
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019 4269

Tree-Structure Based Deterministic Algorithms for
Optimal Switch Placement in Radial

Distribution Networks
Zbigniew Galias , Senior Member, IEEE

Abstract—The problem of the optimal placement of sectional-
izing switches in radial distribution networks is studied. Tree-
structure based algorithms for the computation of performance
indexes for the given positions of sectionalizing switches are pre-
sented. It is shown that the algorithms are very efficient and can be
useful in search methods that require the evaluation of reliability
indexes for a large number of test selections. Efficient determin-
istic algorithms are presented to find the optimal allocation of a
given number of sectionalizing switches to minimize a selected per-
formance/reliability index. The performance of the algorithms is
assessed using the existing distribution networks of various sizes.
It is shown that the proposed algorithms outperform the state-of-
the-art approaches in terms of computational efficiency.

Index Terms—Power distribution reliability, protective device,
sectionalizing switch, SAIDI, SAIFI, AENS.

I. INTRODUCTION

R EDUCING the frequency and duration of power interrup-
tions to customers is one of the main objectives in the

design of distribution networks [1]–[3]. Improving reliability
and reduction of costs associated with power outages may be
achieved by the introduction of automatic switching devices
(sectionalizing switches).

In this work, we study the problem of optimal placement
of sectionalizing switches in radial distribution networks to
improve reliability and reduce power outage costs. We will
consider the problems of minimization of three performance
indexes: SAIDI (System Average Interruption Duration Index),
SAIFI (System Average Interruption Frequency Index), and
AENS (Average Energy Not Supplied). Several solutions to
these problems have been proposed, including genetic algo-
rithms [4], simulated annealing [5], immune algorithms [6], par-
ticle swarm optimization [7], and ant colony optimization-based
methods [8]. These algorithms belong to the class of heuristic

Manuscript received July 3, 2018; revised December 4, 2018 and January
27, 2019; accepted March 23, 2019. Date of publication May 2, 2019; date
of current version October 24, 2019. This work was supported by the National
Science Centre, Poland, under Grant 2014/15/B/ST8/02315. Paper no. TPWRS-
01016-2018.

The author is with the Department of Electrical Engineering and Power Engi-
neering, AGH University of Science and Technology, Kraków 30-059, Poland
(e-mail: galias@agh.edu.pl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPWRS.2019.2909836

approaches and can be characterized by long computation times
and no guarantee that the optimal solution has been found.

In [9], a sequential optimization algorithm using thinning
techniques to reduce the search space is described. The authors
claim that the proposed algorithm is capable of finding the op-
timal solution for real size networks. It will be shown that this
algorithm may produce suboptimal results. A fuzzy dynamic
programming approach is presented in [10]. Improving reliabil-
ity in radial distribution systems with distributed generation is
studied for example in [11], [12]. Sectionalizing strategy for par-
allel system restoration is discussed in [13], [14]. The problem
of optimal switch placement considering switch malfunction is
studied in [15].

The state-of-the-art methods to solve optimization problems
related to optimal switch placement are based on integer pro-
gramming. A binary programming based approach to optimize
the SAIFI index is presented in [16]. In [17], mixed integer
linear programming (MILP) is utilized for the minimization of
customer outage costs in networks without and with alterna-
tive supply paths. Application of these techniques to systems
with distributed generation is presented in [12]. Mixed integer
nonlinear programming is used to solve the simultaneous opti-
mal allocation of sectionalizing switches and protective devices
in [18], [19]. In these approaches the switch placement prob-
lem is modeled as a MILP problem. Commercial solvers can
solve the resulting optimization problems in a computationally
efficient manner using for example the branch-and-bound algo-
rithm. The number of test solutions which has to be considered
in the branch and bound algorithm to ensure that the optimal so-
lution is found grows exponentially with the complexity of the
optimization problem. In consequence, optimization problems
can be successfully solved only for networks of a limited size.
Therefore, in many cases, additional constrains in the allowed
positions of switches are introduced to improve the performance
of MILP solvers. In practice, the number of possible switch loca-
tions and the maximum number of switches are usually less than
100 and 10, respectively. Additionally, economic constrains are
often introduced to limit the search space.

In this work, we propose fast algorithms based on a tree
structure of radial distribution networks. The algorithms use the
dynamic programming approach. Partial solutions are found re-
cursively starting from load nodes and proceeding towards the
generator node. At each node all partial solutions which may

0885-8950 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7253-7075
mailto:galias@agh.edu.pl

4270 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

produce the optimal complete solution are remembered. The
number of solutions, which are considered is reduced by in-
troducing partial ordering of admissible solutions and eliminat-
ing partial solutions which cannot lead to the optimal solution.
A version of this algorithm for the optimization of AENS is
presented in [20]. Here, we present a more detailed description
of the algorithm, extend it to optimize other performance indexes
(SAIDI and SAIFI), and discuss its computational complexity.
We also compare the performance of the algorithms with the
state-of-the-art methods using existing distribution networks of
various sizes as examples. We show that the proposed algorithms
are orders of magnitudes faster than existing methods. In con-
sequence, the optimization problem at hand can be efficiently
solved for larger networks without the necessity to introduce
additional constrains to the optimization problem. Another ad-
vantage of the proposed approach is that no commercial solvers
are needed to find the optimal solution—the algorithms can be
easily implemented in the C++ programming language or in the
MATLAB environment.

The layout of the paper is as follows. In Section II, the prob-
lem is defined and proposed algorithms are presented in detail.
In Section III, case studies are employed and high efficiency of
the algorithms is confirmed. It is shown that the sequential op-
timization algorithm presented in [9] may produce suboptimal
results. Using existing distribution networks of different sizes, it
is shown that the proposed algorithms significantly outperform
state-of-the-art methods.

II. OPTIMAL PLACEMENT OF SECTIONALIZING SWITCHES

A. Problem Definition

We assume that the network has a radial structure and con-
tains m connection lines. It follows that the number of nodes is
n = m+ 1. Let V = {v1, v2, . . . , vn} denote the set of nodes.
We assume that there is a single generator/supply node and m
load and distribution nodes. To simplify the presentation, we
assume that the index of the supply node is n. Each load node
is connected to a single node. For each load node there exist a
unique path connecting it to the supply node. It follows that the
graph representation of the network has a tree structure, with the
generator being the root of the tree and load nodes being leaves
(nodes without children).

For 1 ≤ j ≤ m by cj we denote the line segment between
the node vj and its parent node. Let λvj

and λcj be the average
failure rates (the average number of failures during the period of
analysis; usually one year) of the node vj and the line segment
cj , respectively. Let τvj

and τcj be the average failure durations
for the node vj and the line segment cj , respectively. The aver-
age total duration of failures of a given element can be computed
as a product of the average failure rate λ and the average failure
duration τ of this element, i.e. tvj

= λvj
τvj

and tcj = λcjτcj .
Let us define λj = λvj

+ λcj and tj = tvj
+ tcj . Since the prob-

lems considered do not depend on failures of the supply node,
we may assume that λn = 0 and tn = 0.

LetNj ≥ 0 andPj ≥ 0be the number of users and the average
(active) power of the node vj . In practice,Pj > 0 andNj > 0 for
load nodes and Pj = Nj = 0 for other nodes. The total average

power is P̄ =
∑n

i=1 Pi, the total failure rate is λ̄ =
∑n

i=1 λi,
and the total duration of failures is t̄ =

∑n
i=1 ti.

The two most popular indexes used in reliability analysis of
power networks are the System Average Interruption Frequency
Index (SAIFI) and the System Average Interruption Duration
Index (SAIDI) [1], [5].

SAIFI is the average number of interruptions during one year
for a single user. It is defined as the total number of interruptions
counted independently for each user divided by the total number
of users N̄ =

∑n
j=1 Nj . SAIDI is the average outage duration.

It is calculated as the sum of the durations of all interruptions
counted independently for each user divided by N̄ . SAIFI and
SAIDI are defined as

SAIFI =

∑n
j=1 μjNj

∑n
j=1 Nj

, SAIDI =

∑n
j=1 UjNj

∑n
j=1 Nj

, (1)

where n = m+ 1 is the number of nodes, μj is the outage rate
of the node vj , i.e. the average number of interruptions involving
the node vj during one year, and Uj is the total duration of all
interruptions involving the node vj during one year.

The Average Energy Not Supplied (AENS) is defined as the
average value of energy not supplied to users during the period
of analysis due to failures

AENS =

n∑

j=1

UjPj . (2)

For a given network, coefficients SAIFI, SAIDI, and AENS
can be reduced by introducing sectionalizing switches at selected
line segments. If a failure occurs behind the switch we may
disconnect a part of the grid and energy supply to the remaining
part of the grid may be continued in spite of the fault. If there is
a switch at the line segment cj we will say for short that there
is a switch at the position j. A switch at this position should be
placed close to the parent of vj . This choice guarantees that this
switch can be activated for all failures involving the line segment
cj .

Let Q = {i1, i2, . . . , ip} ⊂ Im = {1, 2, . . . ,m} be a set of
positions of sectionalizing switches. Let us denote byAENS(Q)
the average energy not supplied if there are switches at the po-
sitions in the set Q. If there are no sectionalizing switches in
the network (Q = ∅) then a failure at any location in the grid
causes energy supply interruption in the entire network. In con-
sequence, Uj = const =

∑n
i=1 ti and

AENS(∅) =
n∑

i=1

Pi

n∑

j=1

tj = P̄ · t̄. (3)

The optimization problem is to find for a given p ∈
{1, 2, . . . ,m} the minimum value of AENS which can be ob-
tained using p sectionalizing switches

AENSmin(p) = min
Q:#Q=p

AENS(Q), (4)

and the corresponding positions of switches, where #Q denotes
the cardinality of Q.

Other optimization problems are defined in a similar way. Let
SAIFI(Q) and SAIDI(Q) be the SAIFI and SAIDI indexes for

GALIAS: TREE-STRUCTURE BASED DETERMINISTIC ALGORITHMS FOR OPTIMAL SWITCH PLACEMENT 4271

the case of sectionalizing switches located at the positions in
the set Q. With no switches we have μj = const =

∑n
i=1 λi,

Uj = const =
∑n

i=1 ti, and in consequence

SAIFI(∅) =
n∑

j=1

λj = λ̄, SAIDI(∅) =
n∑

j=1

tj = t̄. (5)

The optimization problems involvingSAIFI andSAIDI indexes
are to find for a given p ∈ {1, 2, . . . ,m}

SAIFImin(p) = min
Q:#Q=p

SAIFI(Q), (6)

SAIDImin(p) = min
Q:#Q=p

SAIDI(Q), (7)

and the corresponding positions of sectionalizing switches.

B. Efficient Computation of SAIFI, SAIDI, and AENS

Let us introduce several notions which are useful for the eval-
uation of SAIFI, SAIDI, and AENS. For j ∈ Im let us denote
by Cj the set of indexes of children of vj . By Dj we denote the
set containing the index j and indexes of descendants of vj . Let
P̄j denote the sum of average powers of the node vj and its de-
scendants, i.e. P̄j =

∑
i∈Dj

Pi. In a similar way, we define the
sum of average failure times t̄j , the sum of failure rates λ̄j and
the total number of users for the node vj and its descendants:
t̄j =

∑
i∈Dj

ti, λ̄j =
∑

i∈Dj
λi, and N̄j =

∑
i∈Dj

Ni.
Let us consider an arbitrary set Q ⊂ Im. First, we present

the tree-structure based algorithm for the computation of
AENS(Q). The switch at the position j ∈ Q is active only if a
failure occurs beyond this switch but not beyond other switches
in Qj = Q ∩Dj . It follows that the activation time for this
switch can be computed as t̄j −

∑
i∈Rj

t̄i, where Rj is the set
of switches in Qj , which can be reached from vj without pass-
ing through another switch. When the switch at the position j
is active, the part of the grid containing the node vj and its de-
scendants is switched off. It follows that due to the presence of
a sectionalizing switch at the position j, AENS is decreased by
the product of the activation time of this switch and the total
power (P̄ − P̄j) of load nodes which are active when the switch
at the position j is active. Hence

AENS(Q) = P̄ · t̄−
∑

j∈Q

(
P̄ − P̄j

)
⎛

⎝t̄j −
∑

i∈Rj

t̄i

⎞

⎠ . (8)

A recursive procedure to compute AENS(Q) is presented as
the Algorithm 1. To explain how the algorithm works let us
define the notion of a partial solution. The partial solution s
generated by Q at the position j involves switches located in
the set Dj . Qs = Q ∩Dj is the set of switches in the partial
solution s. For the partial solution s we define the gain gs to be
the gain in the average energy not supplied obtained by using
the partial solution s

gs = P̄ · t̄−AENS(Qs) =
∑

j∈Qs

(
P̄ − P̄j

)
⎛

⎝t̄j −
∑

i∈Rj

t̄i

⎞

⎠ .

(9)

Algorithm 1: Tree Algorithm to Compute AENS(Q).

Precondition: Q is the set of switch positions
1: function VISITNODE(Q, j)
2: (gs, as)← (0, 0)
3: for i ∈ Cj do � process children
4: (gr, ar)←visitNode(Q, i)
5: (gs, as)← (gs + gr, as + ar)
6: end for
7: if j ∈ Q then
8: gs ← gs + (P̄ − P̄j)(t̄j − as)
9: as ← t̄j

10: end if
11: return (gs, as)
12: end function
13: function AENS(Q)
14: (gs, as)←visitNode(Q,m+ 1)
15: return P̄ · t̄− gs
16: end function

The total activation time as of the partial solution s is the total
time for which switches in Qs are active

as =

{
t̄j if j ∈ Qs∑

i∈Rj
t̄i if j 	∈ Qs.

(10)

The Algorithm 1 recursively computes gains gs and total acti-
vation times as for partial solutions starting from load nodes and
moving towards the root node. The nodes are visited using the
depth-first search (DFS) algorithm in which a given node is pro-
cessed after all its children have been processed [21]. If j 	∈ Q
then the gain and the total activation time are simply the sums of
children gains and total activation times (line 5). In the opposite
case, the gain has to be increased by (P̄ − P̄j)(t̄j − as) (line 8),
while the total activation is assigned the value t̄j (line 9). At
the final step the gain at the root node (generator) is subtracted
from AENS(∅) (line 15). If the total average power P̄ is known,
the computations can be completed in a single pass of the tree
structure, and in consequence the algorithm is very fast.

Similarly as for AENS(Q) one may derive the following
formulas:

SAIDI(Q) = t̄− 1

N̄

∑

j∈Q

(
N̄ − N̄j

)
⎛

⎝t̄j −
∑

i∈Rj

t̄i

⎞

⎠ , (11)

SAIFI(Q) = λ̄− 1

N̄

∑

j∈Q

(
N̄ − N̄j

)
⎛

⎝λ̄j −
∑

i∈Rj

λ̄i

⎞

⎠ . (12)

The algorithms to evaluate SAIDI(Q) and SAIFI(Q) are
similar to the Algorithm 1. To compute SAIDI(Q) we have to
replace line 8 in the Algorithm 1 by gs ← gs + (N̄ − N̄j)(t̄j −
as) and replace P̄ · t̄− gs by t̄− gs/N̄ in line 15. To
compute SAIFI(Q) we have to replace line 8 by gs ← gs +
(N̄ − N̄j)(λ̄j − as), replace line 9 by as ← λ̄j and replace
P̄ · t̄− gs by λ̄− gs/N̄ in line 15.

4272 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

C. Fast Deterministic Algorithms to Optimize the Positions of
Sectionalizing Switches

In this section, we present deterministic algorithms to min-
imize AENS, SAIFI, and SAIDI for a given number of sec-
tionalizing switches. First, we present the algorithm to optimize
AENS. Let pmax be the maximum number of sectionalizing
switches to be considered. The general idea is to recursively
construct partial solutions with p ≤ pmax proceeding from load
nodes up the tree structure. Partial solutions for a given node
are constructed based on partial solutions found previously for
its children. When the generator node is reached, we have so-
lutions for the whole grid for all p ≤ pmax and select the ones
maximizing AENS.

Let us describe how to generate the setSj of partial solutions at
the position j. For each load node there are two partial solutions
involving this node. The first one is the partial solution without a
switch for which Qs = ∅, as = 0, gs = 0. The second one with
Qs = {j}, as = t̄j , gs = (P̄ − P̄j)t̄j is the partial solution with
a switch at the position j.

Let us now consider an arbitrary node vj . Let Cj =
{i1, i2, . . . , ik} be the set of indexes of children of vj . Let us
consider a selection s1 ∈ Si1 , s2 ∈ Si2 , ..., sk ∈ Sik of partial
solutions for nodes in Cj . Using this selection, we can con-
struct a partial solution at the position j in two ways. If we
do not add a switch at the position j then Qs =

⋃k
i=1 Qsi ,

as =
∑k

i=1 ask , and gs =
∑k

i=1 gsk . If we add a switch at the
position j then Qs =

(⋃k
i=1 Qsi

) ∪ {j}, as = t̄j , and gs =
∑k

i=1 gsk + (P̄ − P̄j)
(
t̄j −

∑k
i=1 ask

)
. The set of partial so-

lutions Sj is obtained by considering all possible combinations
(s1, s2, . . . , sk) of partial solutions at positions in Cj . Note that
this procedure can also be used to generate the set of partial so-
lutions for user nodes (with k = 0). In this case we consider a
single empty selection.

The idea described above is presented as the Algorithm 2. Data
concerning a partial solutions s is stored as a triplet (gs, as, Qs).
To find the best solution the procedure FINDPARTIALSOLUTIONS

is called with j = m+ 1 (line 25). On exit, the set Sm+1 con-
tains all solutions with the number of switchesp ≤ pmax. The so-
lution in the set Tp = {(gs, as, Qs) ∈ Sm+1 : #Qs = p} with
the maximum value of gs is the solution of the optimization
problem (4) for the case of p switches.

The Algorithm 2 generates all partial solutions with the num-
ber of switches p ≤ pmax. This leads to an exponential growth
of the number of partial solutions which has to be considered
when we move up the tree structure. In consequence, the al-
gorithm becomes unusable for larger networks. To reduce the
computation time it is necessary to eliminate some partial so-
lutions. One option is to store for each node vj and for each
p ≤ pmax at most one partial solution at the position j with
p switches. For the root node the maximum value of the gain
gs is equivalent to the minimum value of AENS. Hence, a
natural choice is to select the partial solution maximizing gs.
This may however lead to elimination of the optimal solu-
tion because a partial solution with a lower gain gs at a given
node may have a larger contribution to the gain at the root
node.

Algorithm 2: Find AENSmin(p) for p ≤ pmax.

1: procedure ADDPARTIALSOLUTION(gs, as, Qs, j, Sj)
2: if #Qs ≤ pmax then
3: Sj ← Sj ∪ {(gs, as, Qs)}
4: end if
5: end procedure
6: procedure FINDPARTIALSOLUTIONS(j, Sj)
7: {i1, i2, . . . , ik} ← Cj � children of j
8: for �← 1, k do � process children
9: FINDPARTIALSOLUTIONS(i�, Si�)

10: end for
11: Sj ← ∅
12: repeat
13: select (gs� , as� , Qs�) ∈ Si� for � = 1, 2, . . . , k

14: gs ←
∑k

�=1 gs� � gs ← 0 if k = 0

15: as ←
∑k

�=1 as� � as ← 0 if k = 0

16: Qs ←
⋃k

�=1 Qs� � Qs ← ∅ if k = 0
17: ADDPARTIALSOLUTION(gs, as, Qs, j, Sj)
18: gs ← gs + (P̄ − P̄j)(t̄j − as)
19: as ← t̄j
20: Qs ← Qs ∪ {j}
21: ADDPARTIALSOLUTION(gs, as, Qs, j, Sj)
22: until no more selections
23: end procedure
24: procedure optimizeAENS(pmax)
25: FINDPARTIALSOLUTIONS(m+ 1, Sm+1)
26: for p← 1, pmax do
27: Tp ← {(gs, as, Qs) ∈ Sm+1 : #Qs = p}
28: select (gs, as, Qs) ∈ Tp with the largest gs
29: end for
30: end procedure

Let us discuss how to identify partial solutions which can-
not generate the optimal solution. Let us consider two partial
solutions s′ and s′′ at the position j with the same number of
switches #Qs′ = #Qs′′ . We will show that if

gs′ ≥ gs′′ , gs′ − gs′′ ≥ (P̄ − P̄j)(as′ − as′′) (13)

then complete solutions constructed using s′′ cannot be better
than solutions constructed using s′, and therefore the partial
solution s′′ can be eliminated.

Let r′ and r′′ be two complete solutions which are constructed
using s′ and s′′, respectively. We assume that the solutions r′

and r′′ differ only within Dj . If for the solutions r′ and r′′

there is no switch between the node vj and the root node then
gr′ − gr′′ = gs′ − gs′′ ≥ 0 and hence the solution r′′ is not better.
Now, let us assume that for the solutions r′ and r′′ there is a switch
at the position i,vj is a descendant ofvi and that there is no switch
on the path from vi to vj . In this case the gain difference can be
computed as gr′ − gr′′ = gs′ − gs′′ − (P̄ − P̄i)(as′ − as′′). It is
clear that if gs′ ≥ gs′′ and as′ ≤ as′′ then gr′ ≥ gr′′ , and hence the
solution r′′ is not better. Let us now assume that as′ ≥ as′′ . Since
P̄i ≥ P̄j we obtain −(P̄ − P̄i)(as′ − as′′) ≥ −(P̄ − P̄j)(as′ −
as′′) and gr′ − gr′′ = gs′ − gs′′ − (P̄ − P̄i)(as′ − as′′) ≥ gs′ −
gs′′ − (P̄ − P̄j)(as′ − as′′) ≥ 0. The last inequality follows

GALIAS: TREE-STRUCTURE BASED DETERMINISTIC ALGORITHMS FOR OPTIMAL SWITCH PLACEMENT 4273

Algorithm 3: Add Partial Solution (An Improved Version).
1: procedure ADDPARTIALSOLUTION(gs, as, Qs, j, Sj)
2: if #Qs > pmax then � too many switches
3: return
4: end if
5: T ← {(gr, ar, Qr) ∈ Sj : #Qr = #Qs}
6: for (gr, ar, Qr) ∈ T do
7: if gs ≥ gr and gs − gr ≥ (P̄ − P̄j)(as − ar)

then
8: Sj ← Sj \ {(gr, ar, Qr)}
9: end if

10: end for
11: T ← {(gr, ar, Qr) ∈ Sj : #Qr = #Qs}
12: for (gr, ar, Qr) ∈ T do
13: if gs ≤ gr and gs − gr ≤ (P̄ − P̄j)(as − ar)

then
14: return � skip (gs, as, Qs)
15: end if
16: end for
17: Sj ← Sj ∪ {(gs, as, Qs)} � add (gs, as, Qs)
18: end procedure

from (13). We have shown that if the conditions (13) are sat-
isfied then s′′ can be skipped.

The improved procedure to add partial solutions with the elim-
ination of partial solutions, which cannot produce the optimal
global solution is presented as the Algorithm 3.

The Algorithms 2 and 3 can be modified to optimize SAIDI
and SAIFI. Changes in the Algorithm 2 are as follows. To op-
timize SAIDI one should replace line 18 by gs ← gs + (N̄ −
N̄j)(t̄j − as). To optimize SAIFI one should replace line 18 by
gs ← gs + (N̄ − N̄j)(λ̄j − as) and replace line 19 by as ← λ̄j .
In the Algorithm 3 one should replace (P̄ − P̄j) by (N̄ − N̄j)
for the optimization of both SAIDI and SAIFI.

The Algorithms 2 and 3 are guaranteed to find the optimal
solution. In the Algorithm 2 each node is visited only once.
The total number of partial solutions depends on the number of
selections which are considered at each node. In the following
section, we show that the Algorithm 3 significantly reduces the
number of partial solutions which have to be considered.

III. SIMULATION RESULTS

In this section, we carry out a feasibility study of the algo-
rithms presented in Section II and compare the performance of
the proposed method with existing methods. Case studies in-
volve existing radial distribution networks of different sizes.

First, we consider several existing networks located in the
southern part of Poland. Data for these networks provided by an
electricity company includes topology of the network, lengths
and types of line segments, average power and the number of
users for each load node, and history of faults. From the his-
tory of failures occurring during a two years period, failure
rates and average failure durations for different types of ele-
ments are computed. The average number of faults is 3.1 in
one year for every 100 km of a line segment. The average

Fig. 1. An example distribution network with m = 76 line segments. The
solution of the optimization problem AENSmin(4) is Q = {3, 17, 23, 32}.

failure rate of a given line segment cj can be computed as
λcj = 3.1× 10−5lj , where lj is the line segment’s length in
meters. The observed average fault duration is τcj = 0.983 h.
The average total duration of failures of the line segment cj
is tcj = τcjλcj = 0.983 · 3.1× 10−5lj . The average number of
faults in one year is λvj

= 0.03 for user nodes and λvj
=

0.002 for distribution nodes. The average duration of the fault
is τvj

= 1h and τvj
= 0.5 h for user and distribution nodes,

respectively.
We consider four example grids differing by network size m.

The smallest network with m = 76 line segments is shown in
Fig. 1. The supply node, distribution nodes, and user nodes are
plotted as a red square, yellow circles, and green hexagons, re-
spectively. Other networks contains 112, 199, and 262 line seg-
ments, respectively. All data defining these networks necessary
to carry out the computations reported in this work can be found
at http://www.zet.agh.edu.pl/power/pes2019. All computations
are carried out using a single core 3.4 GHz processor.

First, let us test the speed of the Algorithm 1 for the evalua-
tion of AENS, SAIDI, and SAIFI. We carry out the exhaustive
search (ES) to find optimal positions of p ≤ pmax sectional-
izing switches. In the ES method all possible selections of p
switches are considered to find the minimum value of a given
performance index. The number pmax for a given network is se-
lected in such a way that computations are completed in less than
10 hours. The results are presented in Table I. We report the num-
ber NES =

∑pmax

p=0

(
m
p

)
of evaluations in the exhaustive search

method, the computation time tES and the number NES/tES of
evaluations which are computed in one second. One can see that
computation times for all performance indexes are similar. The
algorithms are very fast. In one second, each performance index
can be evaluated for 70000 to 240000 test selections depend-
ing on the network size. It follows that the Algorithm 1 may
be useful in the ES method for a small number of switches or
in heuristic methods where reliability indexes are evaluated for
many test selections.

4274 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

TABLE I
THE PERFORMANCE OF THE ALGORITHM TO COMPUTE AENS, SAIDI,

AND SAIFI

Below, we assess the performance of the tree search method
(TS) which uses Algorithms 2 and 3 for the optimization of
AENS. Results obtained in the optimization of SAIFI and
SAIDI are similar and are not reported for the sake of brevity. For
comparison, we also present results obtained using the exhaus-
tive search method (ES), the mixed integer linear programming
(MILP) approach and the Celli-Pilo (CP) algorithm [9].

In order to use the MILP approach we need to formulate the
optimization problem at hand as a mixed integer linear pro-
gramming problem. The mixed integer linear programming is a
general technique to solve optimization problems where some
or all variables are restricted to be integers. Let us recall that
the set Dj contains the index j and indexes of descendants of
vj . For i ∈ Dj , i 	= j let us denote by Eij the set of indexes of
nodes belonging to the interior of the unique path from vi to vj .
If vj is a parent of vi then Eij = ∅. The MILP formulation of
the optimization problem (4) is the following: minimize

AENS(x) = P̄ · t̄

−
m∑

j=1

xj

(
P̄−P̄j

)
⎛

⎝t̄j−
∑

i∈Dj ,i	=j

xit̄i
∏

k∈Eij

(1−xk)

⎞

⎠

(14)

under the conditions
m∑

j=1

xj = p, xj ∈ {0, 1} for j ∈ {1, 2, . . . ,m}, (15)

where p is the number of switches and x = (x1, x2, . . . , xm) ∈
{0, 1}m represents positions of switches; xj = 1 if there is a
switch at the position j and xj = 0 otherwise. The problem (14),
(15) is a nonlinear binary programming problem with m vari-
ables and a single equality constrain. This problem can be trans-
formed into a linear binary programming problem by introduc-
ing auxiliary variables. A nonlinear termaxixj

∏
k∈Eij

(1− xk)
can be converted to a linear binary term by introducing an
auxiliary variable z = xixj

∏
k∈Eij

(1− xk) and two inequality
constrains (2 + s)z ≤ xi + xj +

∑
k∈Eij

(1− xk) ≤ z + (s+

2)− 1, where s = #Eij . The inequalities ensure that z = 1 if
and only if xi = xj = 1 and xk = 0 for all k ∈ Eij . For each
pair (j, i)with 1 ≤ j ≤ m and i ∈ Dj , i 	= j we introduce a sin-
gle auxiliary variable. Hence, the total number of auxiliary vari-
ables maux is equal to the total number of descendants counted

independently for each node maux =
∑m

j=1(#Dj − 1) and the
total number of inequality constrains is twice as much. In this
way, we arrive at a binary linear programming problem with
m+maux variables, a single equality constrain and 2maux in-
equality constrains.

To test the performance of the integer linear programming ap-
proach the linear binary programming problem described above
is written using a CPLEX LP file format and solved using the
MILP solver CPLEX 12.7 [22]. The branch-and-bound algo-
rithm is applied to efficiently solve MILP problems. The branch-
and-bound algorithm divides the search space and generates
a sequence of subproblems. First, the relaxed solution (with-
out integer constrains) is found and then a sequence of solu-
tions is generated to replace non-integer variables by integer
ones. A non-integer variable (a branching variable) defines ac-
tive nodes which are subproblems with additional constrains
forcing a given variable to be integer. At a given step of the
branch-and-bound algorithm an active node is selected, and the
corresponding subproblem is solved. Integer feasible solutions
(with integers variables) are used to cut off other active nodes.
Branching continues until there are no active nodes and the best
integer solution found is the solution of MILP. The number of
nodes generated in the branch-and-bound algorithm can grow
exponentially with the problem size. Several techniques (various
heuristics, cutting planes, or preprocessing) are used to improve
problem solvability.

The proposed tree search based algorithm uses a completely
different approach. It is not formulated in the form of MILP, aux-
iliary variables are not created, relaxed solution are not computed
and the concept of branching variables is not used. The algorithm
belongs to the class of dynamic programming methods. Partial
solutions are constructed proceeding from load nodes to the sup-
ply node. Note that there is no correlation between subproblems
in the branch-and-bound algorithm and partial solutions in the
proposed algorithm. The former are complete solutions of the
(partially) relaxed MILP problem, while the latter are solutions
of the optimization problem for a part of the network. Elimina-
tion of partial solutions allows to limit the search space without
even generating complete solutions. This is the main advantage
of the method which results in its efficiency. In the MILP ap-
proach the large number of auxiliary variables which have to
be defined for large networks is one of the reasons why this ap-
proach fails. No auxiliary variables are defined in the TS method.
Moreover, partial solutions constructed for a given p can be used
to construct partial solutions for p+ 1. For all these reasons, the
proposed algorithm is much faster than the MILP approach.

Let us now briefly recall the Celli-Pilo (CP) algorithm to mini-
mizeAENS. The algorithm starts by computingAENS obtained
by installing a single switch at a given node. This is done for
all nodes. In this way we obtain the set S1 of possible solutions
at the first decision level. In the pth step (p > 1) all solutions
from the step p− 1 are considered. For each solution Q ∈ Sp−1
solutions Q ∪ {j} with j 	∈ Q are tested. The solution which
minimizes AENS is added to the set of solutions Sp at the deci-
sion level p. The algorithm is stopped when p reaches pmax. The
solution Q ∈ Sp at the decision level p which minimizes AENS
is returned as the solution of the minimization problem (4) with

GALIAS: TREE-STRUCTURE BASED DETERMINISTIC ALGORITHMS FOR OPTIMAL SWITCH PLACEMENT 4275

TABLE II
OPTIMIZATION OF AENS FOR THE GRID WITH m = 76 LINE SEGMENTS.

RESULTS ARE REPORTED RELATIVE TO AENS(∅) = 7202 kWh

p sectionalizing switches. The CP algorithm can be viewed as
m runs of a greedy algorithm, which at each decision level se-
lects the position of a single sectionalizing switch to minimize
AENS. Runs differ by the selection of the node in the first step.
By construction, the algorithm is equivalent to the exhaustive
search method for p ≤ 2. It will be shown that for p ≥ 3 the CP
algorithm may produce suboptimal results.

Results of solving the problem of optimal switch allocation
in the network with m = 76 line segments using different algo-
rithms are presented in Table II. The results are reported relative
to the case with no switches (AENS(∅) = 7202 kWh). Optimal
values are written in bold. The first three methods (ES, MILP,
TS) always find the optimal solution. The CP method produces
suboptimal results for p = 4 and for p ≥ 10. The largest relative
difference of 3.7% is observed for p = 4. In this case the opti-
mal solution is Q = {3, 17, 23, 32} (see Fig. 1), while the CP
method finds the solution Q = {3, 13, 23, 32}.

Let us now compare the results in terms of the computation
time. For the TS and CP methods, we report the incremental
computation time, i.e., the computation time needed to solve the
problem for p+ 1 using solutions for p. The exhaustive search
method works for p ≤ 7. For p = 7 the number of test selec-
tions is above 2·109 and the computation time is approximately
2.5 hours. The MILP approach is much faster. For p = 7 the op-
timal objective function value is found after performing 24401
(dual simplex) iterations. The computation time is reduced to ap-
proximately 4 seconds, i.e. by the factor of 2000. The TS method
is several orders of magnitude faster than the MILP approach.
Computations for all p ≤ 15 are completed in 0.12 second. Dur-
ing the computations 12974 partial solutions are constructed.
The heuristic CP method requires evaluation of the objective
function for 68493 test selections and is slower than the TS
algorithm.

The results for networks with m = 112, 199, 262 line seg-
ments are reported in Table III. Conclusions are similar. The ES
method works only for small p. The MILP method fails to find
solutions form = 199, 262 and p > 10 in a reasonable time. The
TS algorithm finds optimal solution for the largest network for
all p ≤ 15 is less than 3 minutes. For m = 76, 112 this method

TABLE III
OPTIMIZATION OF AENS FOR THE GRID WITH m = 112, 199, 262 LINE

SEGMENTS. RESULTS ARE REPORTED RELATIVE TO AENS(∅)

is faster than the CP method, while for m = 199, 262 the CP
method is faster.

In several cases the CP method finds a suboptimal solution,
for example when m = 112 and 8 ≤ p ≤ 11. However, even in
cases when the algorithm fails to find the global minimum, the
quality of the solution is usually high. We conclude that the CP
algorithm is a fast heuristic method usually finding high quality
solutions of the optimization problems considered.

Let us now discuss the computational complexity of the algo-
rithms. The number of test selection, which should be considered
to solve the optimization problem with m line segments and p
switches using the ES method is NES =

(
m
p

)
. NES grows very

fast with p for large m. In consequence, the ES method is useful
for small p only.

4276 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

TABLE IV
THE NUMBER OF PARTIAL SOLUTIONS NPS FOR pmax = 15

For the CP algorithm, at each decision level the number of
solutions is limited by m. In the first step m solutions are con-
sidered. In subsequent steps, for each solution with p switches
no more thanm−p test solutions are compared. Hence, the num-
ber of evaluations is limited by NCP ≤ m+

∑pmax−1
p=1 m(m−

p) < m2pmax and the computational complexity is of the order
m3pmax (compare Tables II and III).

Let us now consider the TS method. In the best possible
scenario for each node we store only a single partial solu-
tion with p switches. In this case, the number of partial so-
lutions, which are stored at the node vi is not larger than
max(pmax,#Di). Hence, the total number of partial solutions
NPS is bounded by NPS ≤

∑m
j=1

∏
i∈Cj

(max(pmax,#D) +

1) ≤∑m
j=1(pmax + 1)#Cj , where #Cj is the number of chil-

dren of the node vj . In case of a binary tree (#Cj ≤ 2) we obtain
the bound NPS ≤ m(pmax + 1)2.

Let us now assume that the network has a structure of a com-
plete binary tree, i.e. the number of nodes n = m+ 1 is equal
to 2h+1 − 1, where h is the height of the tree (the length of
the longest path from the root node to a leaf). Let us assume
that leaf nodes are at the height 0, and the root node is at the
height h. At a given height k ∈ {0, 1, . . . , h} there are 2h−k

nodes. At each of them we need to consider 2 · 2k · 2k selec-
tions. Hence, the total number of selections to be considered
is
∑h

k=0 2
1+2k+h−k = 2h+1

∑h
k=0 2

k ≤ 22(h+1) = (m+ 2)2.
It follows that the complexity of the algorithm for pmax = m
is quadratic in m. This bound is valid for networks having a
structure of a complete binary tree under the assumption that
the maximum number of partial solutions with a fixed number
of switches which are stored at a given node is nmax = 1.

The number of partial solutions NPS generated during the
optimization of AENS and the corresponding value of nmax

is reported in Table IV. The rate of growth of NPS is faster
than m2. This is caused by the fact that the grid considered is
not a binary tree and is also related to the necessity of using
nmax > 1. However, the number of partial solutions is still very
low when compared with NES. Recall that without elimination
of partial solutions in the Algorithm 3 the number of complete
solutions in the TS method is equal to NES. Obtained results
confirm that the Algorithm 3 is very successful in limiting the
search space.

To test the performance of the methods for larger net-
works let us consider the IEEE 8500 Node Test Feeder [23],
[24]. The feeder data is available at http://sites.ieee.org/pes-
testfeeders/resources/. This test feeder is a large radial sys-
tem with 170 km of connection lines obtained from a real
US distribution network. It is published in two versions, with
balanced and with unbalanced secondaries. We consider the
former version, in which the network contains 3637 nodes in-
cluding 1177 user nodes. Relative coordinates of buses (nodes)

Fig. 2. The test distribution network with m = 3637 nodes.

are included in the feeder data. The network is shown in
Fig. 2.

Reliability data is not provided in the feeder data. However,
the data contains information on line segment lengths. We as-
sume that the failure rate is 5 failures per yer per 100 km of a
line segment. Under this assumption the average failure rate for
a line segment cj can be computed as λcj = 5× 10−5lj where
lj is the length in meters of the line segment cj . We assume that
the average failure duration is 1 h.

The whole network contains m = 3636 line segments, which
is the size of the search space. Apart from the supply node the
network contains 1387 single child nodes. Most of these nodes
are transformers connected directly to user nodes. Note that for
a single feeder network it does not make sense to put a section-
alizing switch in a line segment connecting a single child node
to its only child. It is always more efficient to put a sectionaliz-
ing switch in the line segment connecting a single child node to
its parent. This property permits reducing the search space. An
equivalent network with a smaller number of nodes is obtained
by skipping all single child nodes and merging reliability data
of single child nodes with reliability data of their children. More
specifically, if vj is a single child node and vi is its only child
we set λi = λi + λj and ti = ti + tj . Applying this procedure
to the network considered leads to a network with 2249 line
segments.

For test purposes we also generate three smaller networks. We
select a subnetwork containing 200 user nodes and paths con-
necting them to the supply node. After removing single child
nodes, we obtain a network with 383 line segments. In a sim-
ilar way starting from 300 and 600 user nodes, we obtain test
networks with 567, and 1148 line segments, respectively.

http://sites.ieee.org/pes-testfeeders/resources/

GALIAS: TREE-STRUCTURE BASED DETERMINISTIC ALGORITHMS FOR OPTIMAL SWITCH PLACEMENT 4277

TABLE V
OPTIMIZATION OF AENS FOR THE GRIDS WITH m = 383, 567, 1148 LINE

SEGMENTS. RESULTS ARE REPORTED RELATIVE TO AENS(∅)

First, let us compare the performance of optimization meth-
ods for networks with m = 383, 567, 1148 line segments. Opti-
mization results obtained forp ≤ 15using different optimization
methods are presented in Table V. Calculations are stopped when
the computation time exceeds 24 hours. The first three methods
always produce the optimal result provided that the computa-
tions are completed. The CP method produces optimal results for
all p ≤ 15 for the smallest network. Form = 567 andm = 1148
the CP method fails to find the optimal result for p > 4 and for
p > 6, respectively. The relative difference between the value of
the cost function for the CP solution and the optimal value is be-
low 1% form = 567 and belongs to [0.5%, 5.1%] form = 1148
and p ≥ 7. The largest relative difference is obtained for p = 13.

TABLE VI
OPTIMIZATION OF AENS FOR THE GRIDS WITH m = 2249, 3636 LINE

SEGMENTS. RESULTS ARE REPORTED RELATIVE TO AENS(∅)

It all cases the TS method is the fastest. The CP method is
slower and the difference grows with m. For example, the CP
method is 15 times slower than the TS method for m = 383
and 110 times slower for m = 1148. The ES method solves
the problem for p ≤ 4 in the first case and for p ≤ 3 in the
remaining cases. The MILP method find the optimal solu-
tions with p ≤ 6, p ≤ 5, and p ≤ 4 sectionalizing switches for
m = 383, 567, 1148, respectively. Let us note that for p ≤ 2 the
computation time for the MILP method is longer than for the
ES method. This is related to the large number of auxiliary vari-
ables maux = 11306, 22104, 63202 which are used in the MILP
method for networks with m = 383, 567, 1148 line segments,
respectively. The number of auxiliary variables is independent
on p. In consequence, the computations are slowed down even
for small p.

Finally, let us consider the whole network. We study two
cases: the simplified network with m = 2249 line segments ob-
tained by removing single child nodes and the original network
with m = 3636. The results are presented in Table VI. Let us
note that the results obtained for both networks are the same.
This confirms that the simplification procedure does not alter
the optimization problem.

The TS method is significantly faster than other methods. The
total computation time is 24.56 seconds and 40.28 seconds for
m = 2249 andm = 3636, respectively. In this case reducing the
search space decreases the computation time by only 40%. For

4278 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 34, NO. 6, NOVEMBER 2019

other methods removing single child nodes significantly reduces
the computation time. The CP method is 400 times slower than
the TS method for m = 2249 and 1250 times slower for m =
3636. The ES method and the MILP method solve the problem
only for very small values of p. Note that in most cases the MILP
method is slower than the ES method. The reason is the huge
number of auxiliary variables maux = 182167 for m = 2249
and maux = 587807 for m = 3636.

The CP method finds optimal solutions for p ≤ 5. The rel-
ative difference between the value of the cost function for the
solutions found by the CP method and the optimal values belong
to [1.2%, 4.7%] for p ≥ 6.

Similar computations have been carried out for the network
with randomized values of line segments’ lengths and user
nodes’ active powers. The results are similar which confirms
that the worse performance of the MILP approach is not related
to the symmetry of the network.

From the results presented above it follows that the proposed
method can successfully solve the optimization problem even
for very large networks with several thousands of nodes. The
MILP approach cannot handle such networks unless the num-
ber of switches is very small. The CP method does not always
find the optimal solution, contrary to what is stated in [9]. For
the networks considered the difference between the value of
the cost function for the solution found by the CP algorithm
and for the optimal solution is up to 5%. The computation time
for the CP method is significantly larger than for the proposed
approach.

IV. CONCLUSION

Efficient algorithms for the computation of reliability indexes
for radial distribution networks with sectionalizing switches
have been presented. The algorithms are based on the tree struc-
ture of the graph representing the network. The algorithms are
very efficient, which makes them useful for solving switch al-
location problems via the exhaustive search method for small
number of switches and heuristic methods which require han-
dling a large number of test selections.

Fast tree search algorithms to solve the switch allocation prob-
lem in radial distribution networks with a single supply node
have been presented. Algorithms have been tested using exist-
ing distribution networks of various sizes. It has been shown
that the proposed algorithms outperform state-of-the-art tech-
niques and can be successfully used to find optimal placement
of switches for relatively large networks.

Future work includes extending algorithms to networks with
alternative supplies, distributed generation and multiobjective
optimization.

REFERENCES

[1] H. L. Willis, Power Distribution Planning Reference Book. Boca Raton,
FL, USA: CRC Press, 2004.

[2] J. Savier and D. Das, “Impact of network reconfiguration on loss allocation
of radial distribution systems,” IEEE Trans. Power Del., vol. 22, no. 4,
pp. 2473–2480, Oct. 2007.

[3] A. Zidan et al., “Fault detection, isolation, and service restoration in dis-
tribution systems: State-of-the-art and future trends,” IEEE Trans. Smart
Grid, vol. 8, no. 5, pp. 2170–2185, Sep. 2017.

[4] G. Levitin and S. Mazal-Tov, “Optimal sectionalizer allocation in electric
distribution systems by genetic algorithm,” Elect. Power Syst. Res., vol. 35,
no. 3, pp. 149–155, 1995.

[5] R. Billinton and S. Jonnavithula, “Optimal switching device placement
in radial distribution systems,” IEEE Trans. Power Del., vol. 11, no. 3,
pp. 1646–1651, Jul. 1996.

[6] C.-S. Chen, C.-H. Lin, H.-J. Chuang, C.-S. Li, M.-Y. Huang, and C.-W.
Huang, “Optimal placement of line switches for distribution automation
systems using immune algorithm,” IEEE Trans. Power Syst., vol. 21, no. 3,
pp. 1209–1217, Aug. 2006.

[7] A. Moradi and M. Fotuhi-Firuzabad, “Optimal switch placement in dis-
tribution systems using trinary particle swarm optimization algorithm,”
IEEE Trans. Power Del., vol. 23, no. 1, pp. 271–279, Jan. 2008.

[8] H. Falaghi, M.-R. Haghifam, and C. Singh, “Ant colony optimization-
based method for placement of sectionalizing switches in distribution net-
works using a fuzzy multi objective approach,” IEEE Trans. Power Del.,
vol. 24, no. 1, pp. 268–276, Jan. 2009.

[9] G. Celli and F. Pilo, “Optimal sectionalizing switches allocation in distri-
bution networks,” IEEE Trans. Power Del., vol. 14, no. 3, pp. 1167–1172,
Jul. 1999.

[10] A. Esteban and A. Alberto, “Optimal selection and allocation of sectional-
izers in distribution systems using fuzzy dynamic programming,” Energy
Power Eng., vol. 2, pp. 283–290, 2010.

[11] Y. Mao and K. N. Miu, “Switch placement to improve system reliability
for radial distribution systems with distributed generation,” IEEE Trans.
Power Syst., vol. 18, no. 4, pp. 1346–1352, Nov. 2003.

[12] A. Heidari, V. G. Agelidis, and M. Kia, “Considerations of sectionalizing
switches in distribution networks with distributed generation,” IEEE Trans.
Power Del., vol. 30, no. 3, pp. 1401–1409, Jun. 2015.

[13] J. Quirs-Torts, M. Panteli, P. Wall, and V. Terzija, “Sectionalising method-
ology for parallel system restoration based on graph theory,” IET Gener.
Transmiss. Distrib., vol. 9, no. 11, pp. 1216–1225, 2015.

[14] L. Sun et al., “Network partitioning strategy for parallel power system
restoration,” IET Gener. Transmiss. Distrib., vol. 10, no. 8, pp. 1883–1892,
2016.

[15] M. Farajollahi, M. Fotuhi-Firuzabad, and A. Safdarian, “Optimal place-
ment of sectionalizing switch considering switch malfunction probability,”
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 403–413, Jan. 2019.

[16] F. Soudi and K. Tomsovic, “Optimized distribution protection using binary
programming,” IEEE Trans. Power Del., vol. 13, no. 1, pp. 218–224, Jan.
1998.

[17] A. Abiri-Jahromi, M. Fotuhi-Firuzabad, M. Parvania, and M. Mosleh, “Op-
timized sectionalizing switch placement strategy in distribution systems,”
IEEE Trans. Power Del., vol. 27, no. 1, pp. 362–370, Jan. 2012.

[18] Z. Popovic, B. Brbaklic, and S. Knezevic, “A mixed integer linear program-
ming based approach for optimal placement of different types of automa-
tion devices in distribution networks,” Elect. Power Syst. Res., vol. 148,
pp. 136–146, 2017.

[19] A. Heidari, Z. Y. Dong, D. Zhang, P. Siano, and J. Aghaei, “Mixed-integer
nonlinear programming formulation for distribution networks reliability
optimization,” IEEE Trans. Ind. Inform., vol. 14, no. 5, pp. 1952–1961,
May 2018.

[20] Z. Galias, “On optimum placement of sectionalizing switches in radial
distribution networks,” in Proc. IEEE Int. Symp. Circuits Syst., Baltimore,
MD, USA, May 2017, pp. 1030–1033.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA, MIT Press, 2001.

[22] IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, Version
12 Release 7, IBM Corporation, 2017.

[23] R. F. Arritt and R. C. Dugan, “The IEEE 8500-node test feeder,” in Proc.
IEEE Transm. Distrib. Conf. Expo., New Orleans, LA, USA, 2010, pp. 1–6.

[24] K. P. Schneider et al., “Analytic considerations and design basis for the
IEEE distribution test feeders,” IEEE Trans. Power Syst., vol. 33, no. 3,
pp. 3181–3188, May 2018.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

