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Study of Amplitude Control and Dynamical
Behaviors of a Memristive Band Pass Filter Circuit
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Abstract—The existence of a partial and total amplitude
control in a band pass filter circuit with a memristor is explained
theoretically and confirmed in simulations. A linear change of
coordinates is derived to develop a simple three-parameter model
of the circuit. Dynamical phenomena observed in the circuit are
analyzed.

I. Introduction
The existence of nonlinear circuit elements with resistance

depending on the history of current flowing through the
element or the voltage across the element has been postulated
in [1]. The first memristor nano-device was reported in [2].
Since then memristors have received significant attention due
to a number of possible applications including large capacity
non-volatile memories and neuromorphic systems.

Understanding the dynamics of circuits containing mem-
ristors is a key step in the design of memristor-based net-
works [3], [4], [5], [6]. Recently, dynamical phenomena ob-
served in memristor-based oscillators have been extensively
studied. In most cases these oscillators contain memristors
which are built using discrete components to mimic the-
oretical characteristics of ideal or extended memristors. A
memristor emulator imitating the behavior of a TiO2 memristor
is presented in [7]. A floating analog memristor emulator
circuit is proposed in [8]. A four dimensional memristor based
chaotic circuit obtained by replacing the nonlinear element
in the Chua’s circuit with a memristor is studied in [3], [9].
The simplest chaotic memristor-based circuit containing an
inductor, a capacitor and a memristor connected in series is
studied in [10]. Further analysis of this circuit is carried out
in [11], [12]. Dynamical phenomena in a floating memristor
emulator based relaxation oscillator are analyzed in [13].
Memristive diode bridge with LCR filter is studied in [14].
Chaotic behaviors in a memristive Sallen-Key low pass filter
are investigated in [15]. Numerical study of multiple attractors
in the parallel inductor-capacitor-memristor circuit is carried
out in [16].

A simple third-order memristive band pass filter circuit
is introduced [17]. The authors carry out an analysis of its
equilibria and their stability, construct bifurcation diagrams
and observe the phenomenon of amplitude control.
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Amplitude control is an important property of dynamical
systems in engineering applications since it permits adjusting
amplitudes of generated signals to a desired level without the
necessity of using amplifiers [18]. Recently, a considerable
research effort has been devoted to the construction of systems
and circuits with the mechanisms of total and partial amplitude
control [19], [20].

In this work, the analysis of the third-order memristive band
pass filter circuit introduced in [17] is continued. The mech-
anism of a partial amplitude control (PAC) is fully explained.
Additionally, the property of a total amplitude control (TAC)
is theoretically derived and confirmed in simulations. Using
an appropriate linear change of variables a simple model of
the circuit is constructed. The number of parameters in this
model is reduced to three which considerably simplifies char-
acterization of dynamical phenomena in the circuit. Analysis
of the dynamics of the three-parameter model is carried out.
A single-parameter bifurcation diagram is constructed, various
dynamical phenomena are identified and the existence of
observed attractors is confirmed using rigorous computational
tools.

II. Third OrderMemristive Band Pass Filter Circuit

The memristive band pass filter circuit [17] is shown in
Fig. 1. It is built using an op-amp, two capacitors, three
resistors and a memristor belonging to the class of extended
voltage controlled memristors [21]. The dynamics of the
memristor is defined by

i1 = R−1
c (1 − gv2

0)v1 (1)

v̇0 = −(RbC0)−1v0 − (RaC0)−1v1, (2)

where i1, v1, and v0 are the memristor’s current, voltage,
and internal variable, respectively. An implementation of this
memristor using two op-amps, three resistors, one capacitor,
and two multipliers is described in [17].
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Fig. 1. The memristive band pass filter circuit.
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The dynamics of the circuit presented in Fig. 1 is defined
by the following system of differential equations

v̇0 = −(RbC0)−1v0 − (RaC0)−1v1,

v̇1 = (1 − gv2
0)
(
(k − 1)RcC2

)−1v1 − R−1
1 (C−1

1 + k−1C−1
2 )v2, (3)

v̇2 = k(1 − gv2
0)
(
(k − 1)RcC2

)−1v1 − R−1
1 (C−1

1 + C−1
2 )v2,

where v1 is the voltage across the memristor, v2 is the voltage
between the ground and the output of the operational amplifier,
and k = 1 + R2/R3.

Using the notation x = v0, y = v1, z = v2, rescaling
time τ = t/(R1C1), and defining parameters α = C2/C1,
δ = (R1C2)/(RbC0), % = (R1C2)/(RaC0), ε = R1/Rc the circuit
equations can be rewritten in the dimensionless form as

ẋ = −δx − %y,

ẏ = ε(1 − gx2)(k − 1)−1y − (α + k−1)z, (4)

ż = kε(1 − gx2)(k − 1)−1y − (α + 1)z.

Behavior of the system depends on six parameters: δ, %, g,
k, ε and α. In [17], the authors assume that C1 = C2. Under
this assumption the parameter α is equal to 1, and the number
of parameters is reduced to five. Analysis of the system (4) is
carried out in [17] for the case in which four parameters are
fixed α = 1, ε = 500/3, g = 0.1, k = 21 and the parameters
δ and % are varied. Bifurcation diagrams are constructed and
Lyapunov exponents are computed.

In [17], the authors compute equilibria and characteristic
equations of Jacobian matrices of (4) at equilibria finding
out that the characteristic equations do not depend on the
parameter %. They conclude that it follows that “the dynam-
ical characteristic of system (4) has nothing to do with the
parameter %”. This explanation is not valid. Jacobian matrices
at equilibria define dynamical behaviors in neighborhoods of
equilibria. Properties of the global dynamics of the system can-
not be concluded from the analysis of local behavior around
equilibria alone. The authors notice that when other parameters
are fixed, changing the parameter % rescales attractors in such
a way that amplitudes of variables y and z are proportional to
%, while the amplitude of x does not change. They are however
not able to explain this phenomenon and write “However, if
the transformation (x, y, z) 7→ (x, y/%, z/%) is performed, the
algebraic system structure will change”.

III. Amplitude ControlMechanisms
In this section, we explain the phenomenon of variables’

rescaling. It will be shown that rescaling variables in a proper
way produces systems with different values of % and other
parameters unchanged. We also show that the system has the
property of a total amplitude control, in which all variables
can be rescaled by the modification of a single parameter of
the circuit.

First, let us notice that introducing the variable change
(x, y, z) 7→ (x, ηy, ηz) converts (4) to the following dynamical
system

ẋ = −δx − η−1%y,

ẏ = ε(1 − gx2)(k − 1)−1y − (α + k−1)z, (5)

ż = kε(1 − gx2)(k − 1)−1y − (α + 1)z.

The only change is in the coefficient at the y variable in
the first equation. This coefficient changes from % to η−1%.
It follows that two systems (4) with different values of
% are equivalent from the dynamical point of view. More
precisely, the system (4) with parameter %1 is converted to
the system with parameter %2 if the transformation (x, y, z) 7→
(x, %1%

−1
2 y, %1%

−1
2 z) is applied. Modifying the parameter % is

equivalent to appropriate rescaling of variables y and z while
the variable x is not changed. The parameter % can be used
for the partial amplitude control (PAC), where modifying a
single parameter rescales amplitudes of selected variables,
while amplitudes of other variables are not altered [18].

Now, we will show how to simultaneously rescale all
variables in the system (4) by changing a single parameter.
This is called a total amplitude control (TAC) [18]. In TAC,
it is required that the right-hand side of the equation defining
the dynamical system contain terms which are all monomials
of the same degree apart from the one, whose coefficient can
be used for amplitude control. The system (4) contains six
linear terms and two nonlinear terms. However, the nonlinear
terms are of the same degree and both contain the parameter
g, which is not present in other terms. This makes a total
amplitude control for the system (4) possible. Let us consider
the following variable change (x, y, z) 7→ (sx, sy, sz), where s
is the factor scaling proportionally all variables. Applying this
coordinate change to (4) yields

ẋ = −δx − %y,

ẏ = ε(1 − s−2gx2)(k − 1)−1y − (α + k−1)z, (6)

ż = kε(1 − s−2gx2)(k − 1)−1y − (α + 1)z.

The difference between (4) and (6) is that g is replaced
by g/s2. It follows that decreasing g by the factor s scales
trajectories by the factor

√
s in all variables. The amplitudes

of all variables may be controlled by changing g. This is an
example of a total amplitude control [18].

Results regarding amplitude control are confirmed in sim-
ulations. Fig. 2(a) shows a trajectory of the system (4) with
parameters δ = 8, % = 80, ε = 500/3, g = 0.1, k = 21,
and α = 1 with the initial condition (x0, y0, z0) = (0.1, 0, 0.1).
Results of the partial amplitude control are shown in Fig. 2(b),
where % is decreased by a factor 2 and the initial condition
is rescaled in the y and z variables (x0, y0, z0) = (0.1, 0, 0.2).
One can see that the plot is the same as in Fig. 2(a) with
the only difference in the amplitude of the y variable, which
is two times larger. Similarly, the amplitude of the z vari-
able is increased two times. Results of the total amplitude
control are shown in Fig. 2(c), where g is increased four
times and the initial condition is rescaled in all variables to
(x0, y0, z0) = (0.05, 0, 0.05). As a result of the total amplitude
control amplitudes of all variables are decreased by a factor 2.
This is consistent with the results of theoretical analysis in
which we showed that the scaling factor of the amplitudes is
inversely proportional to the square of the scaling factor of g.

In the original definition of a total and partial amplitude
control, a single parameter is used to rescale all or some
of the system’s variables [18]. Here, we demonstrate how to
obtain the partial amplitude control of x by a simultaneous
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modification of two parameters. Independent rescaling of the
amplitude of the x variable can be achieved by changing both
% and g. This is illustrated in Fig. 2(d), where % is decreased
by a factor 2, g is increased four times when compared to the
first case, and the initial condition is rescaled in the x variable
to (x0, y0, z0) = (0.05, 0, 0.1). As a result in this case the
amplitude of x is decreased by a factor 2, while the amplitudes
of y and z are unaltered.
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Fig. 2. Trajectories of (4) with δ = 8, ε = 500/3, k = 21, and α = 1;
(a) % = 80, g = 0.1, (b) % = 40, g = 0.1, (c) % = 80, g = 0.4, (d) % = 40,
g = 0.4.

Fig. 3 shows the amplitudes of signals generated by the
circuit in the total and partial amplitude control. In TAC, g
is the control parameter. Other parameters are fixed at δ = 8,
ε = 500/3, k = 21, α = 1, and % = 80. 101 values of the
parameter g selected uniformly in the interval g ∈ [0.05, 0.2]
are considered. For each value, a steady state trajectory starting
from initial conditions (x0, y0, z0) = (0.1, 0, 0.1) is found. Note
that here, we do not rescale the initial conditions. Nevertheless,
the steady-state is the the same because in this case a single
attractor is observed in simulations. The minimum and the
maximum value of each variable in the steady-state are plotted
in Fig. 3(a). The extremal values of x, y, and z variables are
plotted in blue, red and magenta, respectively. The parameter
value g = 0.1 corresponding to Fig. 2(a) is denoted as a
gray vertical line. The amplitudes of all variables are inversely
proportional to the square root of g.

In the partial amplitude control the parameter % is changed.
Computations are carried out for 101 values belonging to the
interval % ∈ [40, 160]. The minimum and the maximum value
of each variable in the steady-state are plotted in Fig. 3(b). The
amplitude of x is not influenced by PAC, while the amplitudes
of remaining variables are inversely proportional to %.

Since Lyapunov exponents are invariant under a linear
change of coordinates [22], it is clear that the Lyapunov
exponent spectrum is not altered by changing % and g.

Amplitude control may be useful in applications in which
signals with predefined amplitudes are required. Note that %
is inversely proportional to Ra and that Ra is not present in
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Fig. 3. Amplitudes of variables versus control parameter: (a) the total
amplitude control, (b) the partial amplitude control.

the definitions of δ, ε, k, and α. Hence, as noticed in [17], the
amplitudes of signals generated by the circuit can be adjusted
by a potentiometer at the element Ra. Changing Ra causes
PAC regarding voltages v1 and v2. The total amplitude control
resulting in a uniform scaling of all voltages v0, v1, and v2
is achieved by the modification of the parameter g of the
memristor.

IV. A Three ParameterModel of the Circuit
From the discussion presented in the previous section it

follows that systems (4) with different values of the parameters
% and g are equivalent from the dynamical point of view
(Lyapunov spectrum is the same, solutions and attractors are
simply rescaled). It is sufficient to study system’s behaviors for
single values of these parameters, for example % = 1, g = 1.
Hence, we can eliminate two parameters of the system (4) by
a linear change of coordinates. Yet another parameter can be
eliminated by using an appropriate time rescaling.

Below, we derive a linear transformation reducing the
number of parameters to three and simplifying the differential
equations defining the dynamical system so that it contains a
single nonlinear term. Let us define new variables x = −v0/s,
y = v1Rb/(sRa), w = v2Rb/(skRa), τ = t/(RbC0), where s is a
scaling factor. The value of s will be selected later. In these
new variables the dynamical system (3) can be rewritten as

dx
dτ

= −x + y,

dy
dτ

=
RbC0(1 − gs2x2)

(k − 1)RcC2
y −

RbC0(kα + 1)
R1C2

w, (7)

dw
dτ

=
RbC0(1 − gs2x2)

(k − 1)RcC2
y −

RbC0(α + 1)
R1C2

w.

Note that nonlinear terms in (7) are identical. This allows us
to simplify differential equations by eliminating one of the
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Fig. 4. Bifurcation diagram of the system (9) for a ∈ [1.58, 2], b = 2.75, c = 2.5.

nonlinear terms. Let use define a new variable z = y − w.
Equations (7) in variables (x, y, z) can be written as

ẋ = −x + y,

ẏ = −ay + bz − ds2x2y, (8)
ż = c(z − y),

where a = RbC0(kα + 1)/(R1C2) − RbC0/((k − 1)RcC2),
b = RbC0(kα + 1)/(R1C2), c = RbC0(k − 1)/(R1C1), and
d = gRbC0/((k − 1)RcC2). Note that for positive R2, R3, Rc,
C2, Rb, C0, and g, the parameters b, c, d and the difference
b − a are always positive.

Let us select the scaling factor s in such a way that the
coefficient at x2y in the second equation is equal to −1, i.e.
s =

√
d−1 =

√
(k − 1)RcC2/(gRbC0). This is always possible

since d is positive. For this selection, we obtain a dynamical
system with three parameters

ẋ = −x + y,

ẏ = −ay + bz − x2y, (9)
ż = c(z − y).

Reducing the number of parameters from six for the model (4)
to three for the model (9) simplifies the process of studying
dynamical phenomena in the system.

V. Analysis of the Three ParameterModel

In this section, we analyze dynamical phenomena in the
three parameter model derived in the previous section.

Let us note that the system (9) is symmetric with respect
to the transformation (x, y, z) 7→ (−x,−y,−z). It follows
that if (x(t), y(t), z(t)) is a trajectory of (9) then also is
(−x(t),−y(t),−z(t)). As a consequence there might exist two
types of steady-state solutions: self-symmetric solutions and
symmetric pairs of solutions.

If (b − a) is positive the system possesses three equilibria
(0, 0, 0), and ±x? = (±x?1 ,±x?1 ,±x?1 ), where x?1 =

√
b − a.

Since b− a = RbC0/((k − 1)RcC2) > 0 it follows that there are
always three equilibria of the original system (3).

In the following, we carry out a bifurcation analysis of
the system (9), with a being the bifurcation parameter and
other parameters fixed at b = 2.75, c = 2.5. A bifurcation
diagram of the y variable at the intersection of trajectories
with the plane x = 0 is shown in Fig. 4. One can see various
dynamical phenomena including period-doubling bifurcations,
chaotic regions and periodic windows.

Attractors existing for selected values of a are shown
in Fig. 5. Initial points are selected as (x0, y0, z0) =

(±0.1, 0,±0.1). To avoid transients, in each case a trajectory of
the length T = 1000 is computed and its second half is plotted.
In cases when a symmetric pair of attractors coexists, attractors
are plotted using different colors. The attractors reached from
the initial points (0.1, 0, 0.1) and (−0.1, 0,−0.1) are plotted in
blue and red respectively. For a = 2 there exists a stable self-
symmetric periodic orbit [see Fig. 5(a)]. For a ≈ 1.995 this
orbit loses stability and a symmetric pair of stable periodic
orbits is born [see Fig. 5(b)]; one of the branches can be
seen in the bifurcation plot. When a is decreased this periodic
orbit undergoes a period doubling bifurcation for a ≈ 1.823
[compare Fig. 5(c)]. For a < 1.823, there is a sequence of
period-doubling bifurcations which leads to a chaotic behavior.
A symmetric pair of chaotic attractors exists roughly for
a > 1.72. An example is shown in Fig. 5(d). At a ≈ 1.72
chaotic attractors collide and a self-symmetric chaotic attractor
is born [compare Fig. 5(e) and (g)]. Periodic windows exist
within the chaotic region. The stable self-symmetric periodic
orbit existing for a = 1.68 is shown in Fig. 5(f). The chaotic
region exists approximately for a > 1.605. For a < 1.605 a
symmetric pair of periodic attractors exists [see Fig. 5(h)].

The existence of attractors is confirmed using interval
arithmetic tools [23]. Computations in interval arithmetic are
carried out in such a way that a proper rounding is used when
calculating bounds of mathematical expressions. In this way
results returned by a computer always enclose the true results
and we can be sure that phenomena observed in computations
are not rounding error artifacts [24], [25]. The existence of
attractors is studied by applying interval tools to the return
map defined by the section {(x, y, z) : x = 0}. The return map
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(e) a = 1.7 (f) a = 1.68
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(g) a = 1.62 (h) a = 1.6
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Fig. 5. Attractors existing for selected values of parameter a; a ∈

{2.0, 1.9, 1.8, 1.75, 1.7, 1.68, 1.62, 1.6}, b = 2.75, c = 2.5. Initial points
(x0, y0, z0) = (±0.1, 0,±0.1).

P and its derivative are rigorously evaluated using the CAPD
library [26]. The existence of all periodic attractors shown
in Fig. 5 is verified using the interval Newton method [27].
In case of chaotic attractors, the existence of infinitely many
periodic orbits and chaotic trajectories is confirmed using the
method of covering relations [28], [25]. Computational details
are skipped for the sake of brevity.

VI. Conclusions

It has been shown that a memristive band pass filter circuit
possesses a total and partial amplitude control mechanisms.
In the total amplitude control by changing the value of one
of the circuit’s parameters the amplitudes of all variables are
rescaled by the same factor. In the partial amplitude control
the amplitude of one of the variables remains constant while
the others are rescaled by the same factor. A linear change
of coordinates has been constructed in such a way that the
behavior of the resulting dynamical system depends on three

parameters only. Dynamical phenomena of this system have
been studied.
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