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Continuation-Based Method to Find Periodic
Windows in Bifurcation Diagrams With

Applications to the Chua’s Circuit
With a Cubic Nonlinearity

Zbigniew Galias , Senior Member, IEEE

Abstract— The existence of periodic windows in the parameter
space is a common feature of nonlinear systems capable to
produce chaotic behavior. Detection of positions of periodic
windows is important both from the theoretical and practical
points of view. In this work, a systematic method to detect
periodic windows in bifurcation diagrams is proposed. The search
method is a combination of the trajectory monitoring approach
to find unstable periodic orbits and the continuation method to
calculate positions of periodic windows. The method is applied
to the Chua’s circuit with a smooth nonlinearity. It is shown
that the proposed method outperforms standard methods to find
periodic windows in bifurcation diagrams.

Index Terms— Bifurcation diagram, periodic window, chaos,
Chua’s circuit.

I. INTRODUCTION

CONSTRUCTION of bifurcation diagrams is one of the
main tools to study the dynamics of nonlinear systems

under parameter variation and to detect various bifurcation
types [1]–[6].

Single parameter bifurcation diagrams are constructed
by plotting steady state trajectories versus the value of a
selected system’s parameter called the bifurcation parame-
ter. Two-parameter and three-parameter bifurcation diagrams
are obtained by finding steady state solutions in a two- or
three-dimensional parameter space and plotting regions in the
parameter space with different types of steady state behavior
(equilibrium, period–n orbit, chaos, divergence) using different
colors [7], [8].

One of the frequently observed routes leading to chaotic
behavior is the period-doubling cascade [2], [9]–[12]. In this
scenario, the chaotic region starts at the accumulation point
of an infinite sequence of period-doubling bifurcations. Com-
monly, within the chaotic region one may encounter periodic
windows—regions with stable periodic behavior. Finding the
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positions of periodic windows is important both from the
theoretical and practical points of view. Knowing the widths
of periodic windows one may compute the measures of the set
of regular parameters (with periodic behavior) and stochastic
parameters (with chaotic behavior). Knowing the positions of
periodic windows helps in selecting parameters of the system
for the proper operation of chaos-based applications, including
random number generators [13], chaos-based encryption [14]
and secure communication [15], [16]. Finding periodic win-
dows, especially the narrow ones, is a challenging numerical
problem [17].

The main purpose of this study is the development of
efficient methods to find periodic windows in bifurcation
diagrams. The proposed method is a combination of the
trajectory monitoring approach to find unstable periodic orbits
for a selected point in the parameter space and the continuation
method to locate periodic windows in the region of interest.

As a representative example of a nonlinear system, we con-
sider the Chua’s circuit [18], which is a classical example of
an electronic circuit with various types of dynamical behaviors
including chaos. The Chua’s circuit with a piecewise linear
nonlinearity has been substantially studied over the last four
decades [19]–[22]. Bifurcation diagrams are constructed in [2].
The existence of Shilnikov and topological chaos is proved
in [23] and [24]. Bifurcations diagrams are constructed for
the dual Chua’s system in [25].

The Chua’s circuit with a third order polynomial (cubic)
nonlinearity is introduced in [26]. In [27], the existence of
chaos in this circuit for various parameter values is proved.
The case of the double-scroll attractor is studied in [28].
In [29], a different smooth nonlinearity in the Chua’s circuit
is considered.

In this work, we consider the Chua’s circuit with a cubic
nonlinearity and study the existence of periodic windows
for this system. Preliminary version of the results presented
in this work are described in [30], where the study of
periodic windows in a neighborhood of the point in the
parameter space where the spiral attractor exists is carried
out. Here, a more detailed description of the search method
is presented, the Chua’s circuit with a different bifurcation
parameter is considered, and a more challenging case of the
double-scroll attractor is investigated. In neighborhoods of
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Fig. 1. The Chua’s circuit.

points in the parameter space for which the spiral attractor
and the double-scroll attractor are observed, several periodic
windows are found and their properties are studied. Based on
the results obtained, the dynamics of the Chua’s circuit in these
two regions of the parameter space is compared.

The layout of the remaining part of this paper is as follows.
The definition of the Chua’s circuit is given in Section II.
A novel systematic method to find periodic windows is
presented in Section III. Section IV presents results on the
existence of periodic windows in bifurcation diagram of the
smooth Chua’s circuit. The results obtained are compared with
the result produced by the standard method based on finding
steady state behavior for selected points in the parameter
space. It is shown that the standard method fails to find narrow
windows and the reasons for its failure are explained.

II. THE CHUA’S CIRCUIT

The dynamics of Chua’s circuit is given by the following
set of equations

dx

dt
= y − x

RC1
− g(x)

C1
,

dy

dt
= x − y

RC2
+ z

C2
,

dz

dt
= − y

L
− R0z

L
. (1)

We consider the case with nonlinear function g being a
cubic polynomial [26] defined by g(x) = g1x + g2x3. The
Chua’s circuit is presented in Fig. 1.

In this study, the parameter R ∈ [1.96, 2.16] is selected
as a bifurcation parameter. Other parameters are fixed at
C1 = 0.7, C2 = 7.8, L = 1.891, R0 = 0.01499, g1 =
−0.59, and g2 = 0.02. The origin (0, 0, 0) is an unstable
equilibrium of (1). Additionally, there exists a symmetric pair
of unstable equilibria given by ±u� = ±(x�, y�, z�), where

x� =
√
−(g1 + (R+R0)−1)g−1

2 , y� = R0(R + R0)
−1x�, and

z� = −(R + R0)
−1x�.

Example trajectories obtained for R = 2.1 and R = 2.0 are
shown in Fig. 2. In the first case the spiral attractor is observed,
while in the second case the well-known double-scroll attractor
exists.

In the following, the system (1) is analyzed using the
concept of a return map (also called a Poincaré map), which
converts the continuous time system to a discrete time system.
Let us define the set � = {u = (x, y, z) : |x | = x�} which
is the union of two parallel planes �1 = {u = (x, y, z) : x =
+x�} and �2 = {u = (x, y, z) : x = −x�}. The set � is called
the return set or the Poincaré section. Note that the equilibria

Fig. 2. Example trajectories; (a) R = 2.1, (b) R = 2.0. Equilibria are plotted
using the × symbol.

±u� belong to � and that � changes with the bifurcation
parameter R. The return set � is selected in such a way that
trajectories of the continuous dynamical system (1) intersect
� transversally. The return map P : � �→ � is defined as
follows. The image P(u) of u ∈ � under the return map
is the first intersection point of the trajectory {u(t) : t > 0}
started at u(0) = u with the return set �.

A trajectory (uk)k≥0 of the Poincaré map P starting at
the point u0 ∈ � is given by uk+1 = P(uk), k ≥ 0.
Example trajectories of P for R = 2.1 and R = 2 are plotted
in Fig. 3. In Fig. 3(b) intersections of the trajectory with the
planes �1 and �2 are plotted using different colors.

Note that iterations of the return map P correspond to
intersections of trajectories of (1) with � in both directions.
In consequence, all periodic orbits intersecting � transversally
have periods which are even numbers. In the study of periodic
orbits it is more convenient to consider intersections in a
single direction only. This can be achieved by considering
the Poincaré map P+ with the return set �+ = {u =
(x, y, z) : |x | = x�, x · ẋ > 0}.

A bifurcation diagram for the map P+ with the bifurcation
parameter R ∈ [1.96, 2.16] is shown in Fig. 4. 4001 values
from the interval R ∈ [1.96, 2.16] are considered. In each
case, a trajectory of P+ with the length 20000 is computed.
First 10000 iterations are skipped in the hope to reach the
steady state and the next 10000 iterations are plotted. For
R = 2.16 one may see a period–2 orbit of P+. For smaller R
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Fig. 3. Trajectories of the return map; (a) R = 2.1, (b) R = 2.

the period-doubling cascade can be seen. Chaotic region starts
at the end of the period-doubling cascade. In the bifurcation
diagram one may see several periodic windows—intervals
of parameter values for which the observed steady state
trajectory is periodic. In Section IV, we study the existence of
periodic windows in small intervals enclosing parameter values
R = 2.1 and R = 2.0 for which different types of chaotic
attractors are observed in simulations (compare Fig. 2).

III. SEARCH FOR PERIODIC WINDOWS IN

BIFURCATION DIAGRAMS

Let μ be the selected bifurcation parameter of the con-
sidered nonlinear system. We discuss the problem how to
efficiently find periodic windows existing in the interval
μ ∈ [μmin, μmax].

A. Brute Force Approach

The most frequently used method to find periodic windows
is the brute force approach in which one finds steady state
behavior for test parameter values belonging to the parameter
range [μmin, μmax]. For each test parameter value a trajectory
of a specified length is computed and its steady state is studied.
If the steady state is periodic then a periodic window is
found. Two parameters of this method are important for its
proper operation: the length m of generated trajectories and the
number n of test points. Increasing m increases the probability
that a steady state is reached. Large n is required to find narrow
periodic windows.

B. Continuation Based Approach

Let us now introduce the continuation based method to
find periodic windows. In the first part of the algorithm,

a parameter value μ̄ in the interval [μmin, μmax] is selected
and unstable periodic orbits existing for this parameter value
are found using the method of close returns. In this method,
a long trajectory (uk)

m−1
k=0 is computed and δ-pseudo periodic

orbits are found. δ-pseudo periodic orbit with the period p
is a part of a trajectory ψn,p = (uk)

n+p−1
k=n such that the

condition ‖un+p−un‖ ≤ δ is satisfied. Next, accurate positions
of periodic orbits are calculated using the Newton method.
To investigate periodic orbits of P we consider the map F
defined by

F

⎛
⎜⎜⎝

u0
u1
. . .

u p−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

P(u0)− u1
P(u1)− u2

. . .
P(u p−1)− u0

⎞
⎟⎟⎠ . (2)

It is clear that if F(ξ) = 0, where ξ = (u0, u1, . . . , u p−1)
then P p(u0) = u0, which means that ξ is a period– p orbit
of P . For each δ-pseudo periodic orbits ψn,p the Newton
operator

N(ξ) = ξ − (
F ′(ξ)

)−1
F(ξ). (3)

is applied iteratively ξn+1 = N(ξn) with the initial condition
ξ0 = ψn,p . The convergence of the Newton method indicates
that a periodic orbit exists in a neighborhood of the δ-pseudo
periodic orbit. The Newton method to find a periodic orbit
starting from the initial condition ξ is presented as the Algo-
rithm 1. The convergence of the Newton operator is controlled
by the parameter εnewton. The maximum allowed distance from
the initial orbit is controlled by the parameter dmax.

Algorithm 1 Newton Method
Input: μ is the parameter value
Input: ξ is the initial guess of the position of the orbit
Output: on success ξ ′ is an accurate position of the orbit
1: function NEWTON(μ, ξ, ξ ′)
2: ξ ′ ← ξ
3: for i = 1, 2 . . . , nnewton do
4: h ← (

F ′(ξ ′)
)−1

F(ξ ′) 
 F depends on μ
5: ξ ′ ← ξ ′ − h 
 Newton iteration
6: if ‖h‖ ≤ εnewton then 
 convergence achieved
7: return true
8: end if
9: if ‖ξ ′ − ξ‖ > dmax then 
 ξ ′ is too far from ξ

10: return false 
 no convergence
11: end if
12: end for
13: return false 
 too many iterations
14: end function

The procedure to find periodic orbits for a given parameter
value μ using the method of close returns is presented as the
Algorithm 2. In the algorithm m is the length of the generated
trajectory and pmax is the maximum period of orbits to be
detected. Accurate positions of periodic orbits are used to
check what is the minimal period of each orbit and to generate
the list S of unique periodic orbits existing for the selected
parameter value μ.
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Fig. 4. Bifurcation diagram of P+, R ∈ [1.96, 2.16].

Algorithm 2 Find Periodic Orbits
Input: μ is the parameter value
Output: S is the set of periodic orbits found for μ
1: procedure FINDPERORBITS(μ,S)
2: Select u0
3: S ← ∅
4: for i = 1, 2 . . . ,m − 1 do
5: uk ← P(uk−1) 
 P depends on μ
6: for p = 1, 2 . . . , pmax do
7: if k ≥ p and ‖uk − uk−p‖ < δ then
8: ξ ← (uk−p, uk−p+1, . . . , uk−1)
9: if NEWTON(μ, ξ, ξ ′) then

10: S ← S ∪ {ξ ′}
11: end if
12: end if
13: end for
14: end for
15: end procedure

In the second part of the algorithm the continuation method
is applied for each unstable periodic orbit to find periodic
windows in μ ∈ [μmin, μmax]. Let ξμ̄ = (uk)

p−1
k=0 be a periodic

orbit existing for μ̄. The parameter value μ = μ̄ and the
position of the orbit ξμ = ξμ̄ are the initial values for the
continuation method. During the algorithm μ is modified by
�μ (increased or decreased) until the endpoint of [μmin, μmax]
is reached or a periodic window is found. After each parameter
change the Newton method is applied to find the position
of the orbit for the tested value μ′ = μ + �μ of the
parameter. If the Newton method does not converge or if
the Newton method converges to a periodic orbit located far
from ξμ then the computations are repeated for a smaller
step size �μ. In the opposite case the parameter value and
the position of the orbit are updated, the step size �μ is

increased and the stability of ξμ is studied. If the orbit is
stable then the computations are stopped because a periodic
window is found. The computations are also stopped when μ
is outside [μmin, μmax], or �μ is smaller than the minimum
step size �min. The procedure to find a periodic window using
the continuation method starting at the parameter value μ
and the periodic orbit ξ existing for this parameter value is
presented as the Algorithm 3. The initial value of the step size
is controlled by the parameter �0 > 0. The search direction
is defined by the sign of the parameter d .

Algorithm 3 Find a Periodic Window
Input: μ is the parameter value
Input: ξ is the position of a periodic orbit for μ
Input: d = ±1 defines the search direction
Output: on success [μ1, μ2] is a periodic window
1: function FINDPERWIN(μ, ξ, d, μ1, μ2)
2: �μ ← sgn(d) ·�0 
 select direction
3: while |�μ| > �min and μ ∈ [μmin, μmax] do
4: if NEWTON(μ+�μ, ξ, ξ ′) and ‖ξ − ξ ′‖ ≤ ε then
5: μ ← μ+�μ
6: ξ ← ξ ′
7: if ISSTABLE(μ, ξ ) then 
 window found
8: FINDPERWINENDPOINT(μ, ξ,−1, μ1)
9: FINDPERWINENDPOINT(μ, ξ,+1, μ2)

10: return true
11: end if
12: �μ ← 1.2 ∗�μ
13: else
14: �μ ← 0.5 ∗�μ
15: end if
16: end while
17: return false
18: end function
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Once a stable periodic orbit is detected the continuation
method is applied in both directions to find endpoints of
the corresponding periodic window. The initial values for the
continuation method are the parameter value μ for which the
stable periodic orbit exists and the position ξ of the stable
periodic orbit. When finding endpoints of periodic windows
the tested parameter value μ′ = μ + �μ is accepted if the
Newton method converges and the periodic orbit is stable.
Otherwise, the computations are repeated for a smaller step
size �μ. The procedure to find one of the endpoints of
a periodic window is presented as the Algorithm 4. The
input parameter d is used to select which endpoint is being
computed.

Algorithm 4 Find Periodic Window Endpoint
Input: μ belonging to a periodic window
Input: ξ is the position of a stable periodic orbit
Output: μend is a periodic window endpoint
1: procedure FINDPERWINENDPOINT(μ, ξ, d, μend)
2: μend ← μ
3: �μ ← sgn(d) ·�0 
 select direction
4: while |�μ| > �min and μend ∈ [μmin, μmax] do
5: if NEWTON(μend + �μ, ξ, ξ ′) and ‖ξ − ξ ′‖ ≤ ε

and ISSTABLE(μend +�μ, ξ ′) then
6: μend ← μend +�μ
7: ξ ← ξ ′
8: �μ ← 1.2 ·�μ
9: else

10: �μ ← 0.5 ·�μ
11: end if
12: end while
13: end procedure

The complete procedure to find periodic windows in the
parameter range [μmin, μmax] is presented as the Algorithm 5.
In this procedure one first finds unstable periodic orbits exist-
ing for μmin and μmax and then looks for periodic windows by
continuing periodic orbits in the correct direction. It is possible
to select additional points in the parameter range [μmin, μmax]
(for example the middle point) and start the continuation from
there. In this case one should continue periodic orbits in both
directions. The procedure is completed after processing all
unstable periodic orbits found in the first part of the algorithm.

IV. PERIODIC WINDOWS FOR THE CHUA’S CIRCUIT

Here, we present results on the existence of periodic win-
dows for the Chua’s circuit close to the parameter values
R = 2.1 and R = 2. The latter case is more challenging
due to the fact that the double scroll attractor is singular in
the sense that it contains the origin—an unstable equilibrium.
As a consequence some trajectories belonging to the attractor
stay close to the origin for a long time and in consequence
the time needed to return to the transversal section � defining
the return map may be very large. This results in numerical
problems when evaluating the Newton operator and using the
continuation method.

Algorithm 5 Find Periodic Windows in [μmin, μmax]
Input: [μmin, μmax] is the parameter range
Output: W the set of periodic windows
1: function FINDPERWINDOWS(μmin, μmax,W )
2: W ← ∅ 
 the set of periodic windows
3: FINDPERORBITS(μmin,S)
4: for ξ ∈ S do
5: if FINDPERWIN(μmin, ξ,+1, μ1, μ2) then
6: W ← W ∪ {[μ1, μ2]}
7: end if
8: end for
9: FINDPERORBITS(μmax,S)

10: for ξ ∈ S do
11: if FINDPERWIN(μmax, ξ,−1, μ1, μ2) then
12: W ← W ∪ [μ1, μ2]
13: end if
14: end for
15: end function

A. Brute Force Approach

Bifurcation diagrams of P+ for intervals R ∈ [2.09, 2.11]
and R ∈ [1.99, 2.01] are plotted in Fig. 5. In the following n
denotes the number of test parameter values selected from a
given interval, N denotes the number of test parameter values
for which the steady state trajectory is periodic, and W denotes
the number of periodic windows detected. In each case n =
2001 equidistant parameter values are selected and trajectories
of the length m = 20000 are computed. The second half of
each trajectory is used to plot bifurcation diagrams. One can
see several relatively wide periodic windows.

More detailed bifurcation diagrams for R ∈ [2.099, 2.101]
and R ∈ [1.999, 2.001] computed with n = 2001 test
parameter values are shown in Fig. 6. Fewer periodic windows
than in Fig. 5 can be seen and in general periodic windows are
narrower. In the first case (R ∈ [2.099, 2.101]) the steady-state
trajectory is periodic in N = 38 cases and W = 12 periodic
windows are detected. For the interval R ∈ [1.999, 2.001]
only for a single parameter value the observed trajectory is
eventually periodic and one periodic window is found.

To detect more periodic windows the computations are
repeated with larger n. The results obtained for n =
1001, 2001, 10001, 100001 are given in Table I. The number
of periodic windows found in the intervals R ∈ [2.099, 2.101]
and R ∈ [1.999, 2.001] is W = 51 and W = 12, respectively.

It will be shown that the number of periodic windows is
much larger. There are two reasons for which the brute force
approach may fail to find more periodic windows. The first one
is related to the width of periodic windows. Most low-period
windows existing in the intervals R ∈ [2.099, 2.101] and
R ∈ [1.999, 2.001] are very narrow. It follows that one has
to select a large number n of test parameter values to detect
such windows. As an example, let us assume that a periodic
window in the parameter range R ∈ [2.099, 2.101] has the
width w = 10−10. In this case, one has to use n ≥ 2 × 107

to ensure that at least one test parameter value belongs to this
window.
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Fig. 5. Bifurcation diagrams of P+; (a) R ∈ [2.09, 2.11], (b) R ∈
[1.99, 2.01].

TABLE I

PERIODIC WINDOWS FOUND FOR R ∈ [2.099, 2.101] AND
R ∈ [1.999, 2.001] USING THE BRUTE FORCE APPROACH,

n IS THE NUMBER OF TEST POINTS, N IS THE NUMBER OF

TEST POINTS WITH A PERIODIC STEADY STATE, W
IS THE NUMBER OF PERIODIC WINDOWS FOUND,

wtotal IS THE TOTAL WIDTH OF PERIODIC

WINDOWS FOUND, t IS THE

COMPUTATION TIME

The second reason is related to a possibly long time needed
for a trajectory to converge to a periodic attractor. We will
show that in many cases the average convergence time to
reach a periodic attractor existing in R ∈ [2.099, 2.101] is
well above 105. The length m = 20000 of trajectories used
in the computations presented above is not sufficient to detect
these attractors.

Fig. 6. Bifurcation diagrams of P+; (a) R ∈ [2.099, 2.101], (b) R ∈
[1.999, 2.001].

B. Unstable Periodic Orbits

In the remaining part of this section, we find periodic
windows existing in the parameter ranges R ∈ [2.099, 2.101]
and R ∈ [1.999, 2.001] using the approach presented in
Section III-B. In the first step of this approach for selected
parameter values unstable periodic orbits are found. The search
for δ-pseudo periodic orbits is carried out for the maximum
period pmax = 20 and with the parameter δ = 0.01. Accurate
positions of unstable periodic orbits are found using the
Newton method. These results are used to verify whether the
period of the orbit found is minimal and to select unique
periodic orbits from the set of candidates. The number of
unstable periodic orbits found for endpoints and midpoints
of the ranges R ∈ [2.099, 2.101] and R ∈ [1.999, 2.001] are
reported in Table II.

For R ∈ {2.099, 2.1, 2.101} the length of the trajectory used
in the method of close returns is m = 2×107. As an example
let us discuss the case R = 2.099, for which 49939 unstable
periodic orbits are found. Fig. 7(a) shows how the number
of periodic orbits grows with m. One can see that the plots
become flat when m grows. The length m of the trajectory
which has to be considered to detect all periodic orbits of a
given period p grows with p. During the last 6×106 iterations
no cycles with periods p ≤ 17 are revealed. Therefore, one
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TABLE II

THE NUMBER OF UNSTABLE PERIODIC ORBITS FOUND
FOR DIFFERENT VALUES OF R

can expect that for R = 2.099 there is no other periodic orbit
with the period p ≤ 17.

For R ∈ {1.999, 2, 2.001} the length of the trajectory used
in the method of close returns is m = 108. The number
of periodic orbits found is almost 10 times larger than for
R ∈ [2.099, 2.101]. This confirms that the dynamics of the
Chua’s circuit in a neighborhood of the double-scroll attractor
is much more complicated than in a neighborhood of the spiral
attractor. Let us consider the case R = 2.001 for which 382596
unstable periodic orbits are found. Fig. 7(b) shows how the
number of periodic orbits found changes with m. For p ≥ 10
plots do not stabilize when m increases. Thus, one can expect
that more periodic orbits exist for p ≥ 10.

C. Continuation Based Method for R ∈ [2.099, 2.101]
Unstable periodic orbits existing for R = 2.099 are con-

tinued by increasing R to find periodic windows within the
range R ∈ [2.099, 2.101]. In Table III, the results obtained
for periods p ≤ 20 are shown. W is the number of periodic
windows and wtotal is the total width of periodic windows
with the period p. We also report the minimum width wmin
and the maximum width wmax. Similar computations are also
done for R = 2.101. All unstable periodic orbits existing for
R = 2.101 can be continued by decreasing R past R = 2.099.
In consequence, these computations do not reveal any periodic
windows within the range R ∈ [2.099, 2.101].

For small periods (p ≤ 11) the number of periodic windows
in the interval R ∈ [2.009, 2.101] is equal to the half of the
difference between the number of periodic orbits existing for
R = 2.009 and R = 2.101. This relation is also satisfied
approximately for 12 ≤ p ≤ 17. A similar phenomenon is
observed in bifurcation diagrams of the logistic map (compare
[31]), which indicates that periodic windows emerge in a
similar fashion for these two systems.

In total, 6288 periodic windows are found. This shows that
the proposed method outperforms the brute force approach,

Fig. 7. The number of period-p orbits found versus the length m of the
monitored trajectory; (a) R = 2.099, (b) R = 2.001.

TABLE III

PERIOD WINDOWS EXISTING FOR R ∈ [2.009, 2.101], W IS THE

NUMBER OF PERIODIC WINDOWS,wtotal IS THE TOTAL WIDTH

where only 51 windows are identified. The total width wtotal =
6.066 × 10−5 of periodic windows with period p ≤ 20 is a
lower bound of the measure of the set of regular parameters.
From the fact that wtotal is less than 2% of the width of the
interval R ∈ [2.099, 2.101] it follows that the Chua’s circuit
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Fig. 8. Examples of low period attractors existing for R ∈ [2.009, 2.101]; variable ranges: x ∈ [−0.5, 3.4], y ∈ [−0.6, 0.6].

TABLE IV

PERIOD WINDOWS EXISTING FOR R ∈ [1.999, 2.001], W IS THE

NUMBER OF PERIODIC WINDOWS,wtotal IS THE TOTAL WIDTH

in this region is mostly chaotic. Let us recall that for R =
2.1 the spiral attractor is obtained in simulations. The closest
periodic attractor found is the period–17 cycle existing for R =
2.1000000225456. The width of the corresponding window is
w ≈ 5× 10−14.

Example periodic attractors existing in the range R ∈
[2.099, 2.101] are shown in Fig. 8. For each period–p window
with p ≤ 10 a parameter value in this window is selected and
the corresponding periodic attractor is plotted.

D. Continuation Based Method for R ∈ [1.999, 2.001]
Similar calculations are carried out to locate periodic win-

dows for R ∈ [1.999, 2.001]. Unstable periodic orbits found
for R = 1.999, R = 2, and R = 2.001 are continued

TABLE V

CONVERGENCE TIMES FOR SELECTED CYCLES

to find positions of periodic windows within the interval
R ∈ [1.999, 2.001]. In this case all three initial points in
the parameter space produce some periodic windows opposite
to the results obtained for the range R ∈ [2.099, 2.101].
The combined results are shown in Table IV. 3397 periodic
windows with periods p ≤ 20 are found. The results confirm
that the continuation based method outperforms the brute
force approach (12 periodic windows located). The minimum
distance from the point R = 2.0 with the double-scroll
attractor and the periodic window found is d ≈ 6.77× 10−7.
A period-20 attractor exists for R = 1.999999323223811.

The total width of periodic windows is wtotal = 1.359 ×
10−6, which is approximately 45 times smaller than the
total width of periodic windows found in the range
R ∈ [2.099, 2.101]. The widest periodic window is observed
for the period p = 15. Its width is w = 2.364×10−7, which is
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Fig. 9. Examples of low period attractors existing for R ∈ [1.999, 2.001]; variable ranges: x ∈ [−3.4, 3.4], y ∈ [−0.6, 0.6].

two orders of magnitude smaller than the width of the widest
periodic window existing in the range R ∈ [2.099, 2.101].
In general, periodic windows in the range R ∈ [1.999, 2.001]
are narrower than in the range R ∈ [2.099, 2.101]. The results
presented in Table IV confirm that the Chua’s circuit for R ∈
[1.999, 2.001] is “more chaotic” than for R ∈ [2.099, 2.101].

Example periodic attractors existing in the range
R ∈ [1.999, 2.001] are shown in Fig. 9. The first 14 attractors
are selected from periodic windows with periods p ≤ 9.
The last two attractors are selected from the widest periodic
windows with periods 14 and 15, respectively. All periodic
attractors visit both parts of the state space. Note that the
last two periodic attractors are located further away from
the origin than other attractors shown in Fig. 9. Another
observation is that they visit a small neighborhood of other
unstable equilibria. This may be an explanation of stability
properties of these periodic attractors and widths of the
corresponding periodic windows.

E. Convergence to Periodic Attractors

Let us assume that for a selected parameter value a periodic
attractor of the return map exists. For a given initial point u, let
us define the convergence time τ (u) as the number of iterations
of the return map needed for the trajectory started at u to con-
verge to the periodic attractor. Clearly, the convergence time

τ (u) depends on the initial point u. Immediate convergence
is observed for initial conditions belonging to a small neigh-
borhood of the attractor. On the other hand, the convergence
time may be arbitrarily long for initial conditions located very
close to one of the unstable periodic orbits. An important
property of a periodic attractor is the average convergence
time τaver defined as the average number of iterations of the
return map needed to reach the attractor starting from random
initial conditions. An estimate of the average convergence time
can be computed as

τaver ≈ 1

K

K∑
k=1

τ (uk), (4)

where τ (uk) are convergence times for trajectories started at
randomly selected initial points u1, u2, . . . , uK . The results
obtained for selected periodic attractors existing for R ∈
[2.099, 2.101] are presented in Table V. During the compu-
tations K = 100 initial points are tested. For each attractor
we report the parameter value R, the period p, the average
convergence time τaver, the maximum convergence time τmax
and the width w of the corresponding periodic window. Note
that the average convergence time grows with the period p
and for periods p ≥ 13 the average convergence time exceeds
105. Finding periodic attractors with large convergence times
using the standard approach would require computation of
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very long trajectories. Recall that in the brute force approach,
trajectories of the length 20000 were computed. This explains
the low number of periodic windows found using the standard
approach.

Also note that the reduction of the window width w cor-
responds to the growth of the average convergence time τaver
(compare Table V). This means that the two reasons which
make it difficult to locate narrow periodic windows happen
simultaneously. Narrow windows require dense sampling of
the parameter space and long integration time to reach the
corresponding periodic attractor.

V. CONCLUSION

A novel systematic approach based on the continuation
method to locate periodic windows was introduced. The use-
fulness of the proposed approach was shown by locating a
large number of periodic windows in bifurcation diagrams of
the Chua’s circuit. Measures of the set of regular parameters
were estimated. Properties of periodic windows including their
width were studied using the continuation method. Average
convergence times for selected periodic attractors were com-
puted numerically. The results obtained confirm that attractors
in narrow periodic windows have large convergence times,
which makes them difficult to detect using the standard method
of monitoring trajectories. The proposed method is general; it
can be used without modifications to study other dynamical
systems.
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