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Simulations of Memristors
using the Poincaré Map Approach
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Abstract—In many memristor models the internal variable
is related to the width of a conductive layer and is therefore
limited by the physical dimensions of the device. The necessity
of keeping the internal variable within allowable limits may
introduce discontinuities in right hand sides of differential
equations describing dynamics of circuits with memristors. Such
discontinuities are difficult to handle using standard numerical
integration methods. An approach based on the concept of a
Poincaré map is proposed to solve these difficulties. Two examples
are discussed to show the usefulness of the proposed technique.

Index Terms—memristor, numerical integration methods,
Poincaré map.

I. INTRODUCTION

In several memristor models, the internal variable represents
the width of the region with higher (or lower) concentration
of dopants and is limited by the physical dimensions of the
device [1], [2], [3], [4], [5]. In these models it is usually
assumed that the internal variable w belongs to the interval
[0, D], where D is the physical width of the device. To make
sure that w ∈ [0, D] the concept of a window function is
introduced. The right hand side of the equation defining the
dynamics of w is multiplied by a function which is zero
outside the interval [0, D]. This may introduce discontinuities
in right hand sides of equations defining the behavior of
circuits with memristors. Standard numerical integration are
not designed to handle such equations. Due to numerical errors
introduced by integration methods, it may happen that w gets
outside the allowed interval [0, D] and stays there for ever.
None of the approaches which have been proposed to solve
this problem is completely satisfactory.

In this work, the concept of Poincaré map is proposed to
solve the problem of discontinuities in simulations of circuit
with memristors. Ordinary differential equations (ODEs) with
discontinuous right hand sides (RHSs) are usually referred
to as Filippov systems [6]. Systems with vector fields which
have discontinuous higher derivatives are called nonsmooth.
In the proposed approach, the state space is divided into
regions where the dynamics is smooth. Instead of integrating
a single ODE with a discontinuous (or nonsmooth) RHS, a
sequence of Poincaré maps is evaluated. Poincaré maps are
defined by surfaces in which the original ODE is discontinuous
or nonsmooth. A preliminary version of this work has been
presented in [7].
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A simplified version of this approach has been introduced
in [8]. The authors propose to use the ’Events’ option with
the standard integration method ode23 in the MATLAB en-
vironment to accurately detect time instants when the internal
variable of a memristor reaches a boundary. This idea is
applied in [8] to a sinusoidally driven series connection of
a memristor and a linear resistance.

An alternative approach to analyze a class of memristor
circuits is the flux–charge analysis method [9], [10]. In this
method vector fields describing circuits with memristors be-
come smoother and in some cases the problem with discon-
tinuous vector fields may disappear.

The layout of the manuscript is as follows. In Section II
several memristor models and window functions are recalled.
The Poincaré map approach is presented in Section III and
two simulation examples are discussed in Section IV.

II. SIMULATIONS OF CIRCUITS WITH MEMRISTORS

An ideal current-controlled memristor [11] is described by
the equations v(t) = R(q)i(t) and dq

dt = i, where q is the
charge and R(q) is the resistance of the device. An ideal
voltage-controlled memristor is described by i(t) = G(ϕ)v(t)
and dϕ

dt = v, where G(ϕ) is the conductance of the device
controlled by the flux ϕ.

In [12], the concept of ideal memristors has been extended
to what is now referred to as extended memristors. An
extended current-controlled memristor is described by

v(t) = R(w, i)i(t),
dw

dt
= F (w, i), (1)

where w ∈ Rn is a vector of internal state variables. In the
following, we consider the case w ∈ R. In the dual case, an
extended voltage controlled memristor is described by

i(t) = G(w, v)v(t),
dw

dt
= F (w, v), (2)

where G(w, v) is the conductance of the device.
In the seminal paper [1], the linear ion drift model has been

proposed to describe the behavior of certain nanoscale devices:

dw

dt
= µv

Ron

D
i(t), (3)

v(t) =

(
Ron

w

D
+Roff

(
1− w

D

))
i(t). (4)

The linear ion drift model belongs to the class of ideal generic
current-controlled memristors (compare [13]). It is assumed
that w ∈ [0, D], where D is the width of the device. When
w reaches D (or 0) it cannot grow (decrease) any more. In
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simulations, to achieve this effect one may multiply the right
hand side of (3) by a window function f(w) which takes the
value zero for w 6∈ [0, D]. Various window functions have
been proposed in the literature. The simplest one is the ideal
rectangular window function fR(w) for which fR(w) = 1
when w ∈ [0, D] and fR(w) = 0 when w 6∈ [0, D] (see
Fig. 1(a)). The ideal rectangular window function can be
defined as

fR(w) = H(w)H(D − w), (5)

where H(x) is the unit step function satisfying H(x) = 1 for
x ≥ 0 and H(x) = 0 for x < 0.

In theory, this window function limits the value of the
internal variable w to the interval [0, D]. The problem appears
when one applies standard numerical integration methods to
simulate the behavior of the element. The ideal rectangular
window function introduces discontinuities in the definition of
the derivative ẇ which are difficult to handle numerically. In
numerical simulations it may happen that w leaves the interval
[0, D]. This is a consequence of using non-zero time steps
and errors introduced by numerical integration methods. Once
w 6∈ [0, D] the derivative ẇ becomes zero and the memristor
holds its state forever.
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Fig. 1. Window functions: (a) ideal rectangular window function, (b) Joglekar
window function for p = 1, 2, . . . , 5, (c) Biolek window function for p = 1.

In [3], the Joglekar window function has been proposed:

fJ(w) = 1− (2w/D − 1)
2p
, (6)

where p is a positive integer. For this window function the
derivative ẇ close to the window endpoints decreases to
zero in a continuous way (compare Fig. 1(b)). This window
function may suffer from similar problems as the previous one.
If we set the memristor to the state R = Ron or R = Roff

which corresponds to w = D and w = 0, respectively,
then no external stimulus can change its state. The memristor
behaves as a standard resistor. In theory, from the initial
state w ∈ (0, D), the lower (upper) boundary state w = 0

(w = D) may only be attained asymptotically. However,
numerical errors may easily lead to a state w 6∈ (0, D) from
which there is no way back to the normal memristor behavior.

To solve the modeling problems at the boundaries the Biolek
window function has been proposed in [2]

fB(w, i) = 1− (w/D −H(−i))2p
. (7)

where H is the unit step function. This window function for
the case p = 1 is plotted in Fig. 1(c). The result of applying
the Biolek window function depends on the sign of the current.
For i > 0 the RHS of (3) is positive and fB(w, i > 0) changes
from fB(0, i > 0) = 1 to fB(D, i > 0) = 0. The growth
rate is maximal at the left endpoint of the window [0, D] and
decreases to zero at the right endpoint. It follows that it is easy
to escape from the boundary state w = 0 and theoretically that
there is an infinite time to reach the boundary w = D. For i <
0 the RHS of (3) is negative and the window function changes
from fB(0, i < 0) = 0 to fB(D, i < 0) = 1. It is now easy to
escape from the state w = D and in theory the time needed to
reach the boundary w = 0 is infinite. This model can be used
in numerical simulation of electronic circuits with memristors
and has been implemented as a SPICE model [2]. From the
mathematical point of view, this model can be viewed as an
artificial method to solve the problems related to integration
of systems with discontinuous right hand sides.

The next model we consider is the boundary condition-
based (BC) model [4] defined by

dx

dt
= i−1

0 W (x(t))v(t)fBC(x(t), v(t)), (8)

i(t) = W (x(t))v(t), (9)

where W (x) = GonGoff (Gon − (Gon −Goff)x)
−1 is the

memductance. The window function fBC is defined as:

fBC(w, v) =

 0, w = 0 and v ≤ vth,0,
0, w = D and v ≥ −vth,1,
1, otherwise.

(10)

In the following, we consider the case vth,0 = vth,1 = 0.
Similarly to the Biolek model, the BC model is designed in
such a way that the internal variable x is limited to the interval
[0, D] and can easily leave the state x = 0 or x = D once the
voltage v has a proper sign. We show that using this model
with standard numerical integration methods may introduce
computational errors.

The last model, which we discuss, is the VTEAM
model [14]. The VTEAM model with a linear dependence
between the resistance R(w) and the internal variable w is
defined as:

dw

dt
=

 koff (v/voff − 1)
αoff foff(w), v > voff ,

0, v ∈ [von, voff ],
kon (v/von − 1)

αon fon(w), v < von,
(11)

i(t) =

(
Ron +

w − won

woff − won
(Roff −Ron)

)−1

v(t), (12)

where von < 0 and voff > 0 are threshold voltages, koff >
0, kon < 0 and αoff , αon are positive integer numbers. The
resistance of the device may change only when voff < v or



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 3

v < von. The window functions foff(w), and fon(w) constrain
the internal variable w to the interval [won, woff ]. We consider
the ideal rectangular window function:

foff(w) = fon(w) = H(w − won)H(woff − w), (13)

where H is the unit step function.
The right hand side of (11) is discontinuous at w = won

and w = woff , and is nonsmooth at v = von and v = voff .
It follows that using standard numerical integration method
to compute trajectories passing close to the planes w = won,
w = woff , v = von and v = voff may lead to numerical errors
and produce unexpected results.

III. THE POINCARÉ MAP APPROACH

In this section, we present an approach to compute trajecto-
ries of electronic systems containing memristors with bounded
internal variables based on the concept of the Poincaré
map [15].

Let us first recall the notion of a Poincaré map. We consider
a dynamical system in Rn defined ẋ = F (x, t), where x ∈ Rn.
Let us select a subset Σ ⊂ Rn. Σ is usually a plane defined by
g(x) = a1x1 + . . .+ anxn− b = 0. In a more general setting,
Σ may be a surface of dimension n− 1 defined by g(x) = 0,
where g is a possibly nonlinear function or a union of such
surfaces. The Poincaré map P : Rn 7→ Σ is defined as

P (x) = ϕ(τ(x), x), (14)

where ϕ(t, x) is the trajectory of the dynamical system passing
through x for t = 0 (i.e., ϕ(0, x) = x) and τ(x) > 0 is the
smallest positive time after which the trajectory intersects Σ,
i.e. ϕ(τ(x), x) ∈ Σ and ϕ((0, τ(x)), x) ∩ Σ = ∅. In the
following, g(x) = 0 is called the exit condition.

In the first step of analysis, we divide the state space Rn into
m regions R1,R2, . . . ,Rm in such a way that in each region
the function F (x, t) is smooth. The regions are separated
by planes at which the right hand side is discontinuous or
nonsmooth. For example, in the case of the linear ion drift
model the planes separating smooth regions are w = 0 and
w = D, while for the VTEAM model there are two conditions
for which the right hand side is discontinuous (w = won and
w = woff ) and two conditions for which the right hand side
is not smooth (v = voff , v = von). Let us denote by Bk for
k = 1, 2, . . . ,m the boundary of the region Rk. The Poincaré
map defined by the boundary Bk is denoted as Pk.

In the Poincaré map approach the dynamical system is
integrated within a given region Rk and at the same time the
exit condition ϕ(t, x) ∈ Bk is monitored. This is equivalent
to the evaluation of the Poincaré map Pk. The computation
of a trajectory is carried out as the evaluation of a sequence
of Poincaré maps (Pik) for k = 0, 1, 2, . . ., where the symbol
sequence (i0, i1, i2, . . .) is defined by exit conditions. Let us
explain this approach in more detail. We want to compute the
trajectory ϕ(t, x) with the initial condition x. Let us denote
x0 = x. The initial symbol i0 is defined by the condition
x0 ∈ Ri0 . In the kth step of the computation procedure
(k = 0, 1, 2, . . .) the Poincaré map Pik at xk is evaluated and
the exit point xk+1 = Pik(xk) is found. During the evaluation

of Pik the trajectory based at xk is found using a standard
numerical integration method. In each integration step, the exit
condition is verified and when it is detected then the return
time and the exit point xk+1 are calculated. These calculations
are carried out using a root finding technique, for example
the Newton method. The next symbol ik+1 is defined by the
condition xk+1 ∈ Rik+1

.
In the approach presented above, we always integrate a

smooth dynamical system. This way we eliminate unexpected
errors which may be introduced by using standard numerical
integration methods to handle discontinuous or nonsmooth
systems. This is the main advantage of the proposed method.
Another advantage is the possibility of reducing the dimension
of the system under study. As it is shown in the following
section in certain regions the dynamics is defined by less than
n variables. This permits faster computations.

Let us note that the Poincaré map approach cannot be used
in an arbitrary system with a discontinuous RHS. In some
cases the so called sliding motion may exist [6]. This happens
if the vector field on both sides of a discontinuity surface
points towards it. The effect is that the motion is restricted to
the discontinuity surface. However, in memristor models with
bounded states these effects are not observed.

There is a number of software packages that are capable
of evaluating Poincaré maps. One of them is MATCONT, a
MATLAB numerical continuation package for the interactive
bifurcation analysis of dynamical systems [16]. In MATLAB,
one may also use the ’Events’ options in standard integration
methods like ode23 or ode45 to obtain the required func-
tionality. This approach is explored in the following section.
The ’Events’ procedure is used to define the exit condition
g(x) = 0. Events are detected by finding sign crossings of g
between steps (g(x(tk)g(x(tk+1)) < 0). The event instance
t satisfying conditions g(x(t)) = 0 and t ∈ [tk, tk+1] is
found by employing a root finding mechanism applied to a
polynomial approximation of the solution x(t) (compare [17]).
Note that an event can be missed if there is an even number
of sign crossings between steps.

Another software package which has the desired function-
ality is the CAPD library [18], a collection of C++ modules
for numerical studies of dynamical systems. It provides algo-
rithms for the evaluation of Poincaré maps and its derivatives.
Intersections with Σ are detected in the same way as in
the MATLAB software. The one-dimensional Newton method
with a Taylor expansion of the solution is employed to find
the return time. In the CAPD library it is also possible to
evaluate Poincaré maps in a rigorous way. This is achieved by
monitoring derivatives of g, using rigorous integration methods
and carrying out all computations in interval arithmetic.

In the remaining part of this section, we discuss how to
construct smooth regions for various memristor models.

Let us first consider the linear ion drift model. In this case
there are three smooth regions separated by conditions w =
0, w = D, and i = 0. Description of regions Rk for this
model is presented in Table I. For each region, we report its
definition Rk, the rate ẇ of change of the internal variable,
the boundary Bk presented as the list of exit conditions, and
for each exit condition the corresponding next region Rl.
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TABLE I
SMOOTH REGIONS FOR THE LINEAR ION DRIFT MODEL.

k Rk ẇ Bk Rl
1 0 < w < D µv

Ron
D
i(t)

w = 0 R2

w = D R3

2 w = 0, i < 0 0 i = 0 R1

3 w = D, i > 0 0 i = 0 R1

Note that ẇ = 0 for the regions R2 and R3. It follows that
when solving ODEs in these regions the order is reduced by
one. In the regions R2, and R3 there is a single exit condition
i = 0. The Poincaré map for the region R1 is defined by two
planes. From the region R1 a trajectory may go to one of
the regions R2 and R3 depending on which of the conditions
w = 0 or w = D is satisfied at the exit point. From the regions
R2 and R3 a trajectory returns to the region R1 when i(t)
changes its sign.

From the mathematical point of view the BC window is
equivalent to the rectangular window and hence the Poincaré
map approach leads to the same set of smooth regions. For
the Biolek model one may also use the set of smooth regions
presented in Table I. Using the Poincaré map approach in this
case helps to avoid errors caused by using standard numerical
methods for systems with bounded variables.

From the theoretical point of view applying the Poincaré
map approach to the Joglekar window does not make sense.
In this case the regions w = 0, w ∈ (0, D), and w = D are
invariant. A trajectory initiated in one of the regions cannot
enter another region. Leaving the region w ∈ (0, D) may be
only a results of numerical errors. On the other hand, to permit
an escape from the regions w = 0 or w = D one should
change the derivative at the borders to some nonzero values,
as it is done in the Biolek window.

Finally, let us consider the VTEAM model. Description of
smooth regions for this model is presented in Table II. In this
case, there are five smooth regions separated by the conditions:
w = woff , w = won, v = voff , and v = von. In the last three
regions the derivative ẇ is zero. The transition table between
regions is more complex than for the previous models.

TABLE II
SMOOTH REGIONS FOR THE VTEAM MODEL.

k Rk ẇ Bk Rl
1

v > voff koff (v/voff − 1)αoff v = voff R3

w < woff w = woff R4

2
v < von kon (v/von − 1)αon v = von R3

w > won w = won R5

3
von < v < voff 0

v = voff R1

won < w < woff v = von R2

4 v > von, w = woff 0 v = von R2

5 v < voff , w = won 0 v = voff R1

IV. SIMULATION EXAMPLES

In this section, we present simulation results obtained using
standard numerical integration methods and the Poincaré map
approach. All the simulations are carried out in the MATLAB
environment.

As a first example, let us consider a series connection
of a memristor and a linear resistor driven by a sinusoidal

waveform. We assume that the memristor is described by
the VTEAM model (11) with the ideal rectangular window
function (13) and the linear dependence between the resistance
and the internal variable (12).

The parameters of the VTEAM model are αoff = αon = 3,
von = −0.20 V, voff = 0.15 V, Ron = 100 Ω, Roff =
1000 Ω, kon = −8×10−6 m/s, koff = 4×10−6 m/s, won = 0,
woff = 10 nm. The linear resistance is R = 200 Ω. The input
voltage is vin(t) = Vin sin(2πt/T ), where Vin = 0.35 V and
T = 10 ms. As the initial value we use w(0) = 6 nm.

The dynamical system under study can be described by the
following set of equation

dw

dt
=

 koff (v/voff − 1)
αoff , v > voff , w ∈ [won, woff ],

kon (v/von − 1)
αon , v < von, w ∈ [won, woff ],

0, otherwise,
v(t) = Rm(w(t))vin(t)/(Rm(w(t)) +R), (15)
Rm(w) = Ron + (Roff −Ron)(w − won)/(woff − won).

First, we present solutions obtained using the ode45 pro-
cedure from the MATLAB package. The right hand side of
the derivative ẇ in (15) is defined as the procedure vtRHS
(see the Appendix).

The results obtained by applying the procedure
ode45(@vtRHS,t,ws,op,p) with the integration time
t=[0,0.03], the memristor initial condition ws=6e-9,
and the options op=odeset(’MaxStep’,1e-4) are
shown in Fig. 2(a). One can see that at a certain point due to
numerical errors introduced by the integration procedure, the
trajectory reaches the region w > woff and stays there until
the end of the integration time.
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Fig. 2. Solutions for the system (15) found using various approaches; (a) the
ode45 procedure with the RHS being zero when w 6∈ [won, woff ], (b) the
ode45 procedure with the RHS forcing solutions to converge to the interval
[won, woff ], (c) the Poincaré map approach (the ode45 procedure with the
events option).

A common solution to overcome this problem is to force the
variable w to come back to the interval [won, woff ] by mod-
ifying the vector field outside [won, woff ] to push trajectories
towards this region. This can be done by adding the following
two lines of code:
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if w>p.woff; rhs=-1e-6; end
if w<0; rhs=+1e-6; end

to the procedure vtRHS. The results are shown in Fig. 2(b).
One can see that this solutions works better. The variable w
is not stuck in the region w > woff . However, one can see
high frequency oscillations close to the border w = woff .
These oscillations are a consequence of the fact that the vector
field (15) is discontinuous at w = woff .

Let us now apply the Poincaré map approach. For the
VTEAM model there are five smooth regions. The dynamics
for these regions is defined by ẇ = koff (v/voff − 1)

αoff for
R1 (v > voff , w < woff ), ẇ = kon (v/von − 1)

αon for R2

(v < von, w > won) and w(t) = const for R3, R4, and
R5. The definition of the derivative ẇ for these five regions
is given as the procedure vtRHSR (see the Appendix).

In order to apply the Poincaré map approach in the MAT-
LAB environment, we also need to provide a function defining
conditions to stop integration. This can be achieved using the
’Events’ option. The corresponding function is given as the
procedure vtEvents (see the Appendix). Integration using
the Poincaré map approach is implemented as the procedure
vtIntegrate (see the Appendix).

The results of applying the Poincaré map approach are
shown in Fig. 2(c). Changes of smooth regions are denoted as
red vertical lines in the time plot. Note that the trajectory is not
stuck in the region w > woff and high frequency oscillations
are not observed. This example shows that one can accurately
simulate the behavior of a memristor with bounded internal
states without resorting to artificial modifications of a window
function.

As a second example let us consider a memristor based
oscillator [4] shown in Fig. 3. This oscillator is derived
from the Chua’s circuit by replacing the Chua’s diode with
the parallel connection of a negative conductance and two
memristors connected in anti-parallel. The dynamics of the
circuit is given by

ẋ1 = −αG−1(W (x4) +W (x5) +GN2)x1 − αx3,

ẋ2 = γx2 + x3,

ẋ3 = β(x1 − x2 − x3), (16)

ẋ4 = i−1
0 W (x4)x1f(x4, x1),

ẋ5 = −i−1
0 W (x5)x1f(x5,−x1),

where x1 and x2 are the voltages across the capacitors C1 and
C2, iL is the inductor current, x3 = −iL/G, x4, x5 ∈ [0, 1]
are dimensionless internal variables of memristors m1 and m2,
α = C2/C1, β = C2/(LG

2), γ = −GN1/G, t0 = C2/G
is the time scale and i0 is the constant defining the rate of
ionic motion. W (x) = GonGoff/(Gon − (Gon − Goff)x) is
the memductance and f(x, v) is a window function. For more
details see [4].

We consider the system (16) with the following parameter
values: G = 3.3 mS, GN1 = −0.4 mS, GN2 = −1.2 mS,
α = 0.74, β = 0.0333, γ = 0.12, Goff = 0.06 mS, Gon =
1.9 mS, and i0 = 8.9189. We consider the initial conditions
x1 = 0.006, x2 = 0.02, x3 = −0.3, x4 = x5 = 0.

Let us first consider the boundary condition-based model
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N2m
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Fig. 3. Memristor based oscillator.

with the window function defined as

fBC(x, v) =

 0, x = 0 and v ≤ 0,
0, x = 1 and v ≥ 0,
1, otherwise.

(17)

The window function is zero only if x = 0 and ẋ < 0 or
x = 1 and ẋ > 0. It follows that the window function (17)
is mathematically equivalent to the ideal rectangular window
function fR(x) = H(x)H(1 − x), and in case of error-free
computations the results are the same.

The RHS of (16) with the BC model is given as the
procedure moRHS (see the Appendix).
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Fig. 4. Solutions for the memristor-based oscillator found using the ode45
procedure with the maximum time step τ = 0.1; (a) voltages x1(t), x2(t),
(b) internal states x4(t) and x5(t) of memristors m1 and m2.

Fig. 4 shows the solution of the system (16) obtained using
the procedure ode45(@moRHS,[0 200],xs,op,p) with
the initial conditions xs=[0.006,0.02,-0.3,0,0]’ and
options op=odeset(’MaxStep’,1e-1) in which the
maximum integration time step is set to τ = 0.1.

Let us now assess the accuracy of the results obtained.
The accuracy in the ode45 procedure can be controlled
using various options, for example AbsTol, RelTol, or
MaxStep. To control the accuracy, we will use the pa-
rameter MaxStep defining the maximum allowed time step
because it has a more clear interpretation. Fig. 5 shows
results obtained using different values of the maximum time
step τ ∈ {0.01, 0.001, 10−4, 10−5, 5× 10−6}. One can see
that the solutions are close to each other for t < 80 but
differ considerably for larger t. The last two plots cannot be
distinguished visually. Further decrease of the maximum time
step does not change the results obtained for the integration
time τ = 200. From Fig. 5 one can also conclude that the
accuracy of the solutions obtained for τ ≤ 10−4 is low.
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Fig. 5. Internal states x4(t) and x5(t) of memristors m1 and m2 for
solutions found using the ode45 procedure with various maximum time steps;
(a) τ = 10−2, (b) τ = 10−3, (c) τ = 10−4, (d) τ = 10−5, (e) τ =
5×10−6.

Let us now consider the Poincaré map approach. There are
seven smooth regions for the system (16). Their description
is presented in Table III. For each region Rk, we report the
conditions defining the region and the formulas for ẋ4 and ẋ5

valid in this region (formulas for other variables are the same
in each region). The fourth column of Table III contains lists
of exit conditions. For each exit condition the corresponding
next region Rl is listed in the last column. Note that only in
the first region the ODE has order five. The order is decreased
to four for regions R2, R3, R4, R5 and to three for the last
two regions.

The right hand side of (16) for the Poincaré based approach
is given as the function moRHSR (see the Appendix). The
function defining exit conditions and the integration procedure
are given in the appendix as the procedures moEvents and
moIntegrate, respectively.

The results of integrating the system (16) using the Poincaré
map approach with the maximum time step τ = 0.1 are
shown in Fig. 6. Moments at which there is a change of a
smooth region are denoted as gray vertical lines. The plot in
Fig. 6(b) is very similar to plots shown in Fig. 5(d,e). The
results obtained for τ = 0.001 are visually indistinguishable
from the results obtained for τ = 0.1 and are not shown for
the sake of brevity. In the following, the results obtained for
τ = 0.001 are regarded as the reference values.

TABLE III
SMOOTH REGIONS FOR THE MEMRISTOR BASED OSCILLATOR.

k Rk ẋ4, ẋ5 Bk Rl

1

x4 = 0 R2

x4 ∈ (0, 1) ẋ4 = i−1
0 W (x4)x1F (x4, x1) x4 = 1 R3

x5 ∈ (0, 1) ẋ5 = −i−1
0 W (x5)x1F (x5,−x1) x5 = 0 R4

x5 = 1 R5

x4 = 0
ẋ4 = 0 x1 = 0 R12 x5 ∈ (0, 1)

ẋ5 = −i−1
0 W (x5)x1F (x5,−x1) x5 = 1 R6x1 < 0

x4 = 1
ẋ4 = 0 x1 = 0 R13 x5 ∈ (0, 1)

ẋ5 = −i−1
0 W (x5)x1F (x5,−x1) x5 = 0 R7x1 > 0

x4 ∈ (0, 1)
ẋ4 = i−1

0 W (x4)x1F (x4, x1) x1 = 0 R14 x5 = 0
ẋ5 = 0 x4 = 1 R7x1 > 0

x4 ∈ (0, 1)
ẋ4 = i−1

0 W (x4)x1F (x4, x1) x1 = 0 R15 x5 = 1
ẋ5 = 0 x4 = 0 R6x1 < 0

x4 = 0
ẋ4 = 0

6 x5 = 1
ẋ5 = 0

x1 = 0 R1

x1 < 0
x4 = 1

ẋ4 = 0
7 x5 = 0

ẋ5 = 0
x1 = 0 R1

x1 > 0
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Fig. 6. Solutions for the memristor-based oscillator found using the Poincaré
map approach with the maximum time step τ = 0.1; (a) voltages x1(t),
x2(t), (b) internal states x4(t) and x5(t) of memristors m1 and m2.

The comparison of the results obtained using the two
methods considered is presented in Table IV. For different
values of the maximum time step τ , we report the integration
error ε and the computation time tc. The integration error ε is
defined as the relative error at the integration time T = 200

ε =
‖x(T )− xref(T )‖
‖xref(T )‖

, (18)

TABLE IV
THE RELATIVE INTEGRATION ERROR ε AND THE COMPUTATION TIME tc
FOR THE STANDARD INTEGRATION METHOD AND THE POINCARÉ MAP

APPROACH VERSUS THE MAXIMUM TIME STEP.

τ
standard method Poincaré map approach
ε tc[s] ε tc[s]

1.000000 1.13361 0.08 0.10857 0.20
0.100000 1.79309 0.17 0.00033 0.33
0.010000 2.22435 0.88 0.00011 1.39
0.001000 2.06627 7.83 — 12.00
0.000100 0.59704 78.52
0.000050 0.28111 155.34
0.000020 0.11115 384.16
0.000010 0.03811 771.64
0.000005 0.00170 1538.64
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where x(T ) is the result of integration obtained using the
method considered at the time T and xref(T ) is the result of
integration obtained using the reference method (the Poincaré
map approach with τ = 0.001).

For both methods decreasing τ leads to better accu-
racy (ε decreases) at the expense of the computation time
(tc grows). For given τ the Poincaré map approach is approx-
imately two times slower than the standard approach. This is
related to the necessity of verifying exit conditions in each
integration step. When an exit condition is detected additional
computations are needed to find the return time and the exit
point. Let us note that the Poincaré map approach is much
more accurate. For τ = 1 the relative error is ε = 0.10857 and
the computation time is tc = 0.20 s. With the standard method,
such a value of the relative integration error is achieved for
τ = 0.00002 with the computation time tc = 384.16 s. The
Poincaré map approach with τ = 0.1 produces the relative
error ε = 0.00033. In this case the computation time is
tc = 0.33 s. The accuracy obtained is better than the accuracy
obtained using the standard approach for all values of τ
considered with the computation time exceeding 1500 s. These
results show that the Poincaré map approach permits using
much larger time steps than the standard numerical integration
procedure considered. In this way the computation time may
be significantly reduced. Using standard numerical integration
methods allows us to obtain accurate results at the expense of
very long computation times.

Let us explain in more detail the reasons for inaccuracies
observed when using the standard numerical integration pro-
cedure and larger time steps. Clearly, the ode45 procedure
is not responsible for these errors. Otherwise, similar errors
would be observed when using the Poincaré map approach.
Inaccuracies are caused by errors introduced when crossing
smooth regions. When leaving a given smooth region the
next point of the trajectory is found using the right hand
side which becomes invalid after leaving this region. As a
result overshooting happens and the internal memristor’s state
is assigned a value outside the allowed bounds. This value
remains constant until the right hand side of the equation
defining the derivative of the internal variable changes its sign.
Until this moment the memristor’s resistance has an erroneous
value, which introduces errors in other ODE equations. These
errors accumulate and may result in the totally wrong final
results. The overshooting error depends on the time step used
when crossing the smooth region boundary. Decreasing the
maximum time step reduces the overshooting and the related
errors. However, the computation time required to obtain
a required accuracy may be very large. The Poincaré map
approach is a preferred method to reduce these effects.

V. CONCLUSIONS

The Poincaré map approach for simulations of circuits
containing memristors has been proposed. Its usefulness has
been shown using a sinusoidally driven memristor described
by the VTEAM model and a memristor based oscillator. It has
been shown that the proposed approach is a preferred method
for simulations of circuits with memristors having bounded

internal states. The proposed approach outperforms standard
numerical integration methods in terms of accuracy and the
computation time.

APPENDIX

Series connection of a linear resistor and a VTEAM memristor

The function defining the RHS of (15) for the standard
approach (we assume that won = 0):
function rhs=vtRHS(t,w,p)
Rm=(p.Roff*w+p.Ron*(p.woff-w))/p.woff;
v=p.u(t)*Rm/(Rm+p.R); % memristor voltage
rhs=0;
if v>p.voff;
rhs=p.koff*(v/p.voff-1)ˆp.aoff;

elseif v<p.von;
rhs=p.kon*(v/p.von-1)ˆp.aon;

end
if w>=p.woff || w<=0; rhs=0; end

In the procedure vtRHS the data structure defining parameters
of the system is called p.

The function defining the RHS of (15) for the Poincaré map
approach:
function rhs=vtRHSR(t,w,p)
if p.Reg==1 || p.Reg==2
Rm=(p.Roff*w+p.Ron*(p.woff-w))/p.woff;
v=p.u(t)*Rm/(Rm+p.R);
if p.Reg==1;
rhs=p.koff*(v/p.voff-1)ˆp.aoff;

else rhs=p.kon*(v/p.von-1)ˆp.aon; end
else rhs=0; end

The function defining exit conditions for (15) for the
Poincaré map approach:
function [val,isterm,dir]=vtEvents(t,w,p)
Rm=(p.Roff*w+p.Ron*(p.woff-w))/p.woff;
v=p.u(t)*Rm/(Rm+p.R);
if p.Reg==1 % events for Region 1
val=[v-p.voff;w-p.woff]; isterm=[1;1]; dir=[-1;1];

elseif p.Reg==2 % events for Region 2
val=[v-vonp.;w-p.won]; isterm=[1;1]; dir=[1;-1];

elseif p.Reg==3 % events for Region 3
val=[v-p.voff;v-p.von]; isterm=[1;1]; dir=[1;-1];

elseif p.Reg==4 % events for Region 4
val=[v-p.von]; isterm=[1]; dir=[-1];

elseif p.Reg==5 % events for Region 5
val=[v-p.voff]; isterm=[1]; dir=[1];

end

In the procedure vtEvents the vector of variables defining
events is called val (an exit event happens when a variable
crosses zero). Directions of crossing are defined by the dir
vector (the value −1/ + 1 selects crossings when the vari-
able defining the event is decreasing/increasing). All events
are terminal, i.e., after detection of an event the integration
procedure is stopped. This is defined by setting all elements
of the isterm vectors equal to 1.

The procedure for the integration of (15) using the Poincaré
map approach.
function vtIntegrate
p.voff=0.15; p.von=-0.20; % set parameters
p.Ron=100; p.Roff=1000; p.R=200; p.woff=10e-9; p.won=0;
p.aoff=3; p.aon=3; p.kon=-8e-6; p.koff=4e-6;
p.u=@(t)(0.35*sin(2*pi*t/0.01));
ws=6e-9; p.Reg=3; % initial point and region
ts=0; te=0.03; % integration interval
tall=[]; wall=[]; % variables to store results
op=odeset(’Events’,@vtEvents);
while 1
[t,w,te,ye,ie]=ode45(@vtRHSR,[ts,te],ws,op,p);
tall=[tall; t]; wall=[wall; w];
if (isempty(ie)); break; end % computations finished
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ts=t(end); % update initial time
ws=w(end); % update initial condition
if p.Reg==1 && ie==1; tmp=3; end
if p.Reg==1 && ie==2; tmp=4; end
if p.Reg==2 && ie==1; tmp=3; end
if p.Reg==2 && ie==2; tmp=5; end
if p.Reg==3 && ie==1; tmp=1; end
if p.Reg==3 && ie==2; tmp=2; end
if p.Reg==4; tmp=2; end
if p.Reg==5; tmp=1; end
p.Reg=tmp; % update region

end

The ie variable returned by the ode45 procedure is
the index of an event detected. If ie is empty then the
computations are stopped due to reaching the integration time
te and the computations are finished.

Memristor-based oscillator

The function defining the RHS of (16) with the BC mem-
ristors’ model for the standard approach:
function dxdt=moRHS(t,x,p)
Wx4=p.Gon*p.Goff/(p.Gon-(p.Gon-p.Goff)*x(4));
Wx5=p.Gon*p.Goff/(p.Gon-(p.Gon-p.Goff)*x(5));
dxdt1=-p.alpha*((Wx4+Wx5+p.GN2)*x(1)/p.G+x(3));
dxdt2=p.gamma*x(2)+x(3);
dxdt3=p.beta*(x(1)-x(2)-x(3));
dxdt4=(1/p.i0)*Wx4*x(1);
dxdt5=(-1/p.i0)*Wx5*x(1);
if x(4)>1 && dxdt4>0; dxdt4=0; end
if x(4)<0 && dxdt4<0; dxdt4=0; end
if x(5)>1 && dxdt5>0; dxdt5=0; end
if x(5)<0 && dxdt5<0; dxdt5=0; end
dxdt=[dxdt1 dxdt2 dxdt3 dxdt4 dxdt5]’;

The function defining the RHS of (16) for the Poincaré map
approach:
function dxdt=moRHSR(t,x,p)
Wx4=p.Gon*p.Goff/(p.Gon-(p.Gon-p.Goff)*x(4));
Wx5=p.Gon*p.Goff/(p.Gon-(p.Gon-p.Goff)*x(5));
dxdt1=-p.alpha*((Wx4+Wx5+p.GN2)*x(1)/p.G+x(3));
dxdt2=p.gamma*x(2)+x(3);
dxdt3=p.beta*(x(1)-x(2)-x(3));
dxdt4=0;
if p.Region==1 || p.Region==4 || p.Region==5
dxdt4=(1/p.i0)*Wx4*x(1);

end
dxdt5=0;
if p.Region==1 || p.Region==2 || p.Region==3
dxdt5=(-1/p.i0)*Wx5*x(1);

end
dxdt=[dxdt1 dxdt2 dxdt3 dxdt4 dxdt5]’;

The function defining exit conditions for the system (16)
for the Poincaré map approach:
function [val,isterm,dir]=moEvents(t,x,p)
if p.Reg==1 % events for Region 1
val=[x(4);x(4)-1;x(5);x(5)-1];
isterm=[1;1;1;1]; dir=[-1;1;-1;1];

elseif p.Reg==2 % events for Region 2
val=[x(1);x(5)-1]; isterm=[1;1]; dir=[1;1];

elseif p.Reg==3 % events for Region 3
val=[x(1);x(5)]; isterm=[1;1]; dir=[-1;-1];

elseif p.Reg==4 % events for Region 4
val=[x(1);x(4)-1]; isterm=[1;1]; dir=[-1;1];

elseif p.Reg==5 % events for Region 5
val=[x(1);x(4)]; isterm=[1;1]; dir=[1;-1];

elseif p.Reg==6 % events for Region 6
val=[x(1)]; isterm=[1]; dir=[1];

elseif p.Reg==7 % events for Region 7
val=[x(1)]; isterm=[1]; dir=[-1];

end

The procedure for the integration of (16) using the Poincaré
map approach:
function moIntegrate
p.Goff=0.06e-3; p.Gon=1.9e-3; % set parameters

p.G=3.3e-3; p.GN1=-0.4e-3; p.GN2=-1.2e-3;
p.alpha=0.74; p.beta=0.0333; p.gamma=0.12; p.i0=8.9189;
ts=0; te=200; % integration interval
xs=[0.006,0.02,-0.3,0,0]’; % initial point
p.Reg=4; % initial region
op=odeset(’MaxStep’,1e-3,’Events’,@moEvents)
tall=[]; xall=[]; % variables to store results
while 1
[t,x,te,ye,ie]=ode45(@moRHSR,[ts,te],xs,op,p);
tall=[tall; t]; xall=[xall’ x’]’;
ts=t(end); % update initial time
xs=x(end,:); % update initial condition
if (isempty(ie)); break; end % computations finished
if p.Reg==1 && ie==1; tmp=2; end
if p.Reg==1 && ie==2; tmp=3; end
if p.Reg==1 && ie==3; tmp=4; end
if p.Reg==1 && ie==4; tmp=5; end
if p.Reg==2 && ie==1; tmp=1; end
if p.Reg==2 && ie==2; tmp=6; end
if p.Reg==3 && ie==1; tmp=1; end
if p.Reg==3 && ie==2; tmp=7; end
if p.Reg==4 && ie==1; tmp=1; end
if p.Reg==4 && ie==2; tmp=7; end
if p.Reg==5 && ie==1; tmp=1; end
if p.Reg==5 && ie==2; tmp=6; end
if p.Reg==6 || p.Reg==7; tmp=1; end
p.Reg=tmp; % update region

end
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