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1. Introduction

The topological entropy of a continuous map is a non-negative number characterizing the complexity of
trajectories of this map [Adler et al., 1965; Dinaburg, 1971; Bowen, 1971]. It measures the exponential
growth rate in time of the number of trajectories which can be distinguished from each other at a certain
observation precision in the limit when the precision goes to zero. Topological entropy is one of the most
important characterizations of dynamical systems. It is used to define the notion of the topological chaos.
A dynamical system is called chaotic in the topological sense if its topological entropy is positive. Topo-
logical entropy is used to characterize nonlinear systems in many applications such as random number
generators [Zhou et al., 2006; Cicek et al., 2017], secure communication systems [Guo et al., 2018] or chaos
based encryption methods [Akgul et al., 2013; Qi et al., 2016].

Computation of topological entropy directly from the definition is usually difficult due to limits in-
volved. In this work, we present efficient methods to compute the topological entropy of finite represen-
tations of maps. Finite representations, also called “graph representations of the dynamics” belong to
standard interval arithmetic based rigorous numerical tools to analyze nonlinear dynamical systems [Dell-
nitz et al., 1997; Zgliczyński, 1997; Galias, 2001; Day et al., 2008]. Interval arithmetic is used to control
the influence of rounding errors, which are inevitable in computer-assisted studies of dynamical systems.
The standard method to represent the dynamics of a system over a trapping region or over an attractor
is to cover the set under study by interval vectors (boxes) and to find possible transitions between boxes.
Possible transitions are usually represented in the form of a transition matrix. The set of boxes covering
an attractor and the corresponding transition matrix define a finite representation. It is therefore an in-
teresting problem what is the relation between the topological entropy of the dynamical system and the
topological entropy of its finite precision representation. This problem is also important from a practical
point of view since in applications finite precision representations of nonlinear maps are used instead of
infinite precision formulations.

In this work, we propose efficient methods to compute the topological entropy of finite representations
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of maps. As an example, we consider the Hénon map h(x, y) = (1+y−ax2, bx) with the classical parameter
values a = 1.4, b = 0.3 [Hénon, 1976]. Accurate finite representations of the Hénon map and its iterates
are constructed and their topological entropy is calculated.

The problems how to calculate the topological entropy H(h) of the Hénon map with the classical
parameter values, how to find rigorous lower and upper bounds on H(h) and how the topological entropy
changes with parameter values have been studied extensively over the last 40 years. A method to calculate
the topological entropy based on estimating the logarithmic growth of certain curves is presented and an
estimate H(h) ≈ 0.4640 is obtained in [Newhouse & Pignataro, 1993]. Three numerical methods to estimate
the topological entropy are presented in [Jacobs et al., 1998]. The most accurate of these three methods is
based on averaging stretching rates of trajectories and yields an estimate H(h) ∈ [0.46490, 0.46496]. The
topological entropy of the Hénon map is studied by means of pruning fronts in [D’Alessandro et al., 1999].
The construction starts with a binary partition obtained by considering primary tangencies between stable
and unstable manifolds [Grassberger & Kantz, 1985]. Pruning fronts are found and based on the number
of allowed sequences the topological entropy is estimated as H(h) ≈ 0.4651. The relation between the
topological entropy estimate and the choice of the partition using the Hénon map as one of the examples is
studied in [Bollt et al., 2001]. A rigorous method to compute upper bounds on the topological entropy of a
map with respect to a partition of the state space is given in [Froyland et al., 2001]. Applying this method
to the partition constructed by joining primary homoclinic tangencies yields 0.4687 and provides an upper
bound H(h) < 0.4687. Using symbolic sequences of length 106 it is estimated in [Hirata & Mees, 2003] that
the topological entropy of the Hénon map belongs to [0.46482, 0.46497]. The existence of several regions of
hyperbolic parameters in the parameter space of the Hénon map is proved in [Arai, 2007]. Lower bounds
on the topological entropy for 43 hyperbolic plateaus of the Hénon map are computed in [Frongillo, 2014].

Let us now recall several results regarding the estimates of the topological entropy of the Hénon map
based on the number of periodic orbits. Under certain assumptions the relation between the topological
entropy of the map f and the number of periodic orbits is H(f) = limn→∞ n

−1 log(Pn), where Pn is the
number of fixed points of fn. Therefore the expression Hn = n−1 log(Pn) is often used to estimate the
topological entropy based on the number of periodic orbits. In [Auerbach et al., 1987], using the Newton-
Raphson method periodic orbits with the period p ≤ 12 are found and the topological entropy is estimated
as H12 = 0.459. A systematic method to detect all low-period orbits for the Hénon map is proposed
in [Biham & Wenzel, 1989]. The method is applied to find all period-p orbits with p ≤ 28, and an estimate
H28 = 0.46485 is obtained. The Biham-Wenzel method is based on the construction of artificial dynamical
systems with stable fixed points corresponding to periodic orbits of the Hénon map. This method is not
theoretically justified and may produce wrong results as shown in [Grassberger et al., 1989]. Surprisingly,
it works correctly for the classical parameter values at least for short periodic orbits considered in [Biham
& Wenzel, 1989]. Rigorous interval computations are carried out in [Galias, 2001] to find all periodic orbits
with periods p ≤ 30. It is confirmed that the results reported in [Biham & Wenzel, 1989] for p ≤ 28 are
correct and an estimate H30 = 0.46495 is obtained. Using the Biham-Wenzel method combined with a
pruning technique period-p orbits with p ≤ 50 are found in [Galias & Tucker, 2015]. The estimates Hn

obtained for 36 ≤ n ≤ 50 satisfy the conditions Hn ∈ [0.4649324, 0.4649374], which indicates that in the
estimate H(h) ≈ 0.46493 all digits are correct.

In the literature, there are several results on rigorous lower bounds on the topological entropy of the
Hénon map. The existence of a transversal homoclinic point for the Hénon map is proved in [Misiurewicz &
Szewc, 1980]. It follows that the Hénon map supports the Smale’s horseshoe dynamics for some unknown
iterate of h [Robinson, 1995]. A computer assisted proof of the existence of the horseshoe dynamics for the
h25 is given in [Stoffer & Palmer, 1999]. Using the method of covering relations it is shown in [Zgliczyński,
1997] that h7 supports the full shift dynamic on two symbols. It follows that H(h) > 0.099. The method
of covering relations is used in [Galias & Zgliczyński, 2001] to prove that H(h) > 0.3381 and in [Galias,
2002] to prove that H(h) > 0.43. In [Day et al., 2008], algorithms to compute rigorous lower bound on the
topological entropy based on Conley index theory are presented and a rigorous lower bound H(h) > 0.432
is found. The best lower bound known so far is presented in [Newhouse et al., 2008], where enclosures of
stable and unstable manifolds of unstable periodic points are used to show that H(h) > 0.46469.

It is more difficult to obtain a rigorous upper bound on H(h). From the fact that the nonlinearity
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in the definition of the Hénon map is quadratic it follows that H(h) ≤ log(2) ≈ 0.69315 (see [Newhouse,
1988]). This bound is quite far from the expected value H(h) ≈ 0.46493. A method to compute an upper
bound on the difference between the topological entropy of a map and the topological entropy of its
finite representation is proposed in [Yomdin, 1991]. It follows that knowing the topological entropy of the
finite representation one may obtain nontrivial upper bounds on the topological entropy of the original map
provided that the topological entropy of a finite representation is sufficiently close to the entropy of the map
and that the representation is sufficiently accurate. In this context, this work is a step towards obtaining
rigorous upper bounds on H(h) by providing efficient methods to compute the topological entropy of finite
representations.

2. Topological Entropy of Finite Representations of Maps

The first definition of the topological entropy of a map is introduced in [Adler et al., 1965]. It is based on
the idea to assign a number to measure size of an open cover and then take the supremum over all open
covers. In this definition, we consider all open covers of the space X (in the following we will use X = Rm).
For two open covers C1 and C2 by C1 ∨ C2 we denote the cover composed of all non-empty intersections of
sets from C1 and C2, i.e. C1 ∨ C2 = {C1 ∩ C2 : C1 ∩ C2 6= ∅, C1 ∈ C1, C2 ∈ C2}. C1 ∨ C2 ∨ · · · ∨ Cn is defined
recursively as C1 ∨ C2 ∨ · · · ∨ Cn = C1 ∨ (C2 ∨ · · · ∨ Cn). For an open cover C of X by N(C) we denote the
smallest number of elements of C covering X. The topological entropy of a continuous map f : X 7→ X is
defined as

H(f) = sup
C

lim
n→∞

1

n
log N(C ∨ f−1(C) ∨ · · · ∨ f−n+1(C)), (1)

where the supremum is taken over all open covers C of X. We use the natural logarithm although this
choice is arbitrary and in some papers the binary logarithm is used.

The definition (1) is not convenient from the computational point of view. We will follow a defini-
tion using the notion of (n, ε)–separated sets, which is introduced in [Dinaburg, 1971] and independently
in [Bowen, 1971].

We say that a subset E of X is (n, ε)–separated for the map f if for each x, y ∈ E with x 6= y there
exist i ∈ {0, 1, 2, . . . , n − 1} such that d(f i(x), f i(y)) ≥ ε, where d(x, y) is the distance between x and y.
The topological entropy of f is defined as

H(f) = lim
ε→0

lim sup
n→∞

1

n
log s(f, n, ε), (2)

where s(f, n, ε) is the maximal cardinality of an (n, ε)–separated set for the map f .
An alternative definition is based on the notion of (n, ε)–spanning sets. We say that E ⊂ X is an (n, ε)–

spanning set for f if for every x ∈ X there is y ∈ E such that d(f i(x), f i(y)) < ε for all i ∈ {0, 1, . . . , n−1}.
The topological entropy of f is equal to

H(f) = lim
ε→0

lim sup
n→∞

1

n
log r(f, n, ε), (3)

where r(f, n, ε) is the minimal cardinality of an (n, ε)–spanning set for the map f .
From the above definitions it follows that the topological entropy of f can be estimated by

H(f, n, ε) =
1

n
log s(f, n, ε), (4)

where n is sufficiently large, and ε is sufficiently small. In [Yomdin, 1991], an upper bound on the difference
between H(f, n, ε) and H(f) is derived. Using this bound, one can obtain rigorous upper bounds on H(f).

The finite precision approximation of the topological entropy of f with the precision ε is defined as

H(f, ε) = lim
n→∞

H(f, n, ε). (5)

In this work, we present methods how to compute upper bounds on H(f, n, ε) and H(f, ε). Using the
Hénon map h as an example, we study the relation between finite precision approximations H(h, ε) and
H(h). We also study the problem of finding finite precision approximations H(hk, ε) for iterates of h, and
show that this may lead to better upper bounds on the topological entropy of h.
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2.1. Finite Representations

A set v = [k1ε, (k1 + 1)ε] × [k2ε, (k2 + 1)ε] × · · · × [kmε, (km + 1)ε] ⊂ Rm, where ε > 0 and k1, k2, . . . , kn
are integers is called an ε-box with the size ε. Let V be a cover of Ω by ε-boxes, i.e. V = {vj}Nj=1 and

Ω ⊂
⋃N

j=1 vj , where N is the number of ε-boxes in the cover V . For the cover V , we define the transition

matrix A ∈ RN×N :

Aj,i =

{
0 if f(vj) ∩ vi = ∅,
1 if f(vj) ∩ vi 6= ∅.

(6)

The matrix A defines possible transition between ε-boxes. The pair (V,A) is called a finite representation
of f over the set Ω with the accuracy ε. In practical applications, the number N of ε-boxes may by large
(several millions). However, the transition matrix is usually sparse. To store the matrix A it is sufficient to
remember for each 1 ≤ j ≤ N the set Dj = {i : Aj,i = 1}.

Let us first describe how to compute a finite representation of f over an attractor A. We assume that
Ω ⊂ Rm contains the attractor A. We start by covering Ω by ε-boxes vj . For each box vj we compute an
enclosure wj of f(vj) and find boxes vi which have non-empty intersection with wj . The evaluation of f(vj)
can be carried in interval arithmetic in which case the enclosure condition f(vj) ⊂ wj is automatically
satisfied. Note that if Aj,i = 1 then the transition in one iteration from vj to vi is not forbidden. In general
f(vj) 6= wj and in consequence it may happen that Aj,i = 1 and f(vj)∩ vi = ∅. In the following, we show
how to obtain exact transition matrices for the case of the Hénon map.

A finite representation can be simplified by removing boxes having empty intersection with the invariant
part of Ω. We remove boxes vi for which Aj,i = 0 for all 1 ≤ j ≤ N and boxes vj for which Aj,i = 0 for all
1 ≤ i ≤ N . This process is continued until no more boxes can be removed. Similarly, one can remove boxes
not belonging to the recurrent set of f . This is done by removing boxes which do not belong to any closed
path allowed by A. Removing the non-invariant part and the non-recurrent part reduces the number of
boxes in the cover and simplifies the transition matrix without changing the topological entropy.

From a finite representation (V,A) of f with the accuracy ε we may produce a finite representation
with the accuracy ε/2. This is done by splitting each ε-box in V into 2m boxes with size ε/2 and repeating
the computations described above (see also [Dellnitz et al., 1997], where the subdivision algorithm to obtain
outer approximations of invariant sets by box covers is presented).

Finite representations obtained in the process described above may significantly overestimate the
attractor. More accurate enclosures for a given box size ε may be obtained from finer representations
by the box merging method. In this method, one first computes a finite representation (W,B) with boxes
of size ε/2k for some k > 1 and then merges boxes from W to obtain a finite representation (V,A)
with the accuracy ε. The transition matrix A is computed directly from the transition matrix B without
recalculating the images of ε-boxes. It will be shown in Section 3 that this method permits obtaining very
accurate enclosures of attractors.

The finite representation (V,A) represents the dynamics of f with the accuracy ε. If two trajectories
(xk), (yk) of a given length follow the same sequence of boxes then they cannot be distinguished by this
representation. We are interested in computing the number of trajectories of a given length n which can be
distinguished by a given finite representation. Such trajectories constitute an (n, ε)-separated set for the
map f over Ω.

Let us discuss how to compute the number Pn of paths of length n which are admissible by the transition
matrix A. The key observation is that Pn is equal to the sum of elements of An, i.e. Pn =

∑N
i=1

∑N
j=1(A

n)i,j .
Let us denote by Pn,j the number of admissible paths of length n starting in vj . Since there is a single
path of zero length starting in each box we assign P0,j = 1 for 1 ≤ j ≤ N . Pn,j for n > 0 and 1 ≤ j ≤ N
can be found recursively using the formula

Pn,j =
N∑
i=1

Aj,iPn−1,i =
∑
i∈Dj

Pn−1,i, (7)



June 3, 2019 23:40 ijbc18he

On Topological Entropy of Finite Representations of the Hénon map 5

where Dj = {i : Aj,i = 1}. The number Pn of admissible paths of length n is then computed as

Pn =
N∑
j=1

Pn,j . (8)

The complexity of the algorithm is of order (N + C) · n, where N is the number of boxes and C is the
number of non-forbidden connections (or the number of non-zero entries in A). The algorithm is fast and
can be used for relatively large n.

The number Pn can be used to compute an estimate of the topological entropy of the finite represen-
tation

HF(f, n, ε) =
1

n
logPn =

1

n
log

N∑
i=1

N∑
j=1

An. (9)

Let us assume that A has a dominant eigenvalue, i.e. an eigenvalue which is strictly greater in magnitude
than other eigenvalues. Under this assumption, to compute the limit of HF(f, n, ε) when n goes to infinity
one can use the following formula

HF(f,∞, ε) = lim
n→∞

1

n
log

N∑
i=1

N∑
j=1

An = log |λ1|, (10)

where λ1 is the dominant eigenvalue of A. Formula (10) follows from
∑N

i=1

∑N
j=1A

n = E>AnE = c21λ
n
1 +

· · · cN2λnN , where λk are eigenvalues of A with corresponding eigenvectors uk, and E> = (1, 1, . . . , 1)> =
c1u1 + · · · cNuN (compare [Golub & Loan, 2013]).

The dominant eigenvalue λ1 can be found using the Rayleigh’s power method (see [Golub & Loan,
2013]). The power iteration algorithm starts with a random vector b0. At every iteration, the vector bk

is multiplied by A and normalized, i.e. bk+1 = Abk
‖Abk‖ . The sequence µk =

b>k Abk
b>k bk

converges to λ1 and bk

converges to the corresponding eigenvector u1 under the assumption that A has a dominant eigenvalue λ1
and that b0 has a nonzero component in the direction u1.

For large n and small ε the estimate HF(f, n, ε) is an upper bound on H(f, n, ε) defined in (4) and
HF(f,∞, ε) is an upper bound on H(f, ε) defined in (5). As it will be shown in the following section, the
topological entropy of a finite approximation may by significantly larger than the topological entropy of
the map. The reason is that even if a given path is allowed by the transition matrix it does not necessarily
imply that there exist a trajectory following this path. For example, for a given path (vi1 ,vi2 ,vi3) it may
happen than f(vi1) ∩ f−1(vi3) = ∅ although f(vi1) ∩ vi2 6= ∅ and f(vi2) ∩ vi3 6= ∅.

A method to reduce this effect is to construct finite approximations of iterates of the map f . In this
approach using a finite representation (V,A) of f we compute a finite representation (V,B) of fk for some
k > 1. Note that the transition matrix B can be generated directly from A without the evaluation of fk.
We set Bj,i = 1 if and only if there is an admissible path of length k starting at vj and ending at vi. The
relation between the topological entropy of the map f and the topological entropy of fk is H(fk) = k ·H(f)
(compare [Adler et al., 1965]). Hence, an approximation of the topological entropy of f can be calculated
as k−1 HF(fk,∞, ε) = k−1 log λ1, where λ1 is the dominant eigenvalue of B. This method can be combined
with the box merging technique, to obtain better upper bounds on the topological entropy.

3. Numerical results

Here, the methods presented in Section 2 are applied to compute the topological entropy of finite rep-
resentations of the Hénon map. The Hénon map [Hénon, 1976] is a two-parameter map of a plane into
itself

h(x, y) = (1 + y − ax2, bx), (11)
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displaying a wide array of dynamical behaviors as its parameters are varied. We consider the classical
parameter values a = 1.4, b = 0.3, for which the famous Hénon attractor is observed in simulations. The
problem whether the attractor is chaotic remains an open problem (compare [Galias & Tucker, 2015]).

Using the linear change of coordinates (x, y) 7→ (ȳ, bx̄) converts (11) to

h(x, y) = (y, 1− ay2 + bx). (12)

In computations, we will use this version of the Hénon map because it permits a more efficient implemen-
tation. An ε-box v = (v1,v2) = [k1ε, (k1 +1)ε]× [k2ε, (k2 +1)ε] is represented as a pair of numbers (k1, k2).
The image of the box (k1, k2) under the map (12) is a set of boxes with the first coordinate being l1 = k2
and the second coordinate l2 ∈ {l′2, l′2 + 1, . . . , l′′2}, where [l′2ε, l

′′
2(ε + 1)] is the smallest interval enclosing

1− av2
2 + bv1. It follows that there is no numerical error in the computation of the first coordinate. Apart

from a very rare situation that the endpoints of the interval 1 − av2
2 + bv1 are located closer to borders

between ε-boxes than the machine accuracy we also make no numerical error when computing the second
coordinate of the box (k1, k2). In consequence, the map (12) permits obtaining finite representations free
from numerical errors.

The method described in Section 2 is used to construct finite representations of the Hénon attractor.
First, the rectangle [−1.5, 1.5] × [−1.5, 1.5] is covered by 36 ε-boxes of size ε = 0.5. Removing the non-
invariant part results in the cover V composed of 22 boxes and the transition matrix A with 60 non-zero
entries. Finite representations with the accuracy ε = 2−p for p = 2, 3, . . . , 20 are found recursively for
increasing p. The number of boxes in finite representations for different accuracies ε are reported in Table 1
in the column labeled “box splitting”. The finest representation is obtained for the accuracy ε = 2−20. To
simplify finite representations for ε > 2−20 the method of box merging is used. We start from the finite
representation with the accuracy ε = 2−20 and recursively merge covers and calculate transition matrices to
obtain finite representations with the accuracy 2−19, 2−18, . . . , 2−1. The results are presented in Table 1 in
the column labeled “box merging”. The number of boxes is reduced by more than 14% for p = 2, 3, . . . , 15.
The largest reduction of 28% is observed for p = 7. Covers with ε-boxes for ε = 2−4 and ε = 2−7 are shown
in Fig. 1 in gray and blue, respectively.

x

y

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 1. Covers with ε-boxes for ε = 2−4 (gray) and ε = 2−7 (blue).

To assess the quality of the results, covers of the numerically observed attractor with ε-boxes for
ε = 2−18 are found. 1000 trajectories of the length 1010 or 2 · 1010 with initial positions selected randomly
from the set [−0.1, 0.1] × [−0.1, 0.1] are computed. In each case 106 iterations are skipped to reach the
steady state and the remaining points are used to find the cover of the attractor by ε-boxes. The total
number of ε-boxes visited in all 1000 runs is 52 549 484. It is interesting to note that in 230 cases a
trajectory reaches a periodic steady state. The reason for observing a periodic steady state is that the
calculations are carried out in the double precision arithmetic. Each trajectory point (x, y) is stored as a
pair of numbers representable in the double precision arithmetic. In consequence, the state space is discrete
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and each trajectory has to be eventually periodic. It is a bit surprising that period are small compared
to the size of the state space. The periods found are 140 522 953, 323 659 552, 353 107 615, 1 210 581 335,
and 2 875 179 482. From the discussion presented above, it follows that in order to cover the attractor
by ε-boxes, we should compute several trajectories. If we compute a single trajectory it may converge to
a periodic steady state and after the convergence no more ε-boxes are found. For example, if we start
from the initial conditions (x, y) = (0.63945820192020463857, 0.54992529646318766279) which in double-
precision arithmetic is periodic with the period 140 522 953, then we detect only 39 169 990 ε-boxes which
is significantly less than the total number 52 549 484 of ε-boxes found.

Covers with boxes of larger size are found from the cover with box size ε = 2−18 via the box merging
technique. Cover sizes obtained using this procedure are reported in Table 1 in the column labeled “attractor
cover”. These results may be treated as a lower bound on the number for ε-boxes covering the attractor. It
may happen, especially for small ε that in spite of using a very large number of iterations not all ε-boxes
covering the attractor are visited by generated trajectories. For ε = 2−10 all 45561 ε-boxes are detected
in each of 1000 runs. For ε = 2−11 each ε-box is detected in at least 155 runs. For ε ≤ 2−12 at least one
of the ε-boxes is detected in a single run only. This indicates that the covers obtained using the attractor
cover method are true covers for ε ≥ 2−11. On the other hand it is very likely that covers obtained for
ε ≤ 2−12 are incomplete. Note that for p ≤ 8 there is a difference of one ε-box in covers obtained using the
box merging and the attractor cover methods. The attractor cover does not contain the box enclosing the
unstable fixed point (x, y) ≈ (−1.13135,−1.13135), which belongs to the invariant part of the rectangle
[−1.5, 1.5] × [−1.5, 1.5]. Since the box merging method produces an enclosure of the attractor cover it
follows that covers obtained for p ≤ 8 are exact. For p ≤ 14, the results obtained using the box merging
method are very close to the results found by covering the attractor. The difference in the number of boxes
is below 0.3%. This shows that the box merging approach is successful in obtaining accurate attractor
covers.

Table 1. The number N of ε-boxes in covers obtained using different methods and the corresponding approximation of the
box-counting dimension dimbox.

box splitting box merging attractor cover

ε N dimbox N dimbox N dimbox

2−1 22 4.4594 20 4.3219 19 4.2479

2−2 57 2.9164 48 2.7925 47 2.7773

2−3 135 2.3589 111 2.2648 110 2.2605

2−4 320 2.0805 258 2.0028 257 2.0014

2−5 805 1.9306 607 1.8491 606 1.8486

2−6 1952 1.8218 1437 1.7481 1436 1.7480

2−7 4595 1.7380 3324 1.6712 3323 1.6712

2−8 9928 1.6597 7792 1.6160 7791 1.6159

2−9 23001 1.6099 19064 1.5798 19061 1.5798

2−10 54295 1.5729 45573 1.5476 45561 1.5476

2−11 129098 1.5435 111036 1.5237 110992 1.5236

2−12 317626 1.5231 271874 1.5044 271666 1.5043

2−13 751942 1.5016 649739 1.4853 648840 1.4852

2−14 1828895 1.4859 1578034 1.4707 1573698 1.4704

2−15 4412827 1.4716 3782436 1.4567 3760354 1.4562

2−16 10526788 1.4580 9138053 1.4452 9038525 1.4442

2−17 25736445 1.4481 22537436 1.4368 22052165 1.4350

2−18 61227270 1.4371 54780599 1.4282 52549484 1.4248

2−19 149836455 1.4294 140166639 1.4243

2−20 367252401 1.4226 367252401 1.4226

Having an accurate cover of the Hénon attractor we may compute approximations of its box-counting
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dimension. The box-counting dimension of the set S is defined as

dimbox(S) = lim
ε→0

N(ε)

log(1/ε)
, (13)

where N(ε) is the number of boxes of side length ε required to cover the set S.
Approximations obtained for covers with ε–boxes of size ε = 2−p for p = 1, 2, . . . , 20 computed for

covers obtained using three different methods are reported in Table 1 and shown in Fig. 2. One can see
that approximations obtained using the box merging method are close to the ones found by covering the
attractor by ε–boxes. The box splitting method gives an overestimation clearly visible especially in the
range p ≤ 10.

0 5 10 15 20

p

1

2

3

4

5

d
im

b
o

x

box splitting

box merging

attractor cover

Fig. 2. Approximations of the box-counting dimension for covers of the Hénon attractor by ε–boxes with ε = 2−p.

Now, we present results on the topological entropy of finite representations of the Hénon map. First, let
us consider finite representations with the accuracy ε = 2−7. The number Pn of paths of lengths n ≤ 10000
is computed using formulas (7) and (8). Estimates HF(h, n, ε) based on the number of paths are computed
using formula (9). The computation time is 7.71 seconds using a single core 3.4 GHz processor. The limit
HF(h,∞, ε) is computed using (10). 150 iteration of the Rayleigh’s power method are sufficient to find
the dominant eigenvalue. The computation time is 0.1 seconds. The results are presented in Table 2. One
can see that the convergence of HF(h, n, ε) when n goes to infinity is relatively slow. For n = 100 and
n = 1000 the relative difference between H(f, n, ε) and the limit H(f,∞, ε) is 7% and 0.8%, respectively.
These results show that estimating the topological entropy using formula (10) combined with the power
method to find the dominant eigenvalue is faster than the method based on computing the number of
paths.

In a similar way, the limits HF(h,∞, ε) are computed for finite representations with different box sizes.
The results are presented in Table 3. For each box size ε = 2−p, p ∈ {1, 2, . . . , 20} we report the number
N of ε-boxes in the cover, the number C of non-zero entries in the transition matrix and the topological
entropy HF(h,∞, ε) of the finite representation found using formula (10).

In the first part of Table 3, we present the results obtained using the box splitting method. One
can see that the convergence of HF(h,∞, ε) when ε is decreased is relatively fast. For p ≥ 10 the results
belong to the interval [1.1105, 1.1112]. This indicates that the topological entropy stabilizes when the box
size is decreased. It follows that it is sufficient to study the topological entropy of a finite representation
with a relatively low accuracy to get a good description of complexity of trajectories. In the second part
of Table 3 we present results obtained using the box merging method. The first observation is that the
topological entropy is significantly smaller than in the first case. This confirms that the box merging
procedure permits obtaining a more accurate description of the dynamics of the map which results in a
significant reduction of the topological entropy of a finite representation. In this case, HF(h,∞, ε) belongs
to the interval [0.8509, 0.8717] for 9 ≤ p ≤ 15. The increase for p ≥ 16 is caused by the fact that the box
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Table 2. The number of paths Pn and estimates HF(h, n, ε) = n−1 logPn of the topological entropy for finite representations
of h with the accuracy ε = 2−7.

box splitting box merging
n Pn HF(h, n, ε) Pn HF(h, n, ε)

0 4595 ∞ 3324 ∞
1 14100 9.5539 7181 8.8792
2 42489 5.3285 16559 4.8573
3 128899 3.9223 38166 3.5166
4 391829 3.2196 88550 2.8478
5 1197093 2.7991 205877 2.4470
7 10956372 2.3156 1081119 1.9848

10 309723491 1.9551 12950681 1.6377

20 2.1025 · 1013 1.5338 5.2644 · 1010 1.2343

50 6.5690 · 1027 1.2810 3.5088 · 1021 0.9922

100 9.4506 · 1051 1.1968 3.8433 · 1039 0.9115

200 1.9560 · 10100 1.1546 4.6109 · 1075 0.8711

500 1.7343 · 10245 1.1294 7.9624 · 10183 0.8469

1000 6.5878 · 10486 1.1209 1.9791 · 10364 0.8388

2000 9.5049 · 10969 1.1167 1.2228 · 10725 0.8348

5000 2.8547 · 102419 1.1142 2.8836 · 101807 0.8324

10000 1.7847 · 104835 1.1134 2.5957 · 103611 0.8316

∞ ∞ 1.1125 ∞ 0.8308

Table 3. The topological entropy HF(h,∞, ε) of finite representations with the accuracy ε = 2−p.

box splitting box merging
ε N C HF N C HF

2−1 22 60 1.0125 20 41 0.8319

2−2 57 164 1.0780 48 95 0.7880

2−3 135 391 1.0896 111 222 0.8256

2−4 320 940 1.0890 258 539 0.8348

2−5 805 2397 1.1111 607 1270 0.8378

2−6 1952 5927 1.1137 1437 3097 0.8371

2−7 4595 14100 1.1125 3324 7181 0.8308

2−8 9928 30498 1.1110 7792 17141 0.8464

2−9 23001 70245 1.1124 19064 41879 0.8614

2−10 54295 164301 1.1111 45573 100746 0.8717

2−11 129098 392380 1.1109 111036 247160 0.8673

2−12 317626 974431 1.1112 271874 595847 0.8589

2−13 751942 2323976 1.1111 649739 1434256 0.8509

2−14 1828895 5686097 1.1110 1578034 3507123 0.8566

2−15 4412827 13643148 1.1110 3782436 8533209 0.8702

2−16 10526788 32763055 1.1106 9138053 21254741 0.8860

2−17 25736445 80423896 1.1105 22537436 53624056 0.9138

2−18 61227270 190788081 1.1105 54780599 138896360 0.9684

2−19 149836455 464208748 1.1105 140166639 385320220 1.0364

2−20 367252401 1126053561 1.1105 367252401 1126053561 1.1105

merging procedure requires a certain number of merging levels to improve the results.
Now, we present results obtained for finite representations of iterates of the Hénon map. First, using

a finite representation (V,A) of h with the accuracy ε, we generate the finite representation (V,B) of hk

(k ≥ 2) with the same accuracy ε. In the transition matrix B for the kth iteration we set Bj,i = 1 if and
only if vi can be reached from vj in exactly k steps. The logarithm of the dominant eigenvalue of B is the
topological entropy of the finite representation of hk. An estimate of the topological entropy of the map h
is obtained by dividing the result by k. Using the box merging technique, we recursively generate finite
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Table 4. The topological entropy of finite representations of h4 versus the accuracy ε.

ε N C HF(hk,∞, ε) k−1 HF(hk,∞, ε)

2−1 20 140 2.1698 0.5425

2−2 48 351 2.1558 0.5390

2−3 111 850 2.2291 0.5573

2−4 258 2043 2.2349 0.5587

2−5 607 4905 2.2537 0.5634

2−6 1437 12060 2.2468 0.5617

2−7 3324 28444 2.2618 0.5655

2−8 7792 69569 2.2896 0.5724

2−9 19064 171435 2.3046 0.5761

2−10 45573 416900 2.3204 0.5801

2−11 111036 1035760 2.3109 0.5777

2−12 271874 2514956 2.3136 0.5784

2−13 649739 6272146 2.3363 0.5841

2−14 1578034 16506852 2.4024 0.6006

2−15 3782436 45473785 2.5303 0.6326

2−16 9138053 140964052 2.7504 0.6876

2−17 22537436 498247791 3.0878 0.7720

representations of hk with the accuracy 2jε for j = 1, 2, 3, . . . and compute estimates of the topological
entropy.

The topological entropy of finite representations of the fourth iterate of the Hénon map based on the
finite representation of h with the accuracy ε = 2−17 are reported in Table 4. One can see that the results
are smaller than the ones given in Table 3. This shows that carrying out calculations for the kth iterate of
a map with k > 1 may produce a better upper bound on the topological entropy of the map.

Similar computations are carried out for the second and the third iterate of the Hénon map. The
results are plotted in Fig. 3. For each finite representation of hk with the box size ε = 2−p, p = 1, 2, . . . , 17,
we plot the rescaled topological entropy (i.e., the topological entropy divided by k). For comparison, we
also plot the topological entropy of finite representations of h (k = 1). One can see that the rescaled
topological entropy decreases with k. It is interesting to note that the results obtained for p ≤ 12 do not
vary much. Practically, the complexity of finite representations is independent on the accuracy of the finite
representation. An increase for p > 12 is caused by the fact that the box merging techniques requires
several iterations to work properly.
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Fig. 3. Rescaled topological entropy of finite representations of hk for k = 1, 2, . . . , 4 with the accuracy ε = 2−p.

Computing finite representations of hk for k > 4 based on the finite representation of h with the accu-
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racy ε = 2−17 becomes difficult because of increasing memory requirements. When h grows the transition
matrix for the kth iterate becomes less sparse and more memory is necessary to store the finite represen-
tation. Therefore, computations for k > 4 are carried out based on the cover with ε-boxes of size ε = 2−14.
Results obtained for k = 1, 2, . . . , 10 are plotted in Fig. 4. One can see that the results are larger than the
ones presented in Fig. 3, especially for p > 10. This shows that if we want to obtain reliable results we need
to start with sufficiently small boxes and use the box merging technique to reduce finite representations. It
is interesting to note that for k > 4 the plots drop for small p. This is caused by incapability of obtaining
good representations with large boxes when the iterate k is high. For fixed ε increasing k increases the
number of nonzero entries in the transition matrix. Eventually, all or almost all entries become nonzero
(for chaotic maps the number of boxes which can be reached from a given box after k iterations grows
exponentially with k). The number of nonzero entries which are added when k is increased cannot com-
pensate for the drop caused by dividing by k. To estimate what is the maximum size of ε-boxes for a given
k let us note that the dominant eigenvalue of a transition matrix A ∈ RN×N cannot be larger than N . It
follows that the number of boxes has to be larger than N = exp(kH), where H is an expected value of
the topological entropy of the map. Knowing N we can estimate the maximum box size from Table 1. For
example, for k = 10 assuming H = 0.5 we obtain N > 150 and ε ≤ 2−4. In practice, one has to use much
smaller ε-boxes to obtain reliable results.
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Fig. 4. Rescaled topological entropy of finite representations of hk for k = 1, 2, . . . , 10 with the accuracy ε = 2−p.

4. Conclusions

Efficient methods for the computation of the topological entropy of finite representations of nonlinear
maps have been proposed. Accurate finite approximations of the Hénon map h and its iterates hk for
2 ≤ k ≤ 10 have been constructed. It has been shown that the box merging technique permits obtaining
very accurate finite representations. The topological entropy of finite representation of the Hénon map has
been computed. It has been shown that the topological entropy of a finite representation is significantly
larger than the topological entropy H(h) of h and that the difference is practically independent on the
accuracy ε of the finite representations for ε sufficiently small.

It has been also shown that considering iterates hk produces upper bounds on the topological entropy
of h which decrease with k. We believe that these bounds for sufficiently large k together with the results
presented in [Yomdin, 1991] may by used to obtain nontrivial upper bounds on H(h). This will be the
subject of future studies.
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