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Continuation Based Method to Find Periodic
Windows in Bifurcation Diagrams with Applications

to the Chua’s Circuit with a Cubic Nonlinearity
Zbigniew Galias, Senior Member, IEEE

Abstract—The existence of periodic windows in the parameter
space is a common feature of nonlinear systems capable to
produce chaotic behavior. Detection of positions of periodic
windows is important both from the theoretical and practical
points of view. In this work, a systematic method to detect
periodic windows in bifurcation diagrams is proposed. The search
method is a combination of the trajectory monitoring approach
to find unstable periodic orbits and the continuation method to
calculate positions of periodic windows. The method is applied
to the Chua’s circuit with a smooth nonlinearity. It is shown
that the proposed method outperforms standard methods to find
periodic windows in bifurcation diagrams.

Index Terms—bifurcation diagram, periodic window, chaos,
Chua’s circuit.

I. INTRODUCTION

Construction of bifurcation diagrams is one of the main
tools to study the dynamics of nonlinear systems under pa-
rameter variation and to detect various bifurcation types [1],
[2], [3], [4], [5], [6].

Single parameter bifurcation diagrams are constructed by
plotting steady state trajectories versus the value of a se-
lected system’s parameter called the bifurcation parameter.
Two-parameter and three-parameter bifurcation diagrams are
obtained by finding steady state solutions in a two- or three-
dimensional parameter space and plotting regions in the pa-
rameter space with different types of steady state behavior
(equilibrium, period–n orbit, chaos, divergence) using different
colors [7], [8].

One of the frequently observed routes leading to chaotic
behavior is the period-doubling cascade [9], [10], [2], [11],
[12]. In this scenario, the chaotic region starts at the ac-
cumulation point of an infinite sequence of period-doubling
bifurcations. Commonly, within the chaotic region one may
encounter periodic windows—regions with stable periodic
behavior. Finding the positions of periodic windows is im-
portant both from the theoretical and practical points of view.
Knowing the widths of periodic windows one may compute
the measures of the set of regular parameters (with periodic
behavior) and stochastic parameters (with chaotic behavior).
Knowing the positions of periodic windows helps in selecting
parameters of the system for the proper operation of chaos-
based applications, including random number generators [13],
chaos-based encryption [14] and secure communication [15],
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[16]. Finding periodic windows, especially the narrow ones,
is a challenging numerical problem [17].

The main purpose of this study is the development of
efficient methods to find periodic windows in bifurcation
diagrams. The proposed method is a combination of the
trajectory monitoring approach to find unstable periodic orbits
for a selected point in the parameter space and the continuation
method to locate periodic windows in the region of interest.

As a representative example of a nonlinear system, we
consider the Chua’s circuit [18], which is a classical example
of an electronic circuit with various types of dynamical
behaviors including chaos. The Chua’s circuit with a piecewise
linear nonlinearity has been substantially studied over the last
four decades [19], [20], [21], [22]. Bifurcation diagrams are
constructed in [2]. The existence of Shilnikov and topological
chaos is proved in [23] and [24]. Bifurcations diagrams are
constructed for the dual Chua’s system in [25].

The Chua’s circuit with a third order polynomial (cubic)
nonlinearity is introduced in [26]. In [27], the existence of
chaos in this circuit for various parameter values is proved.
The case of the double-scroll attractor is studied in [28].
In [29], a different smooth nonlinearity in the Chua’s circuit
is considered.

In this work, we consider the Chua’s circuit with a cubic
nonlinearity and study the existence of periodic windows for
this system. Preliminary version of the results presented in
this work are described in [30], where the study of periodic
windows in a neighborhood of the point in the parameter
space where the spiral attractor exists is carried out. Here,
a more detailed description of the search method is presented,
the Chua’s circuit with a different bifurcation parameter is
considered, and a more challenging case of the double-scroll
attractor is investigated. In neighborhoods of points in the
parameter space for which the spiral attractor and the double-
scroll attractor are observed, several periodic windows are
found and their properties are studied. Based on the results
obtained, the dynamics of the Chua’s circuit in these two
regions of the parameter space is compared.

The layout of the remaining part of this paper is as follows.
The definition of the Chua’s circuit is given in Section II.
A novel systematic method to find periodic windows is
presented in Section III. Section IV presents results on the
existence of periodic windows in bifurcation diagram of the
smooth Chua’s circuit. The results obtained are compared with
the result produced by the standard method based on finding
steady state behavior for selected points in the parameter
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space. It is shown that the standard method fails to find narrow
windows and the reasons for its failure are explained.

II. THE CHUA’S CIRCUIT

The dynamics of Chua’s circuit is given by the following
set of equations

dx

dt
=
y − x
RC1

− g(x)

C1
,

dy

dt
=
x− y
RC2

+
z

C2
, (1)

dz

dt
= − y

L
− R0z

L
.

We consider the case with nonlinear function g being a cubic
polynomial [26] defined by g(x) = g1x + g2x

3. The Chua’s
circuit is presented in Fig. 1.

C1C2

RNL

RR0

xy

z
g(x)

-

+

-

+

Fig. 1. The Chua’s circuit.

In this study, the parameter R ∈ [1.96, 2.16] is selected
as a bifurcation parameter. Other parameters are fixed at
C1 = 0.7, C2 = 7.8, L = 1.891, R0 = 0.01499, g1 = −0.59,
and g2 = 0.02. The origin (0, 0, 0) is a unstable equilib-
rium of (1). Additionally, there exists a symmetric pair of
unstable equilibria given by ±u? = ±(x?, y?, z?), where

x? =
√
−(g1 + (R+R0)−1)g−1

2 , y? = R0(R + R0)−1x?,
and z? = −(R+R0)−1x?.

Example trajectories obtained for R = 2.1 and R = 2.0
are shown in Fig. 2. In the first case the spiral attractor is
observed, while in the second case the well-known double-
scroll attractor exists.

In the following, the system (1) is analyzed using the
concept of a return map (also called a Poincaré map), which
converts the continuous time system to a discrete time system.
Let us define the set Σ = {u = (x, y, z) : |x| = x?} which
is the union of two parallel planes Σ1 = {u = (x, y, z) : x =
+x?} and Σ2 = {u = (x, y, z) : x = −x?}. The set Σ is called
the return set or the Poincaré section. Note that the equilibria
±u? belong to Σ and that Σ changes with the bifurcation
parameter R. The return set Σ is selected in such a way that
trajectories of the continuous dynamical system (1) intersect
Σ transversally. The return map P : Σ 7→ Σ is defined as
follows. The image P (u) of u ∈ Σ under the return map
is the first intersection point of the trajectory {u(t) : t > 0}
started at u(0) = u with the return set Σ.

A trajectory (uk)k≥0 of the Poincaré map P starting at the
point u0 ∈ Σ is given by uk+1 = P (uk), k ≥ 0. Example
trajectories of P for R = 2.1 and R = 2 are plotted in Fig. 3.
In Fig. 3(b) intersections of the trajectory with the planes Σ1

and Σ2 are plotted using different colors.

(a)

x

y

-3 -2 -1 0 1 2 3
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b)

x

y

-3 -2 -1 0 1 2 3
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 2. Example trajectories; (a) R = 2.1, (b) R = 2.0. Equilibria are plotted
using the × symbol.

Note that iterations of the return map P correspond to
intersections of trajectories of (1) with Σ in both directions.
In consequence, all periodic orbits intersecting Σ transversally
have periods which are even numbers. In the study of periodic
orbits it is more convenient to consider intersections in a
single direction only. This can be achieved by considering
the Poincaré map P+ with the return set Σ+ = {u =
(x, y, z) : |x| = x?, x · ẋ > 0}.

A bifurcation diagram for the map P+ with the bifurcation
parameter R ∈ [1.96, 2.16] is shown in Fig. 4. 4001 values
from the interval R ∈ [1.96, 2.16] are considered. In each case,
a trajectory of P+ with the length 20000 is computed. First
10000 iterations are skipped in the hope to reach the steady
state and the next 10000 iterations are plotted. For R = 2.16
one may see a period–2 orbit of P+. For smaller R the period-
doubling cascade can be seen. Chaotic region starts at the end
of the period-doubling cascade. In the bifurcation diagram one
may see several periodic windows—intervals of parameter val-
ues for which the observed steady state trajectory is periodic.
In Section IV, we study the existence of periodic windows
in small intervals enclosing parameter values R = 2.1 and
R = 2.0 for which different types of chaotic attractors are
observed in simulations (compare Fig. 2).
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Fig. 3. Trajectories of the return map; (a) R = 2.1, (b) R = 2.

III. SEARCH FOR PERIODIC WINDOWS IN BIFURCATION
DIAGRAMS

Let µ be the selected bifurcation parameter of the con-
sidered nonlinear system. We discuss the problem how to
efficiently find periodic windows existing in the interval µ ∈
[µmin, µmax].

A. Brute force approach

The most frequently used method to find periodic windows
is the brute force approach in which one finds steady state
behavior for test parameter values belonging to the parameter
range [µmin, µmax]. For each test parameter value a trajectory
of a specified length is computed and its steady state is studied.
If the steady state is periodic then a periodic window is
found. Two parameters of this method are important for its
proper operation: the length m of generated trajectories and the
number n of test points. Increasing m increases the probability
that a steady state is reached. Large n is required to find narrow
periodic windows.

B. Continuation based approach

Let us now introduce the continuation based method to
find periodic windows. In the first part of the algorithm, a
parameter value µ̄ in the interval [µmin, µmax] is selected and
unstable periodic orbits existing for this parameter value are
found using the method of close returns. In this method, a
long trajectory (uk)m−1

k=0 is computed and δ-pseudo periodic
orbits are found. δ-pseudo periodic orbit with the period p is a
part of a trajectory ψn,p = (uk)n+p−1

k=n such that the condition
‖un+p − un‖ ≤ δ is satisfied. Next, accurate positions of
periodic orbits are calculated using the Newton method. To

investigate periodic orbits of P we consider the map F defined
by

F


u0

u1

. . .
up−1

 =


P (u0)− u1

P (u1)− u2

. . .
P (up−1)− u0

 . (2)

It is clear that if F (ξ) = 0, where ξ = (u0, u1, . . . , up−1) then
P p(u0) = u0, which means that ξ is a period–p orbit of P .
For each δ-pseudo periodic orbits ψn,p the Newton operator

N(ξ) = ξ − (F ′(ξ))
−1
F (ξ). (3)

is applied iteratively ξn+1 = N(ξn) with the initial condition
ξ0 = ψn,p. The convergence of the Newton method indicates
that a periodic orbit exists in a neighborhood of the δ-pseudo
periodic orbit. The Newton method to find a periodic orbit
starting from the initial condition ξ is presented as the Algo-
rithm 1. The convergence of the Newton operator is controlled
by the parameter εnewton. The maximum allowed distance from
the initial orbit is controlled by the parameter dmax.

Algorithm 1 Newton method
Input: µ is the parameter value
Input: ξ is the initial guess of the position of the orbit
Output: on success ξ′ is an accurate position of the orbit

1: function NEWTON(µ, ξ, ξ′)
2: ξ′ ← ξ
3: for i = 1, 2 . . . , nnewton do
4: h ← (F ′(ξ′))

−1
F (ξ′) . F depends on µ

5: ξ′ ← ξ′ − h . Newton iteration
6: if ‖h‖ ≤ εnewton then . convergence achieved
7: return true
8: end if
9: if ‖ξ′ − ξ‖ > dmax then . ξ′ is too far from ξ

10: return false . no convergence
11: end if
12: end for
13: return false . too many iterations
14: end function

The procedure to find periodic orbits for a given parameter
value µ using the method of close returns is presented as the
Algorithm 2. In the algorithm m is the length of the generated
trajectory and pmax is the maximum period of the orbits to
be detected. Accurate positions of periodic orbits are used to
check what is the minimal period of each orbit and to generate
the list S of unique periodic orbits existing for the selected
parameter value µ.

In the second part of the algorithm the continuation method
is applied for each unstable periodic orbit to find periodic
windows in µ ∈ [µmin, µmax]. Let ξµ̄ = (uk)p−1

k=0 be a periodic
orbit existing for µ̄. The parameter value µ = µ̄ and the
position of the orbit ξµ = ξµ̄ are the initial values for the
continuation method. During the algorithm µ is modified by
∆µ (increased or decreased) until the endpoint of [µmin, µmax]
is reached or a periodic window is found. After each parameter
change the Newton method is applied to find the position
of the orbit for the tested value µ′ = µ + ∆µ of the
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Fig. 4. Bifurcation diagram of P+, R ∈ [1.96, 2.16].

Algorithm 2 Find periodic orbits.
Input: µ is the parameter value
Output: S is the set of periodic orbits found for µ

1: procedure FINDPERORBITS(µ,S)
2: Select u0

3: S ← ∅
4: for i = 1, 2 . . . ,m− 1 do
5: uk ← P (uk−1) . P depends on µ
6: for p = 1, 2 . . . , pmax do
7: if k ≥ p and ‖uk − uk−p‖ < δ then
8: ξ ← (uk−p, uk−p+1, . . . , uk−1)
9: if NEWTON(µ, ξ, ξ′) then

10: S ← S ∪ {ξ′}
11: end if
12: end if
13: end for
14: end for
15: end procedure

parameter. If the Newton method does not converge or if
the Newton method converges to a periodic orbit located far
from ξµ then the computations are repeated for a smaller
step size ∆µ. In the opposite case the parameter value and
the position of the orbit are updated, the step size ∆µ is
increased and the stability of ξµ is studied. If the orbit is
stable then the computations are stopped because a periodic
window is found. The computations are also stopped when µ is
outside [µmin, µmax], or ∆µ is smaller than the minimum step
size ∆min. The procedure to find a periodic window using the
continuation method starting at the parameter value µ and the
periodic orbit ξ existing for this parameter value is presented as
the Algorithm 3. The initial value of the step size is controlled
by the parameter ∆0 > 0. The search direction is defined by
the sign of the parameter d.

Algorithm 3 Find a periodic window.
Input: µ is the parameter value
Input: ξ is the position of a periodic orbit for µ
Input: d = ±1 defines the search direction
Output: on success [µ1, µ2] is a periodic window

1: function FINDPERWIN(µ, ξ, d, µ1, µ2)
2: ∆µ ← sgn(d) ·∆0 . select direction
3: while |∆µ| > ∆min and µ ∈ [µmin, µmax] do
4: if NEWTON(µ+∆µ, ξ, ξ′) and ‖ξ−ξ′‖ ≤ ε then
5: µ ← µ+ ∆µ
6: ξ ← ξ′

7: if ISSTABLE(µ, ξ) then . window found
8: FINDPERWINENDPOINT(µ, ξ,−1, µ1)
9: FINDPERWINENDPOINT(µ, ξ,+1, µ2)

10: return true
11: end if
12: ∆µ ← 1.2 ∗∆µ
13: else
14: ∆µ ← 0.5 ∗∆µ
15: end if
16: end while
17: return false
18: end function

Once a stable periodic orbit is detected the continuation
method is applied in both directions to find endpoints of
the corresponding periodic window. The initial values for the
continuation method are the parameter value µ for which the
stable periodic orbit exists and the position ξ of the stable
periodic orbit. When finding endpoints of periodic windows
the tested parameter value µ′ = µ + ∆µ is accepted if the
Newton method converges and the periodic orbit is stable.
Otherwise, the computations are repeated for a smaller step
size ∆µ. The procedure to find one of the endpoints of
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a periodic window is presented as the Algorithm 4. The
input parameter d is used to select which endpoint is being
computed.

Algorithm 4 Find periodic window endpoint.
Input: µ belonging to a periodic window
Input: ξ is the position of a stable periodic orbit
Output: µend is a periodic window endpoint

1: procedure FINDPERWINENDPOINT(µ, ξ, d, µend)
2: µend ← µ
3: ∆µ ← sgn(d) ·∆0 . select direction
4: while |∆µ| > ∆min and µend ∈ [µmin, µmax] do
5: if NEWTON(µend + ∆µ, ξ, ξ′) and ‖ξ − ξ′‖ ≤ ε

and ISSTABLE(µend + ∆µ, ξ′) then
6: µend ← µend + ∆µ
7: ξ ← ξ′

8: ∆µ ← 1.2 ·∆µ
9: else

10: ∆µ ← 0.5 ·∆µ
11: end if
12: end while
13: end procedure

The complete procedure to find periodic windows in the pa-
rameter range [µmin, µmax] is presented as the Algorithm 5. In
this procedure one first finds unstable periodic orbits existing
for µmin and µmax and then looks for periodic windows by
continuing periodic orbits in the correct direction. It is possible
to select additional points in the parameter range [µmin, µmax]
(for example the middle point) and start the continuation from
there. In this case one should continue periodic orbits in both
directions. The procedure is completed after processing all
unstable periodic orbits found in the first part of the algorithm.

Algorithm 5 Find periodic windows in [µmin, µmax].
Input: [µmin, µmax] is the parameter range
Output: W the set of periodic windows

1: function FINDPERWINDOWS(µmin, µmax,W )
2: W ← ∅ . the set of periodic windows
3: FINDPERORBITS(µmin,S)
4: for ξ ∈ S do
5: if FINDPERWIN(µmin, ξ,+1, µ1, µ2) then
6: W ← W ∪ {[µ1, µ2]}
7: end if
8: end for
9: FINDPERORBITS(µmax,S)

10: for ξ ∈ S do
11: if FINDPERWIN(µmax, ξ,−1, µ1, µ2) then
12: W ← W ∪ [µ1, µ2]
13: end if
14: end for
15: end function

IV. PERIODIC WINDOWS FOR THE CHUA’S CIRCUIT

Here, we present results on the existence of periodic win-
dows for the Chua’s circuit close to the parameter values

R = 2.1 and R = 2. The latter case is more challenging
due to the fact that the double scroll attractor is singular in
the sense that it contains the origin—an unstable equilibrium.
As a consequence some trajectories belonging to the attractor
stay close to the origin for a long time and in consequence
the time needed to return to the transversal section Σ defining
the return map may be very large. This results in numerical
problems when evaluating the Newton operator and using the
continuation method.

A. Brute force approach

Bifurcation diagrams of P+ for intervals R ∈ [2.09, 2.11]
and R ∈ [1.99, 2.01] are plotted in Fig. 5. In the following n
denotes the number of test parameter values selected from a
given interval, N denotes the number of test parameter values
for which the steady state trajectory is periodic, and W denotes
the number of periodic windows detected. In each case n =
2001 equidistant parameter values are selected and trajectories
of the length m = 20000 are computed. The second half of
each trajectory is used to plot bifurcation diagrams. One can
see several relatively wide periodic windows.
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Fig. 5. Bifurcation diagrams of P+; (a) R ∈ [2.09, 2.11], (b) R ∈
[1.99, 2.01].

More detailed bifurcation diagrams for R ∈ [2.099, 2.101]
and R ∈ [1.999, 2.001] computed with n = 2001 test
parameter values are shown in Fig. 6. Fewer periodic windows
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than in Fig. 5 can be seen and in general periodic windows are
narrower. In the first case (R ∈ [2.099, 2.101]) the steady-state
trajectory is periodic in N = 38 cases and W = 12 periodic
windows are detected. For the interval R ∈ [1.999, 2.001]
only for a single parameter value the observed trajectory is
eventually periodic and one periodic window is found.
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Fig. 6. Bifurcation diagrams of P+; (a) R ∈ [2.099, 2.101], (b) R ∈
[1.999, 2.001].

To detect more periodic windows the computations are
repeated with larger n. The results obtained for n =
1001, 2001, 10001, 100001 are given in Table I. The number
of periodic windows found in the intervals R ∈ [2.099, 2.101]
and R ∈ [1.999, 2.001] is W = 51 and W = 12, respectively.

It will be shown that the number of periodic windows is
much larger. There are two reasons for which the brute force
approach may fail to find more periodic windows. The first
one is related to the width of periodic windows. Most low-
period windows existing in the intervals R ∈ [2.099, 2.101]
and R ∈ [1.999, 2.001] are very narrow. It follows that one
has to select a large number n of test parameter values to
detect such windows. As an example, let us assume that the
window in the parameter range R ∈ [2.099, 2.101] has the
width w = 10−10. In this case, one has to use n ≥ 2 × 107

to ensure that at least one test parameter value belongs to this
window.

The second reason is related to a possibly long time needed
for a trajectory to converge to a periodic attractor. We will

TABLE I
PERIODIC WINDOWS FOUND FOR R ∈ [2.099, 2.101] AND

R ∈ [1.999, 2.001] USING THE BRUTE FORCE APPROACH, n IS THE
NUMBER OF TEST POINTS, N IS THE NUMBER OF TEST POINTS WITH A
PERIODIC STEADY STATE, W IS THE NUMBER OF PERIODIC WINDOWS

FOUND, wtotal IS THE TOTAL WIDTH OF PERIODIC WINDOWS FOUND, t IS
THE COMPUTATION TIME

.

n N W wtotal t [s]
R ∈ [2.099, 2.101]

1001 21 10 3.489× 10−5 1217.79
2001 38 12 3.512× 10−5 3107.36

10001 176 24 3.606× 10−5 12682.50
100001 1702 51 4.126× 10−5 128700.12

R ∈ [1.999, 2.001]
1001 0 0 0 1883.01
2001 1 1 1.418× 10−7 4424.43

10001 3 2 3.782× 10−7 19468.14
100001 48 12 1.012× 10−6 212952.26

show that in many cases the average convergence time to
reach a periodic attractor existing in R ∈ [2.099, 2.101] is
well above 105. The length m = 20000 of trajectories used
in the computations presented above is not sufficient to detect
these attractors.

B. Unstable periodic orbits

In the remaining part of this section, we find periodic
windows existing in the parameter ranges R ∈ [2.099, 2.101]
and R ∈ [1.999, 2.001] using the approach presented in
Section III-B. In the first step of this approach for selected
parameter values unstable periodic orbits are found. The search
for δ-pseudo periodic orbits is carried out for the maximum
period pmax = 20 and with the parameter δ = 0.01. Accurate
positions of unstable periodic orbits are found using the
Newton method. These results are used to verify whether the
period of the orbit found is minimal and to select unique
periodic orbits from the set of candidates. The number of
unstable periodic orbits found for endpoints and midpoints
of the ranges R ∈ [2.099, 2.101] and R ∈ [1.999, 2.001] are
reported in Table II.

For R ∈ {2.099, 2.1, 2.101} the length of the trajectory used
in the method of close returns is m = 2×107. As an example
let us discuss the case R = 2.099, for which 49939 unstable
periodic orbits are found. Fig. 7(a) shows how the number
of periodic orbits grows with m. One can see that the plots
become flat when m grows. The length m of the trajectory
which has to be considered to detect all periodic orbits of a
given period p grows with p. During the last 6×106 iterations
no cycles with periods p ≤ 17 are revealed. Therefore, one can
expect that for R = 2.099 there is no other periodic orbit with
the period p ≤ 17.

For R ∈ {1.999, 2, 2.001} the length of the trajectory used
in the method of close returns is m = 108. The number
of periodic orbits found is almost 10 times larger than for
R ∈ [2.099, 2.101]. This confirms that the dynamics of the
Chua’s circuit in a neighborhood of the double-scroll attractor
is much more complicated than in a neighborhood of the spiral
attractor. Let us consider the case R = 2.001 for which 382596
unstable periodic orbits are found. Fig. 7(b) shows how the
number of periodic orbits found changes with m. For p ≥ 10
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TABLE II
THE NUMBER OF UNSTABLE PERIODIC ORBITS FOUND FOR DIFFERENT

VALUES OF R.

p R=2.099 R=2.1 R=2.101 R=1.999 R=2 R=2.001
1 1 1 1 2 2 2
2 1 1 1 2 2 2
3 2 2 2 6 6 6
4 3 3 3 10 10 10
5 4 4 4 20 20 20
6 7 7 5 47 47 51
7 14 12 12 120 120 128
8 20 20 18 274 274 286
9 38 34 32 648 640 679

10 66 60 54 1473 1437 1549
11 118 104 96 3005 2934 3267
12 202 182 161 5390 5256 5917
13 366 322 288 8874 8579 9773
14 645 568 498 13781 13039 14751
15 1164 1010 884 20719 19415 21903
16 2093 1799 1554 29632 27560 31379
17 3794 3230 2772 40696 39295 44718
18 6843 5785 4905 55065 53203 61059
19 12428 10420 8739 71516 69589 82112
20 22130 18532 15272 89826 88739 104984
≤20 49939 42096 35301 341106 330167 382596

plots do not stabilize when m increases. Thus, one can expect
that more periodic orbits exist for p ≥ 10.

C. Continuation based method for R ∈ [2.099, 2.101]

Unstable periodic orbits existing for R = 2.099 are con-
tinued by increasing R to find periodic windows within the
range R ∈ [2.099, 2.101]. In Table III, the results obtained
for periods p ≤ 20 are shown. W is the number of periodic
windows and wtotal is the total width of periodic windows
with the period p. We also report the minimum width wmin

and the maximum width wmax. Similar computations are also
done for R = 2.101. All unstable periodic orbits existing for
R = 2.101 can be continued by decreasing R past R = 2.099.
In consequence, these computations do not reveal any periodic
windows within the range R ∈ [2.099, 2.101].

TABLE III
PERIOD WINDOWS EXISTING FOR R ∈ [2.009, 2.101], W IS THE NUMBER

OF PERIODIC WINDOWS, wtotal IS THE TOTAL WIDTH.

p W wtotal wmin wmax

6 1 1.584× 10−5 1.584× 10−5 1.584× 10−5

7 1 2.711× 10−6 2.711× 10−6 2.711× 10−6

8 1 4.478× 10−7 4.478× 10−7 4.478× 10−7

9 3 4.138× 10−7 7.332× 10−8 2.129× 10−7

10 6 4.149× 10−7 1.215× 10−8 2.756× 10−7

11 11 1.382× 10−7 1.997× 10−9 4.217× 10−8

12 21 7.951× 10−6 3.299× 10−10 7.896× 10−6

13 39 5.298× 10−8 5.435× 10−11 1.351× 10−8

14 74 1.387× 10−6 8.980× 10−12 1.357× 10−6

15 140 1.557× 10−8 1.490× 10−12 2.029× 10−9

16 269 2.371× 10−7 2.500× 10−13 2.238× 10−7

17 510 5.395× 10−9 4.974× 10−14 2.901× 10−10

18 960 5.038× 10−7 9.770× 10−15 2.934× 10−7

19 1657 2.128× 10−9 < 10−15 2.341× 10−10

20 2595 2.094× 10−7 < 10−15 1.376× 10−7

≤20 6288 6.066× 10−5 < 10−15 1.584× 10−5

For small periods (p ≤ 11) the number of periodic windows
in the interval R ∈ [2.009, 2.101] is equal to the half of the
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Fig. 7. The number of period-p orbits found versus the length m of the
monitored trajectory; (a) R = 2.099, (b) R = 2.001.

difference between the number of periodic orbits existing for
R = 2.009 and R = 2.101. This relation is also satisfied
approximately for 12 ≤ p ≤ 17. A similar phenomenon is
observed in bifurcation diagrams of the logistic map (compare
[31]), which indicates that periodic windows emerge in a
similar fashion for these two systems.

In total, 6288 periodic windows found. This shows that the
proposed method outperforms the brute force approach, where
only 51 windows are identified. The total width wtotal =
6.066 × 10−5 of periodic windows with period p ≤ 20 is a
lower bound of the measure of the set of regular parameters.
From the fact that wtotal is less than 2% of the width of
the interval R ∈ [2.099, 2.101] it follows that the Chua’s
circuit in this region is mostly chaotic. Let us recall that for
R = 2.1 the spiral attractor is obtained in simulations. The
closest periodic attractor found is the period–17 cycle existing
for R = 2.1000000225456. The width of the corresponding
window is w ≈ 5× 10−14.

Example periodic attractors existing in the range R ∈
[2.099, 2.101] are shown in Fig. 8. For each period–p window
with p ≤ 10 a parameter value in this window is selected and
the corresponding periodic attractor is plotted.
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Fig. 8. Examples of low period attractors existing for R ∈ [2.009, 2.101]; variable ranges: x ∈ [−0.5, 3.4], y ∈ [−0.6, 0.6].

D. Continuation based method for R ∈ [1.999, 2.001]

Similar calculations are carried out to locate periodic win-
dows for R ∈ [1.999, 2.001]. Unstable periodic orbits found
for R = 1.999, R = 2, and R = 2.001 are continued
to find positions of periodic windows within the interval
R ∈ [1.999, 2.001]. In this case all three initial points in
the parameter space produce some periodic windows opposite
to the results obtained for the range R ∈ [2.099, 2.101].
The combined results are shown in Table IV. 3397 periodic
windows with periods p ≤ 20 are found. The results confirm
that the continuation based method outperforms the brute
force approach (12 periodic windows located). The minimum
distance from the point R = 2.0 with the double-scroll
attractor and the periodic window found is d ≈ 6.77× 10−7.
A period-20 attractor exists for R = 1.999999323223811.

The total width of periodic windows is wtotal = 1.359 ×
10−6, which is approximately 45 times smaller than the
total width of periodic windows found in the range R ∈
[2.099, 2.101]. The widest periodic window is observed for the
period p = 15. Its width is w = 2.364×10−7, which is two or-
ders of magnitude smaller than the width of the widest periodic
window existing in the range R ∈ [2.099, 2.101]. In general,
periodic windows in the range R ∈ [1.999, 2.001] are narrower
than in the range R ∈ [2.099, 2.101]. The results presented in
Table IV confirm that the Chua’s circuit for R ∈ [1.999, 2.001]
is “more chaotic” than for R ∈ [2.099, 2.101].

Example periodic attractors existing in the range R ∈
[1.999, 2.001] are shown in Fig. 9. The first 14 attractors are
selected from periodic windows with periods p ≤ 9. The last
two attractors are selected from the widest periodic windows
with periods 14 and 15, respectively. All periodic attractors

TABLE IV
PERIOD WINDOWS EXISTING FOR R ∈ [1.999, 2.001], W IS THE NUMBER

OF PERIODIC WINDOWS, wtotal IS THE TOTAL WIDTH.

p W wtotal wmin wmax

6 1 1.407× 10−10 1.407× 10−10 1.407× 10−10

7 2 1.736× 10−11 5.420× 10−12 1.194× 10−11

8 3 1.510× 10−12 2.398× 10−13 6.799× 10−13

9 8 3.159× 10−11 1.021× 10−14 3.123× 10−11

10 16 1.460× 10−10 < 10−15 1.133× 10−10

11 26 2.208× 10−10 < 10−15 1.053× 10−10

12 56 9.373× 10−8 < 10−15 9.253× 10−8

13 99 1.131× 10−7 < 10−15 1.108× 10−7

14 158 1.715× 10−7 < 10−15 1.418× 10−7

15 235 2.399× 10−7 < 10−15 2.364× 10−7

16 343 1.857× 10−8 < 10−15 1.250× 10−8

17 396 1.229× 10−8 < 10−15 9.783× 10−9

18 542 1.723× 10−8 < 10−15 1.116× 10−8

19 665 1.317× 10−9 < 10−15 7.557× 10−10

20 847 1.136× 10−8 < 10−15 9.913× 10−9

≤20 3397 1.359× 10−6 < 10−15 2.364× 10−7

visit both parts of the state space. Note that the last two
periodic attractors are located further away from the origin
than other attractors shown in Fig. 9. Another observation
is that they visit a small neighborhood of other unstable
equilibria. This may be an explanation of stability properties
of these periodic attractors and widths of the corresponding
periodic windows.

E. Convergence to periodic attractors

Let us assume that for a selected parameter value a periodic
attractor of the return map exists. For a given initial point u,
let us define the convergence time τ(u) as the number of
iterations of the return map needed for the trajectory started
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R=2.000148846p=6 R=2.000432196p=7 R=2.000876217p=7 R=2.000277051p=8

R=2.000374943p=8 R=2.000969906p=8 R=1.999018498p=9 R=2.000155828p=9

R=2.000214158p=9 R=2.000258886p=9 R=2.000386733p=9 R=2.000404172p=9

R=2.000916282p=9 R=2.00094989p=9 R=2.000115051p=14 R=1.999716437p=15

Fig. 9. Examples of low period attractors existing for R ∈ [1.999, 2.001]; variable ranges: x ∈ [−3.4, 3.4], y ∈ [−0.6, 0.6].

at u to converge to the periodic attractor. Clearly, the con-
vergence time τ(u) depends on the initial point u. Immediate
convergence is observed for initial conditions belonging to a
small neighborhood of the attractor. On the other hand, the
convergence time may be arbitrarily long for initial conditions
located very close to one of the unstable periodic orbits.
An important property of a periodic attractor is the average
convergence time τaver defined as the average number of
iterations of the return map needed to reach the attractor
starting from random initial conditions. An estimate of the
average convergence time can be computed as

τaver ≈
1

K

K∑
k=1

τ(uk), (4)

where τ(uk) are convergence times for trajectories started
at randomly selected initial points u1, u2, . . . , uK . The
results obtained for selected periodic attractors existing for
R ∈ [2.099, 2.101] are presented in Table V. During the
computations K = 100 initial points are tested. For each
attractor we report the parameter value R, the period p, the
average convergence time τaver, the maximum convergence
time τmax and the width w of the corresponding periodic
window. Note that the average convergence time grows with

the period p and for periods p ≥ 13 the average convergence
time exceeds 105. Finding periodic attractors with such a
large convergence times using the standard approach would
require computation of very long trajectories. Recall that in
the brute force approach, trajectories of the length 20000 were
computed. This explains the low number of periodic windows
found using the standard approach.

TABLE V
CONVERGENCE TIMES FOR SELECTED CYCLES.

R p τaver τmax w
2.100973 6 3.5× 102 2.3× 103 1.584× 10−5

2.0996 7 9.4× 102 4.5× 103 2.711× 10−6

2.1001625 8 2.2× 103 1.1× 104 4.478× 10−7

2.0992159 9 3.7× 103 1.6× 104 1.276× 10−7

2.1007698 10 2.9× 103 1.6× 104 2.756× 10−7

2.09907145 11 1.4× 104 7.3× 104 1.182× 10−8

2.099317506 12 3.8× 104 1.7× 105 2.060× 10−9

2.0991612228 13 1.5× 105 1.1× 106 2.808× 10−10

2.09935820935 14 2.6× 105 2.0× 106 6.848× 10−11

2.100832505 15 2.6× 105 1.2× 106 4.077× 10−10

2.1007717815 16 5.4× 105 2.3× 106 1.343× 10−10

2.10077572841 17 1.2× 106 5.8× 106 2.043× 10−11

2.0990506874954 18 4.5× 106 2.0× 107 3.770× 10−13

2.100738098298 19 1.9× 106 1.0× 107 7.852× 10−12

2.100828953277 20 5.3× 106 2.5× 107 2.949× 10−13
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Also note that the reduction of the window width w corre-
sponds to the growth of the average convergence time τaver

(compare Table V). This means that the two reasons which
make it difficult to locate narrow periodic windows happen
simultaneously. Narrow windows require dense sampling of
the parameter space and long integration time to reach the
corresponding periodic attractor.

V. CONCLUSIONS

A novel systematic approach based on the continuation
method to locate periodic windows was introduced. The use-
fulness of the proposed approach was shown by locating a
large number of periodic windows in bifurcation diagrams of
the Chua’s circuit. Measures of the set of regular parameters
were estimated. Properties of periodic windows including their
width were studied using the continuation method. Average
convergence times for selected periodic attractors were com-
puted numerically. The results obtained confirm that attractors
in narrow periodic windows have large convergence times,
which makes them difficult to detect using the standard method
of monitoring trajectories. The proposed method is general; it
can be used without modifications to study other dynamical
systems.
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