRECISION COMPUTATIONS, p IS THE PERIOD, xmax IS THE MAXIMUM POSITION OF THE

ORBIT, λ IS THE LYAPUNOV EXPONENT, s IS THE BASIN SIZE, r IS THE RELATIVE BASIN SIZE, τMAX AND τAVER ARE THE MAXIMUM AND

AVERAGE CONVERGENCE TIMES

Cycles with periods p < 1000 have very small basins of attrac-
tion. In consequence, the probability of reaching these cycles
starting from random initial conditions is very small (below
2 · 10−10). The largest basin of attraction is observed for the
longest cycle. More than 76% of trajectories converge to this
cycle. The longest convergence time observed is 64974305,
while the average convergence time is below 3 ·107. Lyapunov
exponents calculated along the cycles belong to the interval
[0.2905, 0.5041]. The largest deviation from the average value
λ = 0.496 is observed for the period–8 cycle (λ = 0.2905).

Similar computations are carried out for a = 4. In the elim-
ination step the number of initial conditions is reduced from
4.61 ·1018 to 6.29 ·1013 (more than 99.998% initial conditions
are eliminated). Remaining initial conditions are handled in
the same way as for the case a = 3.9. The total computation
time to find all cycles for a = 4 using a single core 4.1 GHz
processor is approximately 500 days. The results obtained are
reported in the second part of Table III. A statistical approach
with n = 105 initial conditions is used to estimate basin sizes
and average convergence times for the cycles with indices 1–
9 and 20. For the cycles with indices 13–19 their basins are
found using the graph based approach. For the cycles with
indices 10–12 neither method works. Their basins are too small
to be detected using the statistical approach and too large for
the graph based approach. Similarly to the single precision

Fig. 1. Shortest periodic trajectories existing for a = 3.9 for double precision
computations; (a) p = 8, (b) p = 13, (c) p = 120, (d) p = 130.

case the Lyapunov exponents computed along the orbits are
the same (λ = 0.693147) with the exception of the last cycle
(λ = 1.386294).
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For a = 4 there exist 20 cycles. Most trajectories (above
67%) converge to the cycle with period 5638349 (index 3
in Table III). The case a = 4 has been studied by many
researchers. For example, cycles with indices 1–7 and 20 are
reported in [12]. In [6], the cycles with indices 1-10,12 and
20 are reported. The cycles with indices 1,3,4,5, and 20 are
reported in [13]. The results obtained in [6], [12], [13] are
based on computing trajectories starting from a small number
of initial conditions (1000 or 10000). This method can find
cycles with a large basin of attraction only.

Table III reports all cycles existing in the double precision
implementation of the logistic map. These results may be use-
ful for researchers studying the dynamics of the logistic map
and other one-dimensional maps. Note that in order to find the
majority of cycles (including those with very small basins of
attraction) it is sufficient to consider initial conditions from a
very small subset of the state space (in the examples consid-
ered x ∈ [0.9741, 0.975] for a = 3.9 and x ∈ [0.9954, 1] for
a = 4). Additionally, when searching for short cycles (which
are more difficult to find) it is sufficient to consider short tra-
jectories because for short cycles the maximum convergence
time is also short. These guidelines may be helpful in study-
ing effects of finite precision computations on the dynamics
of one-dimensional maps.

The results presented in Table III show that the double
precision computations may lead to wrong results when study-
ing the dynamics of one-dimensional maps. In both cases
(a = 3.9 and a = 4) the average convergence time is
below 6 · 107. Moreover, there exist initial conditions lead-
ing to extremely short periods. Relatively small convergence
times and short cycle lengths may influence the results (such
as Lyapunov exponents) produced in the double precision
computations. An extra care has to be taken in verifying
that a computer generated trajectory is not one of short
cycles.

These results also indicate that double-precision implemen-
tations of the logistic map may cause serious disadvantages
in chaos based applications like pseudo random number gen-
erators or chaos-based communication. A proper selection
of initial conditions is crucial for the proper operation of
applications based on chaotic maps.

IV. CONCLUSION

Systematic methods to find all periodic solutions of
finite precision implementations of chaotic maps have been
proposed. All cycles existing in single and double precision
implementations of the logistic map for selected parameter
values have been found. According to our knowledge, the
results of this study are the first example reporting all cycles
existing in the double precision implementation of the logistic
map. Using the graph based approach basins of attraction and
convergence times were found for cycles with small basins.
The probability of convergence to a given cycle and aver-
age convergence times have been estimated for cycles with
large basins using the statistical approach. It was shown that
finite precision implementations of the logistic map may pro-
duce very short cycles. The proposed methods are general and
can be applied without modifications to study other chaotic
one-dimensional systems.
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