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Periodic orbits of the logistic map
in single and double precision implementations

Zbigniew Galias, Senior Member, IEEE

Abstract—In finite precision implementations of chaotic maps
all trajectories are eventually periodic. The goal of this work
is to develop methods for systematic study of effects of finite
precision computations on dynamical behaviors of discrete maps
and to carry out a study of the logistic map in this context.
In particular, we are interested in finding all cycles when the
logistic map is implemented in single and double precision and
studying properties of these cycles including the size of the basin
of attraction, and the maximum and average convergence times.

I. Introduction

When chaotic maps are implemented using finite precision
computations, the quantization causes dynamical degradation.
The number of available states is finite and as a consequence
all trajectories are eventually periodic (enter a cycle after
the transient process). This may lead to wrong conclusions
when using finite precision computations to study systems
defined with infinite precision in a continuous domain. For
example, when the maximum Lyapunov exponent is computed
the result converges to the maximum Lyapunov exponent of
one of the cycles, none of which is the correct result. Under
certain assumptions chaotic attractors are densely filled by
unstable periodic orbits. Therefore, one may expect that some
short periodic orbits may be observed as steady states in
finite precision computations. It may be difficult to find such
orbits starting from randomly selected initial conditions due
to possibly small basins of attraction of these orbits.

Implementations of chaotic maps in the digital domain
are widely used in various applications, including pseudo
random number generators [1], [2], [3], [4], chaos-based
encryption [5] and secure communication [6], [7]. Finite
precision computations may lead to unwanted phenomena,
especially when the period of the steady state cycle is low.
Various methods have been proposed to handle this problem
including perturbing chaotic states or system parameters along
trajectories or using cascades of chaotic systems [8], [9], [10].

The problem of cycle detection in finite precision imple-
mentations of chaotic maps is therefore important from both
theoretical and practical points of view. The most common
approach to solve this problem is based on computing trajec-
tories for randomly or uniformly selected initial conditions.
In this approach one considers a large number of initial
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conditions and finds the corresponding steady states. This
approach permits finding cycles (periodic orbits) with large
basins of attraction and estimating the convergence probability.
The problems related to cycle detection in finite precision rep-
resentations of the logistic map have been studied extensively.
Exhaustive search for cycles existing in 32-bit floating-point
implementation of the logistic map is carried out in [11].
Cycles observed in 64-bit floating-point implementations of
the logistic map are studied numerically in [12], [6], [13].
Statistical study of double precision errors in the logistic map
is presented in [14]. Fixed-point n-bit representations with
n ≤ 44 are used in [15] to study the existence of cycles and
transient lengths in the logistic map. Dynamical analysis of
chaotic maps in the digital domain using the state-mapping
network approach is presented in [16]. Properties of sequences
generated by the logistic map over the finite field are studied
in [17]. None of the existing methods can be used to find all
cycles when the precision is high.

The goal of this work is to develop methods to find all cycles
existing in finite precision implementations of one-dimensional
maps. As a representative example, we consider the logistic
map [18] with 32-bit (single precision) and 64-bit (double
precision) floating-point implementations. As it will be show,
the research problem to find all cycles is very challenging due
to the size of the state space. For the 32-bit implementation
the size of the state space is relatively small (of order 107−109

and the dynamics of the map can be represented using a graph
structure. This approach allows us to efficiently find all cycles
after visiting each possible state only once. For the 64-bit
implementation the size of the state space is much larger (of
order 1016 − 1019). In this case it is necessary to eliminate a
large number of initial condition from the search space.

The remainder of the paper is organized as follows. In
Section II the definition and certain properties of the logistic
map are recalled and floating-point data types considered in
this work are described. In Section III two methods to find all
cycles for finite precision implementations of one-dimensional
maps are proposed and results obtained for single and double
precision implementations of the logistic map are presented.
The results including the number of cycles, their periods, sizes
of basins of attraction, and average convergence times are
reported. The last section concludes the study.

II. Finite precision implementations of the logistic map
The logistic map is a classical example of a simple nonlinear

map with complex dynamics [18]. It is defined by

fa(x) = ax(1 − x), (1)
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where x ∈ [0, 1] and a ∈ [0, 4].
We consider two cases: a = 3.9 and a = 4, for which chaotic

behavior is observed in computer simulations. For a = 4 the
map fa is topologically conjugate [19] to the tent map g(x) =

1−2|x−0.5| and is known to be chaotic [20]. The value a = 3.9
does not belong to any short periodic window and therefore
the map f3.9 is very likely to be chaotic (compare [21], [22]).

The logistic map has a single maximum at c = 0.5. The
interval I = [ f 2

a (c), fa(c)] is invariant [19], i.e. fa(I) = I. It is
the state space of the dynamical system defined by the map fa.
The invariant interval is I = [0.0950625, 0.975] for a = 3.9 and
I = [0, 1] for a = 4.

The most natural way of implementing the logistic map
is to use the computational formula fa(x) = a ∗ x ∗ (1 − x).
Note that other computational formulas although equivalent
from the mathematical point of view (for example fa(x) =

a∗(1− x)∗ x) usually lead to different results in finite precision
implementations (compare [13]).

In this study we consider two of the most common floating-
point formats used nowadays: the binary32 (single precision)
and binary64 (double precision). These formats are defined in
the IEEE 754 standard [23]. According to this standard basic
arithmetic operations (addition, subtraction, multiplication and
division) must round correctly. It follows that computations
conforming to this standard should give reproducible results.

For finite precision implementations the state space is a set
of representable numbers belonging to a certain interval Ω.
Endpoints of these intervals for a = 3.9 and a = 4 when using
single and double precision computations are given in Table I.
For each case we also report the state space size S , which is
the number of representable numbers (floats or doubles) which
belong to Ω.

TABLE I
State space of the logistic map in finite precision computations.

a Ω State space size S
single precision

3.9 [0.09506219625, 0.9750000834] 28 764 580
4 [0.0, 1.0] 1 065 353 217

double precision
3.9 [0.0950624999999996612, 15 442 843 122 253 457

0.975000000000000089]
4 [0, 1] 4 607 182 418 800 017 409

It is interesting to note that for a = 3.9 in both cases the
maximum value (the right endpoint of Ω) is not obtained for
x = c = 0.5. For example, when computations are carried
out in single precision then fa(0.5) = 0.9750000238 and
fa(0.4999999106) = 0.9750000834 > 0.9750000238.

For a = 4 the state space is much larger than for a = 3.9.
This is related to the fact that representable numbers fill
the intervals close to zero much more densely than intervals
located far away from zero. For example, the number of floats
in the intervals [0, 0.1], [0.1, 0.2], and [0.2, 0.3] is 1036831950,
8388609, and 5033166, respectively.

In the following sections a systematic study of dynamical
behaviors of the logistic map with a = 3.9 and a = 4
implemented in the single and double precision floating-point
formats using the computational formula fa(x) = a ∗ x ∗ (1− x)
is carried out.

III. Finding all cycles and their basins of attractions

In this section two methods to find all cycles and analyse
their properties including the size of the basin of attrac-
tion [19], [24] and average convergence times are presented.
The basin of attraction of a given cycle is defined as the subset
of the state space containing points which converge to this
cycle. The basin size s is defined as the number of points
belonging to the basin of attraction. An important number
characterizing the basin of attraction of a cycle is the relative
basin size r defined as the ratio of the basin size s and the state
space size S . The relative basin size is equal to the probability
of convergence to a given cycle starting from random initial
conditions belonging to the state space. For a given initial
point x the convergence time τ(x) is defined as the number of
iterations needed to reach the steady state.

The first method to find all cycles, which will be referred
to as the graph-based method, is based on the construction
of a graph structure representing the dynamics of the map
over the state space. In this approach each point in the state
space is a graph vertex. Graph edges correspond to transitions
between points as defined by the action of the map in finite
precision computations. For a given point xk let us denote
by bk the index of the basin of attraction it belongs to and
by τk = τ(xk) the convergence time. At the beginning of the
procedure all graph vertices are marked as non-visited. During
the procedure we select a non-visited vertex xk and compute
a trajectory starting from this vertex until we reach a visited
vertex (denote it by xl). Based on bl and τl the values bi and τi

are updated for all vertices belonging to the trajectory starting
at xk and ending at xl. The procedure ends when the set of
non-visited vertices is empty. Once this is done, we can easily
compute the number of cycles, their periods, basin sizes and
the average convergence times. It will be shown that the graph
based approach works well for single precision computations
for which the size of the state space is small.

If it is impossible to store all states in a computer memory
then another method has to be used. The simplest idea to find
all cycles is to carry out an exhaustive search in which for
each point in the state space the corresponding steady state
(cycle) is found. This method is not feasible when the number
of initial points is large due to extremely long computation
times. To make this method work we need to limit the number
of initial conditions to be considered. The first idea is to stop
computation of a trajectory

(
f k(x0)

)
k=1,2,... when f k(x0) > x0.

This will significantly speed up computations since for many
initial points the stop condition is satisfied for a small k.
This idea can be extended to skip whole intervals of initial
points using the interval arithmetic approach [25]. In interval
arithmetic, all calculations are performed on intervals in such
a way that the true result is always enclosed within the interval
calculated by the computer. This is achieved by setting proper
rounding modes when carrying out arithmetic operations on
interval endpoints. The second method to find all cycles, which
will be referred to as the trajectory based approach, works as
follows. In the first step, the state space Ω is split into several
test intervals. For each test interval x0 = [x0, x0] enclosures
yk = [y

k
, yk] of f k(x0) for k = 1, 2, . . . , kmax are computed using
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interval arithmetic methods. If for some k ≤ kmax the condition
y

k
> x0 is satisfied then the interval x0 is skipped. In the

second step, for the remaining initial conditions x0 trajectories
( f k(x0))k=1,2,... are computed until either f k(x0) > x0 or a cycle
is found.

Sizes of basins of attraction and average convergence times
of cycles can be estimated using a statistical approach. In
this approach n initial conditions are selected randomly. For
each initial condition xk the corresponding steady state is
found, the basin index bk to which xk belongs to is identified
and the convergence time τk is computed. Using this data
one can estimate the relative basin size for the basin with
the index b as r =

∑n
k=1 δ(b, bk)/n, where δ(i, j) denotes

the Kronecker delta (δ(i, j) = 1 if i = j and δ(i, j) = 0
otherwise). The average convergence time can be estimated
as τaver ≈

(∑n
k=1 τk · δ(b, bk)

)
/
(∑n

k=1 δ(b, bk)
)
.

The statistical approach works only for cycles with large
basins. When the basin of attraction is small compared to
the state space then usually none of the randomly selected
initial points belongs to the basin. In this case one may use a
graph based approach. In this approach one construct a graph
representation of the basin. The basin is initialized as the set of
points belonging to the cycle. During the procedure for each
point in the basin its preimage under the map fa is computed
and added to the basin. The algorithm is continued until
no more points can be added. This method permits finding
the exact values of the relative basin size and the average
convergence time. One has to be careful when computing f −1

a
in a finite precision. In the infinite precision the preimage of
y ∈ I can be computed as x = f −1

a (x) =
{
0.5 ±

√
0.25 − y/a

}
.

f −1
a (y) is a single point for y = fa(c) and contains two points

otherwise. In a finite precision the preimage of a single point
can be empty. It can also be very large, especially for points
close to y = fa(c).

A. Single precision computations
For the single precision case the size of the state space is

relatively small (compare Table I) and the graph based method
can be used. The results are presented in Table II. For each
cycle we report its period p, the maximum position xmax, the
Lyapunov exponent λ, the basin size s, the relative basin size r,
the maximum convergence time τmax, and the average conver-
gence time τaver. The Lyapunov exponent for the cycle (xk)p−1

k=0
is calculated using the formula λ = p−1 ∑p−1

k=0 log( f ′a(xk)).
For a = 4 the state space size is much larger than for a =

3.9 (compare Table I) and hence longer computation time and
more computer memory are needed to solve the problem. The
computation time is approximately 550 seconds for a = 4 and
less than 10 seconds for a = 3.9.

For a = 3.9 there are 11 cycles with periods varying
from 2 to 1415. Most trajectories converge to the period–
1031 solution. The shortest orbit has the smallest basin of
attraction. Lyapunov exponents computed along the cycles
differ significantly. The smallest value λ = 0.4196 and the
largest value λ = 0.6134 are observed for the period-65 cycle
and the period-2 cycle, respectively.

For a = 4 case there are 10 cycles. More than 66% of
trajectories converge to the longest period–4344 cycle. Two

TABLE II
Cycles existing for a = 3.9 and a = 4 for single precision computations, p is
the period, λ is the Lyapunov exponent, s is the basin size, r is the relative
basin size, τmax and τaver are the maximum and average convergence times.

p xmax λ s r τmax τaver
a = 3.9

1415 0.974996209 0.5023 2598525 0.09034 1199 400
1031 0.974999428 0.4983 25783894 0.89638 5269 2551

192 0.974957347 0.5217 60632 0.00211 307 109
175 0.974936426 0.5372 24362 8.47 · 10−4 132 44
82 0.974431634 0.5198 11397 3.96 · 10−4 118 42
65 0.974998713 0.4196 241716 0.00840 731 214
32 0.974006951 0.5200 7118 2.47 · 10−4 211 91
22 0.972594261 0.5318 33845 0.00118 332 150
13 0.971583307 0.4889 2810 9.77 · 10−5 52 26

5 0.934898078 0.6119 240 8.34 · 10−6 18 9
2 0.897435904 0.6134 41 1.43 · 10−6 9 5

a = 4
4344 0.999999881 0.693085 713832287 0.67004 3377 1045

836 0.999932587 0.693148 118740620 0.11146 2149 900
436 0.999998629 0.693187 31822336 0.02987 941 335
143 0.999684513 0.693148 359961 3.38 · 10−4 257 88
136 0.999928474 0.693151 627693 5.89 · 10−4 257 96

5 0.937173307 0.693147 443 4.16 · 10−7 66 32
4 0.991486549 0.693147 5016 4.71 · 10−6 78 37
3 0.969846308 0.693147 696 6.53 · 10−7 66 33
1 0.75 0.693147 64 6.01 · 10−8 63 32
1 0 1.386294 199964101 0.18770 3040 1196

cycles have period 1 (x = 0 and x = 0.75). They are unstable
fixed points for the infinite precision system. Their basins of
attraction are quite different. The basin of attraction of the
fixed point x = 0.75 contains 64 points; the chance to reach
this fixed point starting from random initial conditions is very
low. On the other hand the basin of attraction of the fixed point
x = 0 is relatively large. Almost 19% of initial conditions from
the interval [0, 1] lead to this fixed point. For a = 4, Lyapunov
exponents of all cycles are practically the same (λ = 0.693)
with the exception of the fixed point x = 0 for which the
Lyapunov exponent is λ = 1.386.

B. Double precision computations

For the double precision case the graph based approach
cannot be used due to a very large state space.

The trajectory based approach is applied to find all cycles
existing for a = 3.9. In the elimination step the number of
initial conditions is reduced from 1.54·1017 to 4.59·1013 (more
than 99.7% of initial conditions are eliminated). Trajectories
for the remaining initial conditions are computed and all
cycles are found. The total computation time using a single
core 4.1 GHz processor is approximately 600 days. Parallel
computations are utilized to speed up the process. A statistical
approach with n = 105 initial conditions is used to estimate
basin sizes and average convergence times for the first seven
cycles. For the remaining cycles their basins are found using
the graph based approach. The results obtained are reported
in the first part of Table III.

For a = 3.9 there are 16 cycles with periods varying from 8
to 60858285. Four shortest cycles are shown in Fig. 1. Cycles
with periods p < 1000 have very small basins of attraction. In
consequence, the probability of reaching these cycles starting
from random initial conditions is very small (below 2 · 10−10).
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TABLE III
Cycles existing for a = 3.9 and a = 4 for double precision computations, p is the period, xmax is the maximum position of the orbit, λ is the Lyapunov exponent,

s is the basin size, r is the relative basin size, τmax and τaver are the maximum and average convergence times.

index p xmax λ s r τmax τaver

a = 3.9

1 60858285 0.97499999999999975575 0.496031 0.76412 64974305 21290635
2 18143091 0.97499999999999809042 0.496129 0.11314 14881035 5465865
3 9840432 0.97499999999999520384 0.496157 0.08652 23556226 9570955
4 7724511 0.97499999999999686917 0.495782 0.03438 9192908 3072978
5 1589143 0.97499999999985209609 0.495516 0.00168 2554331 1001401
6 500711 0.97499999999908593118 0.495164 0.00015 932057 259766
7 271845 0.97499999999323849753 0.496231 0.00001 23903 23903
8 18086 0.97499999899347000731 0.496756 500509456 3.24 · 10−8 27547 6611
9 906 0.97499991068666158611 0.504072 2634191 1.71 · 10−10 1337 374

10 521 0.97499350313246058164 0.457566 876787 5.68 · 10−11 742 259
11 400 0.97499901265892674473 0.490862 919817 5.96 · 10−11 1181 402
12 318 0.97499951134441653622 0.481579 2367203 1.53 · 10−10 914 296
13 130 0.97494809835736961912 0.472305 44984 2.91 · 10−12 219 93
14 120 0.97482291442148838456 0.484493 81302 5.26 · 10−12 525 239
15 13 0.97414223928824406062 0.470759 1644 1.06 · 10−13 77 34
16 8 0.97484518785164275823 0.290500 21347 1.38 · 10−12 156 66

a = 4

1 14632801 0.99999999999999833467 0.693147 0.113170 28910266 8633648
2 10210156 0.99999999999999611422 0.693147 0.017525 13468168 5891184
3 5638349 0.99999999999925126559 0.693147 0.676795 101080968 54620675
4 2625633 0.99999999999997657429 0.693147 0.014735 11746307 4086732
5 2441806 0.99999999999869704226 0.693147 0.014405 11866292 5479868
6 1311627 0.99999999998641386778 0.693147 0.000100 1027409 321274
7 960057 0.99999999999176025778 0.693147 0.000210 2069934 1036259
8 510250 0.99999999999727640088 0.693147 0.000035 228269 122879
9 420909 0.99999999992764065926 0.693147 0.000145 1292467 653661

10 234209 0.99999999975801878715 0.693147
11 66637 0.99999999937296479846 0.693147
12 4389 0.99999999999960476060 0.693147
13 3484 0.99999917060451570805 0.693147 5055899141 1.10 · 10−9 4330 1358
14 1392 0.99999713694406588971 0.693147 9017978993 1.96 · 10−9 7427 3354
15 1374 0.99999981511262558964 0.693147 2304383297 5.00 · 10−10 3592 1244
16 84 0.99908941742182222345 0.693147 1226481 2.66 · 10−13 576 278
17 63 0.99825679944966716484 0.693147 621982 1.35 · 10−13 566 272
18 8 0.99548659390270277658 0.693147 22502 4.88 · 10−15 519 256
19 1 0.75 0.693147 2 4.34 · 10−19 1 0.5
20 1 0.0 1.386294 0.162880 27395187 9947016

The largest basin of attraction is observed for the longest
cycle. More than 76% of trajectories converge to this cycle.
The longest convergence time observed is 64974305, while
the average convergence time is below 3 · 107. Lyapunov
exponents calculated along the cycles belong to the interval
[0.2905, 0.5041]. The largest deviation from the average value
λ = 0.496 is observed for the period–8 cycle (λ = 0.2905).

Similar computations are carried out for a = 4. In the
elimination step the number of initial conditions is reduced
from 4.61 · 1018 to 6.29 · 1013 (more than 99.998% initial
conditions are eliminated). Remaining initial conditions are
handled in the same way as for the case a = 3.9. The
total computation time to find all cycles for a = 4 using a
single core 4.1 GHz processor is approximately 500 days. The
results obtained are reported in the second part of Table III.
A statistical approach with n = 105 initial conditions is
used to estimate basin sizes and average convergence times
for the cycles with indices 1–9 and 20. For the cycles with
indices 13–19 their basins are found using the graph based
approach. For the cycles with indices 10–12 neither method
works. Their basins are too small to be detected using the
statistical approach and too large for the graph based approach.
Similarly to the single precision case the Lyapunov exponents
computed along the orbits are the same (λ = 0.693147) with
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Fig. 1. Shortest periodic trajectories existing for a = 3.9 for double precision
computations; (a) p = 8, (b) p = 13, (c) p = 120, (d) p = 130.

the exception of the last cycle (λ = 1.386294).
For a = 4 there exist 20 cycles. Most trajectories (above

67%) converge to the cycle with period 5638349 (index 3
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in Table III). The case a = 4 has been studied by many
researchers. For example, cycles with indices 1–7 and 20 are
reported in [12]. In [6], the cycles with indices 1-10,12 and
20 are reported. The cycles with indices 1,3,4,5, and 20 are
reported in [13]. The results obtained in [12], [6], [13] are
based on computing trajectories starting from a small number
of initial conditions (1000 or 10000). This method can find
cycles with a large basin of attraction only.

Table III reports all cycles existing in the double precision
implementation of the logistic map. These results may be
useful for researchers studying the dynamics of the logistic
map and other one-dimensional maps. Note that in order to
find the majority of cycles (including those with very small
basins of attraction) it is sufficient to consider initial conditions
from a very small subset of the state space (in the examples
considered x ∈ [0.9741, 0.975] for a = 3.9 and x ∈ [0.9954, 1]
for a = 4). Additionally, when searching for short cycles
(which are more difficult to find) it is sufficient to consider
short trajectories because for short cycles the maximum con-
vergence time is also short. These guidelines may be helpful
in studying effects of finite precision computations on the
dynamics of one-dimensional maps.

The results presented in Table III show that the double pre-
cision computations may lead to wrong results when studying
the dynamics of one-dimensional maps. In both cases (a = 3.9
and a = 4) the average convergence time is below 6 · 107.
Moreover, there exist initial conditions leading to extremely
short periods. Relatively small convergence times and short
cycle lengths may influence the results (such as Lyapunov
exponents) produced in the double precision computations.
An extra care has to be taken in verifying that a computer
generated trajectory is not one of short cycles.

These results also indicate that double-precision implemen-
tations of the logistic map may cause serious disadvantages
in chaos based applications like pseudo random number gen-
erators or chaos-based communication. A proper selection
of initial conditions is crucial for the proper operation of
applications based on chaotic maps.

IV. Conclusions

Systematic methods to find all periodic solutions of fi-
nite precision implementations of chaotic maps have been
proposed. All cycles existing in single and double precision
implementations of the logistic map for selected parameter
values have been found. According to our knowledge, the
results of this study are the first example reporting all cycles
existing in the double precision implementation of the logistic
map. Using the graph based approach basins of attraction and
convergence times were found for cycles with small basins.
The probability of convergence to a given cycle and average
convergence times have been estimated for cycles with large
basins using the statistical approach. It was shown that finite
precision implementations of the logistic map may produce
very short cycles. The proposed methods are general and can
be applied without modifications to study other chaotic one-
dimensional systems.
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