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1. Introduction
The quadratic map fa(x) = ax(1 − x) (often also called the logistic map) [May, 1976] is a classical example of
a nonlinear dynamical system that can exhibit complex behaviours. In the parameter space S = [0, 4] of the quadratic
map one can define sets Speriodic and Schaotic of parameter values for which there exist a periodic attractor or a chaotic
attractor, respectively. It is known that these two sets are disjoint and their measures are positive [Day et al., 2008].
The measure of the set S\(Speriodic∪Schaotic) is zero [Lyubich, 2002], i.e. for almost every parameter either a chaotic
or periodic attractor exist. Parameter values not belonging to either of these two sets correspond to saddle-node and
period-doubling bifurcation points and to period-doubling cascade accumulation points. These points constitute
a countable set and therefore its measure is zero.

The goal of this work is numerical study the set Speriodic. This set can be split into an infinite number of pairwise
disjoint sets Speriodic,p, p = 1, 2, . . ., where Speriodic,p contains parameter values for which a stable period-p orbit
exists. For the quadratic map it is known that each of these sets is a union of open intervals, which are called
periodic windows. Hence, in order to compute a measure of the set Speriodic,p for a given p one has to find all period-
p windows. Periodic windows can be found analytically only for very low periods. The bisection method to find
periodic windows for the quadratic map has been used in [Tucker & Wilczak, 2009]. In this method, the interval of
parameter values is split into smaller parts, the Newton method is used to find superstable orbits in each part and then
the regions found are extended to cover as much of a periodic window as possible. In [Tucker & Wilczak, 2009], the
results on widths of periodic windows found were used to obtain a lower bound on the measure of the set Speriodic.
By construction, the method described in [Tucker & Wilczak, 2009] finds only periodic windows with widths above
a given threshold. Another limitation of this method is that it only finds a lower bound of windows’ width. In [Galias
& Garda, 2015], the continuation method was used to find positions of all periodic windows with periods p ≤ 20.
For each periodic window a rigorous lower bound of the window width was found using the forward shooting based
interval Newton operator to confirm the existence of stable periodic orbits for parameter values close to window
endpoints.

In this work, we continue research in this direction. We present a systematic method to find all low-period
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windows with a very good accuracy. The method is capable of computing both lower and upper bounds of widths
of each periodic window. It is shown that the method is faster than the one used in [Galias & Garda, 2015]. As
a result we are able to find all periodic windows up to period 32. It is shown that the accuracy of the method is
also improved. This method guarantees that all windows of a given period are found and therefore can be used to
compute rigorously very accurate bounds for the measures of sets Speriodic,p for small p.

The layout of the paper is as follows. In Sec. 2, several properties of periodic windows for the quadratic map are
recalled. In Sec. 3, the search method is described in detail and in Sec. 4, results of applying this method to analyse
low-period windows for the quadratic map are presented. Throughout the paper, we will use bold face to denote
intervals, interval vectors and matrices and math italic to denote “real” quantities. The interval with endpoints x ≤ x
is defined as x = [x, x]. The diameter of the interval x is defined as diam(x) = x − x. To define intervals we will
sometimes use a shorter notation. For example, x = 3.4467

55 will denote the interval x = [3.4455, 3.4467]. An interval
vector is a Cartesian product of intervals, for example x = (x1, . . . , xn)> = x1 × · · · × xn.

2. Preliminaries
The quadratic map is a one-parameter map of the interval I = [0, 1] defined by

fa(x) = ax(1 − x), (1)

where a ∈ S = [0, 4].
We say that x0 is a period–p point of fa if f p

a (x0) = x0, and f k
a (x0) , x0 for 1 ≤ k < p, where the notation

f 0
a (x0) = x0 and f k+1

a (x0) = fa( f k
a (x0)) for k ≥ 0 is used. The corresponding trajectory xk = f p

a (x), k ≥ 0 is called
a periodic orbit. We say that the periodic orbit (x0, x1, . . . , xp−1) is stable (is a sink) if the derivative

λp(a, x0) = ( f p
a (x0))′ =

p−1∏
k=0

f ′a(xk) =

p−1∏
k=0

a(1 − 2xk), (2)

is smaller than one in absolute value.
Let us recall some well known results on periodic windows for the quadratic map which will be used in this

work. For details the reader is referred to introductory books on deterministic chaos, for example [Peitgen et al.,
2004].

We say that an open interval (aleft, aright) ⊂ S is a period-p window for the family { fa : a ∈ S} if for all
a ∈ (aleft, aright) there exists a period-p sink of fa, and (aleft, aright) is a maximal interval with this property. Endpoints
of periodic windows are bifurcation points of corresponding periodic orbits. Periodic windows for which at the left
endpoint there is a saddle-node/period-doubling bifurcation will be referred to as saddle-node windows and period-
doubling windows, respectively. For the quadratic map there is a period-doubling bifurcation at the right endpoint
of each periodic window, and at this point another periodic window (of period-doubling type) starts. Thus, each
saddle-node window generates an infinite sequence of periodic windows with common endpoints. Such as sequence
is called a period-doubling cascade.

Let us consider a fixed value of the parameter a. With the point x ∈ [0, 1] we associate the symbol sequence
s(x) = s = (s0, s1, . . .) in such a way that sk = 0 if xk < 0.5 and sk = 1 if xk ≥ 0.5, where (x0, x1, x2, . . .) is the
trajectory of fa with the initial point x0 = x, i.e. xk = f k

a (x). If x is a period-p point then s is also periodic. In such
a case, we will write for short s = (s0, s1, . . . , sp−1).

Positions of periodic orbits of fa for a = 4 can be found using the topological conjugacy between f4.0 and the
tent map T : [0, 1] 7→ [0, 1] defined by T (y) = 1 − |2y − 1|. The homeomorphism conjugating f4.0 and T is given by

x = h(y) = sin2(0.5πy). (3)

For each periodic symbol sequence s = (s0, s1, . . . , sp−1) of period p there exists exactly one point y0 such that
T p(y0) = y0 and the symbol sequence of y0 is s. Its position can be found using the formula

y0 =
(
1 − 2−2p

)−1
2p−1∑
i=0

ti2−i−1, tk =

( k∑
i=0

si

)
mod 2. (4)

The homeomorphism h converts trajectories of T into trajectories of f4.0, i.e. f k
4.0(h(y)) = h(T k(y)) for k ≥ 0 and

y ∈ [0, 1]. Hence, x0 = h(y0) is the position of the period-p point of f4.0 corresponding to the symbol sequence s. For
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example when p = 3 and s = (001), we obtain t = (001110), y0 = 2/9, x0 = sin2(0.5πy0) ≈ 0.11697777844, which
is a period-3 point of f4.0.

The number of fixed points of f p
4.0 is 2p. These fixed points correspond to periodic orbits of fa with period p and

its proper divisors. Therefore, the number P(p) of period-p orbits of f4.0 can by found using the following recursive
formula

P(p) = p−1
(
2p −

p−1∑
k=1,p mod k=0

k · P(k)
)
. (5)

Periodic points of f4.0 are all unstable. For y , 0.5 we have |T ′(y)| = 2. It follows that the derivative of a fixed
point y0 of T p is (T p(y0))′ = T ′(yp−1) · · · T ′(y1)T ′(y0) = ±2p. The sign depends on the parity of the number of points
for which sk = 1 (at these points T ′(yk) = −2). Since the derivative of a fixed point is invariant under the change of
coordinates, it follows that for x0 being a fixed point of f p

4.0 we have λp(4.0, x0) = ( f p
4.0(x0))′ = (−1)tp−12p, where

s = s(x0) is the symbol sequence of x0, and tp−1 is defined in (4). We will refer to period-p symbol sequences for
which the number of nonzero symbols is odd as odd-parity sequences.

Let us consider a period-p orbit (x0, x1, . . . , xp−1) of f4.0, and let s = s(x0) be the corresponding symbol se-
quence. When a is decreased, the position (xk(a))p−1

k=0 of the periodic orbit changes until at some point aleft the deriva-
tive λp(a, x0(a)) reaches 1. For odd-parity sequences λp(4.0, x) < −1 and in consequence there exist aright > aleft such
that λp(aright, x0(aright)) = −1. The open interval (aleft, aright) is the periodic window corresponding to the odd-parity
sequence s. The symbol sequence changes once when a is decreased from a = 4.0 to aleft. This happens at a point
amiddle where λp(amiddle, x0(amiddle)) = 0. For a = amiddle the orbit x(amiddle) is superstable. One of the points along
the orbit passes the maximum of the quadratic map, i.e. xk(amiddle) = 0.5 for some k = 0, 1, . . . , p−1 and the symbol
sk flips. For even-parity sequences the condition λp(a, x0(a)) = 1 defines the saddle-node bifurcation point. At this
point, the continuation curve of the even-parity sequence and the continuation curve of its odd-parity saddle-node
partner coincide. An example is shown in Fig. 1. The curve (a, λp(a, x0(a))) corresponding to the odd-parity sequence
(001) starts at the point (a, λ) = (4,−8). In this case λp(a, x0(a)) = −1 for aright ≈ 3.841499 and λp(a, x0(a)) = 1
for aleft ≈ 3.828427, hence the periodic window is (aleft, aright) ≈ (3.828427, 3.841499). This periodic window is de-
picted with vertical dashed lines in Fig. 1. The continuation curve corresponding to the even-parity sequence (011)
starts at the point (a, λ) = (4, 8). The curves corresponding to sequences (001) and (011) intersect tangentially at the
saddle-node bifurcation point.

3.85 3.9 3.95 4

−8

−6

−4

−2

0

2

4

6

8

011

001001011
a

λ

Fig. 1. The derivative λp versus parameter a for periodic orbits associated with symbol sequences (001), (011), and (001011)

Let us now describe how to identify what is the saddle-node partner of an odd-parity sequence. We start by
ordering the set of symbol sequences Σ = {s = (s0, s1, . . .) : sk = ±1}. We say that s ≺ ŝ if sk < ŝk and

∑k−1
i=0 si ≡ 0

(mod 2) or sk > ŝk and
∑k−1

i=0 si ≡ 1 (mod 2), where k is the smallest positive integer such that sk , ŝk. This
ordering of symbol sequences preserves order of points in the state space, i.e. s(x) ≺ s(x̂) if and only if x < x̂. Points
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belonging to a single periodic orbit have symbol sequences being cyclic permutations of a given symbol sequence,
i.e. if (x0, x1, . . . , xp−1) is a periodic orbit and s(x0) = (s0, s1, . . . , sp−1) then s(xk) = (sk, . . . , sp−1, s0, . . . , sk−1).
When the derivative λp(a, x0(a)) changes sign, the last symbol of the largest cyclic permutation is changed. This is
equivalent to changing the second to last symbol of the smallest cyclic permutation. For example, the order of cyclic
permutations of (001) is (001) ≺ (010) ≺ (100). It follows that at the point amiddle the smallest cyclic permutation
(001) changes to (011) (the modified symbol is underlined). Therefore, the saddle-node partner of (001) is (011).

It is possible that the above procedure applied to a period-p sequence leads to a symbol sequence with period
p/2. For example, cyclic permutations of (001011) are (001011) ≺ (011001) ≺ (010110) ≺ (110010) ≺ (101100) ≺
(100101). Flipping the second to last symbol in the smallest cyclic permutation (001011) leads to (001001). The
resulting sequence has period 3. In such a case there is a period-doubling bifurcation at the left endpoint of the
periodic window. At this point, the period-p/2 orbit loses stability and a stable period-p orbit is born. An example
is shown in Fig. 1, where the periodic window corresponding to the sequence (001011) starts at the point where the
periodic window associated with the sequence (001) ends.

From the discussion presented above it follows that periodic windows correspond to odd-parity symbol se-
quences. Period-doubling windows correspond to sequences s of length p = 2k for which flipping the second to last
symbol in the smallest cyclic permutation of s produces a symbol sequence of period k. Other odd-parity sequences
correspond to saddle-node windows.

Let W(p) be the number of periodic windows with period p or equivalently the number of period-p odd-parity
sequences. For p ≥ 2 all periodic windows are created either via saddle-node or period-doubling bifurcation. In each
saddle-node bifurcation one of the orbits created is stable and one is unstable. For odd p there are no period-doubling
windows. Hence, half of the sequences correspond to periodic windows, which means that in this case W(p) is half
of P(p), where P(p) is defined in (5). For even p there are exactly W(p/2) period-doubling windows. Half of the
remaining sequences correspond to periodic windows. Therefore, the formula for W(p) reads

W(p) =


2 if p = 1,
1 if p = 2,
0.5 · P(p) if p is odd , p ≥ 3,
0.5 · (P(p) + W(0.5 · p)) if p is even, p ≥ 4.

(6)

From (5) and (6) it follows that W(p) grows approximately as p−12p−1.

3. Finding Periodic Windows
In this section, we present methods to find rigorous bounds of endpoints of all low-period windows. First, we describe
how to implement the interval Newton method to prove the existence of periodic orbits for one-dimensional maps.

3.1. Efficient implementation of the Newton method
Let us consider a one–dimensional continuously differentiable map f : R 7→ R. To study period–p orbits of f we
define the map F : Rp 7→ Rp

[F(x)]i = x(i+1) mod p − f (xi), for i = 0, 1, . . . , p − 1 (7)

where x = (x0, x1, . . . , xp−1)>. Note that x is a zero of F if and only if x0 is a fixed point of f p.
The interval Newton operator for the map F is defined by

N(x, x̂) = x̂ − F′(x)−1F(x̂), (8)

where x = (x0, x1, . . . , xp−1)> is an interval vector and x̂ ∈ x. The most important theorem concerning the interval
Newton operator states that if N(x, x̂) ⊂ x then there exists a single zero of F in x [Neumaier, 1990]. Hence, in order
to prove the existence of a unique periodic orbit in x, we choose x̂ ∈ x, and verify that N(x, x̂) is enclosed in x. Once
the existence is proved, we may iterate N to narrow down the set in which the periodic orbit exists. The Jacobian
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matrix of F is

F′(x) =


−c0 1 0 . . . 0
0 −c1 1 . . . 0
...

...
...
. . .

...
1 0 0 . . . −cp−1

 , (9)

where ck = f ′(xk). Below, we recall two methods to efficiently compute F′(x)−1F(x̂) and evaluate N(x, x̂).

Theorem 1. Let x = (x0, x1, . . . , xp−1)> be an interval vector and x̂ = (x̂0, x̂1, . . . , x̂p−1)> be a point vector such that
x̂ ∈ x. Assume that the intervals ck and gk are such that f ′(xk) ⊂ ck and x̂(k+1) mod p − f (x̂k) ∈ gk for 0 ≤ k < p. If the
intervals hk satisfy conditions

−

1 − p−1∏
j=0

c−1
j


−1 p−1∑

i=0

gi

i∏
j=0

c−1
j ⊂ h0 (10a)

c−1
k (h(k+1) mod p − gk) ⊂ hk, k = p − 1, . . . , 2, 1. (10b)

or 1 − p−1∏
j=0

c j


−1 p−1∑

i=0

gi

p−1∏
j=i+1

c j ⊂ h0 (11a)

gk + ckhk ⊂ hk+1, k = 0, 1, . . . , p − 2. (11b)

then h contains solutions of F′(x)h = H(x̂) for all x ∈ x and N(x, x̂) ⊂ x̂ − h.

Formulas (10) and (11) are the backward and forward shooting versions to solve the equation F′(x)h = F(x̂). Proof
of the above result is given in [Galias, 2002] (backward shooting) and in [Galias & Garda, 2015] (forward shooting).
In the backward (forward) shooting version the intervals hk are found recursively for decreasing (increasing) k. For
a description of the backward shooting method see also also [Coomes et al., 1996]. The backward shooting method
should be used when the orbit under study is unstable, because in this method multiplications by f ′(xk)−1 are carried
out. Since for an unstable periodic orbit we expect that | f ′(xk)| > 1 for most k, then these multiplications reduce the
diameter of the product and the overestimation of the result is reduced. Note that in the backward shooting version
it is mildly assumed that intervals f ′(xk) do not contain zero. For superstable orbits with f ′(xk) = 0 the backward
shooting version cannot be applied. In this case, and more general for stable orbits the preferred choice is the forward
shooting version.

To prove the existence of a periodic orbit in the interval vector x = (x0, x1, . . . , xp−1)> one computes ck =

f ′(xk) and gk = x̂(k+1) mod p − f (x̂k) in interval arithmetic. Then, depending on the version one computes h0 as the
interval evaluation of the left hand side of inclusions (10a) or (11a) and the remaining hk using the left hand side of
inclusions (10b) or (11b). Finally, if x̂−h ⊂ x then the existence of a single periodic orbit belonging to x is confirmed.
Formulas (10) and (11) may also be used for efficient evaluation of standard (non-interval) Newton method.

3.2. Finding periodic windows endpoints
To find periodic windows we use the continuation method starting at the parameter value a = 4.0 for which positions
of periodic orbits are known (see Sec. 2). Let us briefly recall this method (for more details see [Galias & Garda,
2015]).

We move in the parameter space from a = 4 decreasing a and updating the position of the corresponding
periodic orbit until the orbit becomes stable. In each continuation step we select ∆a > 0 and assign test value
atest = a − ∆a. Next, we iteratively apply the (real) Newton operator to improve the approximation x(atest) of the
position of the periodic orbit for the test value. To speed up computations we use a shooting method to evaluate the
Newton operator. If the Newton method converges to a periodic point with a correct symbol sequence (as explained
in Sec. 2 the symbol sequence changes only once along the continuation curve) we accept the test point (we set
a = atest), increase ∆a, and try the next text point. In the opposite case the test point is rejected, ∆a is decreased, and
the above procedure is repeated. Continuation is carried out until the bifurcation point where λp reaches 1. In case
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of odd-parity sequences, the continuation method produces two points, which are close to window’s right and left
endpoints.

As an initial point for the Newton method we use x(atest) = x(a) − ∆a · ∂x/∂a, where x(a) is the position of the
orbit for the current parameter value a and ∂x/∂a = (∂x0/∂a, ∂x1/∂a, . . . , ∂xp−1/∂a)> is the derivative of the position
of the periodic orbit with respect to a (compare [Galias & Tucker, 2014]). The derivative ∂x/∂a is found using the
implicit function theorem applied to the map F : Rp+1 7→ Rp defined by [F(x0, x1, . . . , xp−1, a)]i = x(i+1) mod p− fa(xi).
∂x/∂a is the solution of the linear equation ∂F/∂x · ∂x/∂a + ∂F/∂a = 0, where [∂F/∂a]k = −xk(1 + xk), and the
matrix ∂F/∂x has the form (9). To efficiently find the solution ∂x/∂a one should use a shooting method.

3.3. Finding rigorous bounds of periodic window’s endpoints
In this section, we describe how to find rigorous bounds of periodic windows’ endpoints. We assume that we have
two points on the continuation curve, which are close to window’s endpoints. We start by computing an accurate
estimate ãright of the right endpoint of the window. This can be done using the bisection method or the Newton
method to solve the equation λp(a, x0(a)) = −1. The latter approach is faster. Next, we select aright < ãright < aright
and using Theorem 1 we evaluate the interval Newton operator to prove the existence of periodic orbits for aright and
aright with proper stability, i.e. λp(aright, x0(aright)) > −1 > λp(aright, x0(aright)). The interval [aright, aright] contains the
true periodic window’s right endpoint.

The upper bound of the left endpoint aleft is obtained by finding aleft for which λp(aleft, x0(aleft)) is smaller than
and close to 1. Using the interval Newton operator we prove the existence of a stable periodic orbit for aleft. Rigorous
lower bound of aleft is found using a method depending on the window’s type. For period-doubling windows one
may use a lower bound of the right endpoint of the periodic window which is the period-doubling parent of the
considered window.

For saddle-node windows the procedure is more complicated. Note that when a converges to the bifurcation
value derivatives ∂x/∂a go to infinity. In consequence, the parameter continuation method described in the previous
section cannot pass the saddle-node bifurcation point. One possible solution is to exchange the role of the contin-
uation parameter and one of the variables. In this approach instead of changing parameter a we modify the value
of a selected variable (for example x0). Another possibility is to use a more general pseudo-arclength continuation,
where the continuation direction is chosen automatically. We select the former method because it is simpler to im-
plement and is sufficient for our purpose. In each continuation step, we consider a test value x0 = x0,test and solve the
equation G(y) = 0, where y = (a, x1, x2, . . . , xp−1)>, [G(y)]i = x(i+1) mod p−axi(1−xi), and x0 is fixed. Implementation
of the Newton method for the map G requires solving the equation

−b0 1 0 . . . 0 0
−b1 −c1 1 . . . 0 0
...

...
...
. . .

...
...

−bp−2 0 0 . . . −cp−2 1
−bp−1 0 0 . . . 0 −cp−1





h0
h1
...

hp−2
hp−1


=



g0
g1
...

gp−2
gp−1


, (12)

where bk = xk(1− xk), ck = f ′a(xk) = a(1− 2xk), gk = x(i+1) mod p − axi(1− xi). The forward shooting method to solve
the above equation is

h0 = −

p−1∑
k=0

bk

p−1∏
j=k+1

c j


−1 p−1∑

k=0

gk

p−1∏
j=k+1

c j, (13a)

h1 = g0 + b0h0, (13b)
hk = gk−1 + bk−1h0 + ck−1hk−1, k = 2, 3, . . . , p − 1. (13c)

Equations (13) can also be used for efficient evaluation of the interval Newton operator for the map G.
The variable continuation method described above allows us to obtain a very good approximation of the saddle-

node bifurcation point (a, λ) = (aleft, 1). To obtain rigorous bounds for aleft we start by finding two points (â, x̂0) and
(ã, x̃0) lying on the continuation curve close to the bifurcation point such that λp(â, x̂0) < 1 < λp(ã, x̃0). Using the
interval Newton method applied to G we prove the existence of periodic orbits with proper stability (one stable, one
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unstable) for these two points. Next, we create a candidate interval vector aleft × x0 satisfying conditions x̂0, x̃0 ∈ x0
and â, ã ∈ aleft = [aleft, aleft]. We apply the interval Newton operator to prove the existence of a periodic orbit for each
x0 belonging to the candidate set. Finally, we compute the derivative ∂2a/∂x2

0 over the candidate set and verify that
it does not contain 0. It follows that the candidate set contains the saddle-node bifurcation point and in consequence
aleft and aleft are bounds for the periodic window’s left endpoint.

3.4. Interval Newton method to find bifurcation points
An alternative approach to find bounds for periodic window’s endpoints is to apply the interval Newton method to
prove the existence of bifurcation points. To study bifurcation points let us consider the map Hλ0 : Rp+1 7→ Rp+1

defined by [Hλ0(z)]i = x(i+1) mod p − axi(1− xi) for i = 0, 1, 2, . . . p− 1 and [Hλ0(z)]p = ap(1− 2xp−1) · · · (1− 2x1)(1−
2x0) − λ0, where z = (x0, x1, . . . , xp−1, a)> and λ0 = ±1. Zeros of Hλ0 correspond to bifurcations of period-p orbits.
The first p components of Hλ0 provide periodic point conditions, while the last component ensures that the derivative
λp(a, x0) is equal to λ0. λ0 = −1 and λ0 = 1 will be used to study period-doubling and saddle-node bifurcation points,
respectively. The Jacobian matrix of Hλ0 has the form

H′λ0
(x) =



−c0 1 0 . . . 0 −b0
0 −c1 1 . . . 0 −b1
...

...
...

. . .
...

...
1 0 0 . . . −cp−1 −bp−1

−2ad0 −2ad1 −2ad2 . . . −2adp−1 pa−1wp−1


, (14)

where bk = xk(1 − xk), ck = f ′a(xk) = a(1 − 2xk), wk =
∏k

i=0 ci, dk =
∏p−1

i=0,i,k ci.
To prove that the interval vector z contains a bifurcation point we need to show that N(z, ẑ) = ẑ −

H′λ0
(z)−1Hλ0(ẑ) ⊂ z where ẑ ∈ z. Efficient evaluation of the interval Newton operator for the map Hλ0 is more

involving than for the map F. Below, we present a forward shooting method to compute the interval vector h con-
taining solutions of H′λ0

(z)h = Hλ0(ẑ) for z ∈ z.

Theorem 2. Let z = (x0, x1, . . . , xp−1, a)> be an interval vector and ẑ = (x̂0, x̂1, . . . , x̂p−1, â)> ∈ z. Assume that

a(1 − 2xk) ⊂ ck, xk(1 − xk) ⊂ bk, x̂(k+1) mod p − âx̂k(1 − x̂k) ∈ gk, (15a)
p−1∏

i=0,i,k

ci ⊂ dk,

p−1∏
i=0

â(1 − 2x̂i) ∈ e,
k∑

j=0

b j

k∏
i= j+1

ci ⊂ uk,

k∑
j=0

g j

k∏
i= j+1

ci ⊂ vk,

k∏
i=0

ci ⊂ wk, (15b)

2a
(
d0 +

p−1∑
i=1

diwi−1

)
⊂ q0, 2a

p−1∑
i=1

diui−1 −
pwp−1

a
⊂ q1, λ0 + e − 2a

p−1∑
i=1

divi−1 ⊂ r, (15c)

for 0 ≤ k < p. If intervals hk satisfy conditions

rup−1 + vp−1q1

q0up−1 + (1 − wp−1)q1
⊂ h0,

−q0vp−1 + (1 − wp−1)r
q0up−1 + (1 − wp−1)q1

⊂ hp (16a)

vk + wkh0 + ukhp ⊂ hk+1, k = 0, 1, . . . , p − 2. (16b)

then h contains solutions of H′λ0
(z)h = Hλ0(ẑ) for all z ∈ z and N(z, ẑ) ⊂ ẑ − h.

Proof. Using definitions bk = xk(1 − xk), ck = a(1 − 2xk) and gk = x̂(k+1) mod p − âx̂k(1 − x̂k), the first p equations in
H′λ0

(z)h = Hλ0(ẑ) can be written as h(k+1) mod p = gk + ckhk + bkhp for k = 0, 1, . . . , p − 1. Substituting recursively hk
from the kth equation into the (k + 1)th equation yields

h(k+1) mod p = vk + wkh0 + ukhp, k = 0, 1, . . . , p − 1, (17)

where uk =
∑k

j=0 b j
∏k

i= j+1 ci, vk =
∑k

j=0 g j
∏k

i= j+1 ci, and wk =
∏k

i=0 ci. The last equation in H′λ0
(z)h = Hλ0(ẑ) can

be written as −2a
∑p−1

i=0 dihi + pwp−1hp/a = e − λ0, where dk =
∏p−1

i=0,i,k ci and e =
∏p−1

i=0 â(1 − 2x̂i). Eliminating h1,
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h2, . . . , hp−1 from the last equation we obtain

2a

d0 +

p−1∑
i=1

diwi−1

 h0 +

2a
p−1∑
i=1

diui−1 −
pwp−1

a

 hp = λ0 + e − 2a
p−1∑
i=1

divi−1. (18)

Solving (17) with k = p − 1 and (18) yields

h0 =
rup−1 + vp−1q1

q0up−1 + (1 − wp−1)q1
, hp =

−q0vp−1 + (1 − wp−1)r
q0up−1 + (1 − wp−1)q1

, (19)

where q0 = 2a
(
d0 +

∑p−1
i=1 diwi−1

)
, q1 = 2a

∑p−1
i=1 diui−1 − pwp−1a−1, r = λ0 + e − 2a

∑p−1
i=1 divi−1. We have shown

that h0, hp defined in (19) and h1, h2,. . . hp−1 defined in (17) are the solutions of H′λ0
(z)h = Hλ0(ẑ). It follows that

intervals hk satisfying conditions (16) enclose all solutions of H′λ0
(z)h = Hλ0(ẑ) for z ∈ z. �

In practice, to evaluate the interval Newton operator we compute intervals ck, bk, gk, dk, e, uk, vk, wk, q0, q1, r, and
hk in interval arithmetic using left hand sides of inclusions (15) and (16). From the inclusion property of interval
computations if follows that the corresponding inclusions are automatically satisfied.

Let us note that the method to evaluate the interval Newton method for the map Hλ0 formulated in Theorem 2
can be implemented to have a linear complexity versus p both in time and memory. To ensure this property we have
to use recursive formulas for the evaluation of uk and vk, for example u0 = b0, uk = bk + ckuk−1, k = 1, 2, . . . , p − 1.

To find bounds of the right endpoints of a periodic window we construct the interval vector z containing the
bifurcation point candidate ẑ and prove that N(z, ẑ) ⊂ z for the map Hλ0 with λ0 = −1. For saddle-node periodic
window to find bounds of left endpoints we consider the map Hλ0 with λ0 = 1. This method does not work for left
endpoints of period-doubling windows because in this case at the bifurcation point two solution curves corresponding
to the period-doubling window and its parent intersect and in consequence the matrix H′λ0

(z) is not invertible. In this
case bounds for the left endpoint are found as bounds for the right endpoint of the parent.

The map Hλ0 provides an alternative approach to find approximate position of periodic windows’ endpoints. To
find the window’s right endpoint we use the (non-interval) Newton method applied to the map Hλ0 with λ0 = −1 with
the starting point a = 4 and (xk(4.0))p−1

k=0 being the position of the periodic orbit for a = 4. If the Newton method does
not converge we may use the modified Newton method [Stoer & Bulirsch, 2002], where the step size is decreased in
case of a failure. Provided that the method converges to the periodic window’s right endpoint we apply the Newton
method for the map Hλ0 with λ0 = 1 and with the initial point being the right endpoint to find the window’s left
endpoint. It will be shown in Sec. 4 that this method is much faster than the continuation based approach.

3.5. Locating all periodic windows with a given period
To find all period-p windows, we have to apply methods presented in previous sections to W(p) period–p sequences
s = (s0, s1, . . . , sp−1) with sk ∈ {0, 1}. The total number of sequences of length p is 2p. It is sufficient to consider
odd-parity sequences only (even-parity sequences produce unstable branches of continuation curves, see Sec. 2).
Sequences with the period smaller than p should be skipped (they correspond to periodic orbits with the period
being a proper divisor of p). Out of the p sequences corresponding to the same cycle it is sufficient to choose only
one (the other produce other points belonging to the same periodic orbit). It follows that approximately 2p−1/p
sequences are to be considered.

For each sequence s = (s0, s1, . . . , sp−1) we find the position of the period-p point of the tent map using (4) and
the position of the period-p point of f4.0 using (3). Next, we find approximations of the endpoints of the periodic
window. As described in Secs. 3.2 and 3.4, we may use the continuation method or the Newton method applied to
the map Hλ0 .

Finally, we find rigorous bounds for window endpoints. This is carried out using method described in Secs. 3.3
or 3.4. To ensure that the proper endpoint has been found we verify whether the symbol sequence of the periodic
orbit at bifurcation points agrees with symbol sequence considered. For the right endpoint the sequence should be
equal to the starting sequence s, while for the left endpoint there should be one symbol at a given position flipped
when compared to s.

In this way for each period-p window we find rigorous bounds [aleft, aleft] and [aright, aright] of its left and right
endpoints and bounds of its width can be computed as [w,w] = [aright − aleft, aright − aleft].
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4. Numerical Study of Periodic Windows
In this section, we carry out rigorous numerical study of low-period windows using methods presented in previous
sections. Let us first compare the performance of two techniques to find all low-period windows: the continuation
based approach to find periodic windows combined with the bisection technique to find rigorous bounds of windows’
endpoints (see Secs. 3.2 and 3.3) and the direct Newton method based approach to find bifurcation points and prove
their existence (see Sec. 3.4).

The test problem is to find all periodic windows with periods 2 ≤ p ≤ 20. The computation software uses
the CAPD library [CAPD] for interval atitmetic computations and the MPFR library [MPFR] for multiple precision
support. For the test problem the total computation time using a single core 3.1 GHz processor is 3.25 hours for
the first method and 355 seconds for the second method. The main reason for longer computations in case of the
first method is that in the continuation algorithm the Newton method is used to improve approximations of positions
of periodic orbits for many test points, while in the second approach the Newton method is used directly to find
bifurcation points. Another advantage of the second method it that is produces more accurate bounds for positions
of periodic windows in shorter time. The diameter of the interval containing the true total width µ

(⋃20
p=2 Speriodic,p

)
is 1.22 · 10−34 for the first method and 1.42 · 10−71 for the second method. The lower accuracy for the first method
is caused by stopping the bisection method at the threshold ∆a < 10−40. Better accuracy could be achieved using
a smaller threshold at the cost of further increase of computation times. Results of these computations show that
the second method offers much better performance both in terms of speed and accuracy. It appears that finding
bifurcation points, which are solutions of Hλ0(z) = 0 for λ0 = −1 and then for λ0 = 1 from the initial point a = 4
is a relatively easy numerical problem. The conclusion is that, if possible, one should use the direct Newton method
offering quadratic convergence, instead of the more robust but slower continuation based method.

4.1. All periodic windows with period p ≤ 32

The algorithm presented in Section 3.5 has been applied to find periodic windows with periods p ≤ 32. In all cases,
apart from a single symbol sequence of length 30, the direct Newton method to find bifurcation points was used. The
sequence, for which the direct Newton method failed, was processed using the continuation based method.

The results are presented in Table 1. We report the number W(p) of periodic windows and the num-
ber WPD(p) of period-doubling windows with period p, an enclosure of the total width µp = µ

(
Speriodic,p

)
of period-p windows. Computations have been carried out using multiple precision interval arithmetic with
256 bits. Such accuracy makes it possible to obtain very accurate approximations of periodic windows’
endpoints and widths. We have shown that the measure of the set

⋃32
p=2 Speriodic,p belongs to the interval

0.61159001389967786323031257867855866093846096573360776447144424905917
0 with the diameter equal to

6 · 10−68. The results presented in Table 1 are given with a lower precision for the sake of brevity. It is interest-
ing to note that computations in standard double precision interval arithmetic do not detect all periodic windows for
periods p ≥ 13 (compare [Galias & Garda, 2015]).

The number of periodic windows reported in [Tucker & Wilczak, 2009] is smaller than the true number of
periodic windows already for p ≥ 13. Out of the total number of 67108864 periodic windows with periods 2 ≤
p ≤ 32 only 482967 were found in [Tucker & Wilczak, 2009]. This is a consequence of using a criterion to stop the
search for very narrow intervals. The total width of periodic windows with period 2 ≤ p ≤ 32 is larger than the lower
bound reported in [Tucker & Wilczak, 2009] by only 9.47 · 10−7 in spite of the fact that very few windows were
found when compared to the total number of windows. This means that the approach used in [Tucker & Wilczak,
2009] is successful in finding a good lower bound of the measure of the set Speriodic.

The total widths µp of period-p windows is plotted in Fig. 2. Note that µp generally decreases with p, however
for even p = 2k ≥ 4 we have µ2k > µ2k−1. This phenomenon is related to the existence of period-doubling windows
and will be discussed in the following section. Also note that values of µp for prime p > 2 are positioned along
an almost straight line while µp for composite p are well above this line. We will give some explanations of this
phenomenon in the following section.
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Table 1. The number W(p) of periodic windows found and their total
width µp

p W(p) WPD(p) µp µp,PD/µp

2 1 1 0.449489742783178098198
7 1.0000

3 1 0 0.013071882797317748708
7 0

4 2 1 0.095267386485437999236
5 0.99301

5 3 0 0.003522817496238286287
6 0

6 5 1 0.010053525677291281928
7 0.60792

7 9 0 0.000970108705784576444
3 0

8 16 2 0.021199164412957923151
0 0.97395

9 28 0 0.000524485461645072959
8 0

10 51 3 0.002705724104694675753
2 0.64132

11 93 0 0.000121528614814438247
6 0

12 170 5 0.004177099843211274176
5 0.78424

13 315 0 0.000044179928471241711
0 0

14 585 9 0.000745341053218683693
2 0.64919

15 1091 0 0.000138664114920133830
29 0

16 2048 16 0.004844650533095283827
6 0.97108

17 3855 0 0.000009730544909533570
69 0

18 7280 28 0.000459306805966975798
7 0.55496

19 13797 0 0.000004625888500261899
8 0

20 26214 51 0.001103243813319177884
3 0.80373

21 49929 0 0.000035868319409096276
7 0

22 95325 93 0.000093033933928347765
4 0.65315

23 182361 0 0.000001255920169728877
6 0

24 349520 170 0.001383604683189814861
0 0.84357

25 671088 0 0.000017232457636042264
3 0

26 1290555 315 0.000033815912611753456
5 0.65323

27 2485504 0 0.000014731831548222586
5 0

28 4793490 585 0.000302810635330197063
2 0.80769

29 9256395 0 0.000000293260561979726
5 0

30 17895679 1091 0.000139078413692448398
7 0.48146

31 34636833 0 0.000000134664736988906
5 0

32 67108864 2048 0.001114944801890575767
6 0.97206

138871108 4419 0.611590013899677863231
0 0.95625

5 10 15 20 25 30

10
−6

10
−4

10
−2

10
0

p

µ
p

Fig. 2. The total widths µp = µ(Speriodic,p) of period-p windows (the “+×” symbol) and the total width of period-p saddle-node windows (the
“�” symbol)
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4.2. Properties of periodic windows
In this section we discuss properties of low-period windows. Widths of periodic windows versus p are plotted in
Fig. 3. The minimum width decreases exponentially with p. Observe that for p = 13 the minimum width is close
to the double precision machine epsilon. This explains why some periodic windows with periods p ≥ 13 are not
detected when the double precision arithmetic is used. Period-doubling windows are depicted using a different color.
Note that they occupy the upper part of the plot. For even p, period-doubling windows have the dominating influence
on the total width µp. In the last column of Table 1, we present the ratios µp,PD/µp, where µp,PD is the total width
of period-doubling windows with period p. One can see that these ratios are above 0.48 for all even p, and are
close to 1.0 for p being powers of 2. The ratio µ2−32,PD/µ2−32 of the total width of all period-doubling windows and
all periodic windows with 2 ≤ p ≤ 32 is 0.95625 (cf. Table 1). This is mainly due to the widest period-doubling
cascade (the period-2 window and its descendants), with the width of 0.5696916 (93% of the total width 0.61159).
If we neglect the first period-doubling cascade, then the total width of period-doubling windows constitutes 36% of
the width of all periodic windows. This is an important contribution, especially if take into account the fact that there
are less than 5000 period-doubling windows and more that 1.3 · 108 saddle-node windows with periods p ≤ 32.

5 10 15 20 25 30
10

−40

10
−30

10
−20

10
−10

10
0

p

w

Fig. 3. Widths of periodic windows versus period

To explain the large contribution of period-doubling windows, in Fig. 4 we plot derivatives λp(a, x0(a)) for
period-6 orbits versus a. Results for odd-parity sequences leading to period-doubling and saddle-node windows are
plotted using red and blue colors, respectively. Results for even-parity saddle-node partners of odd-parity sequences
are plotted using cyan color. First, let us note that windows existing for larger a are narrower. This is due to the
fact that continuation curves for odd-parity sequences start at the same point (a, λ) = (4.0,−2p) and their slope
depends on the value at which they intersect the line λ = 1. The main difference between period-doubling and
saddle-node windows windows is that for saddle-node windows the curve λ(a) is tangent to the vertical line at
the left endpoint of the window, while for the period-doubling windows the derivative λ′(a) is finite over the whole
window. In consequence, saddle-node windows are narrower. In the example shown in Fig. 4 the width of the period-
doubling window is larger than widths of all saddle-node windows. This happens in spite of the fact that the widest
saddle-node window exists for much smaller a.

Below, we try to explain why the total width of period-p windows strongly depends on factorization of p.
Plots of periodic windows’ widths versus a for periodic windows with p = 19, 20, 21, 22 are shown in Fig. 5.
One can see that generally widths of periodic windows decrease when a grows. The windows’ widths drop below
10−15 for a very close to 4.0. Results for saddle node and period-doubling windows are plotted using the blue and
red dots, respectively. Additionally, period-doubling windows are depicted using the circle symbol, and selected
saddle-node windows are depicted using other symbols (squares, diamonds, and triangles). As it will be explained
later, they correspond to period-tupling symbol sequences obtained by concatenation of shorter sequences (compare
also [Derrida et al., 1978; Wan-Zhen et al., 1984]).

Note that period-doubling windows, in general, have widths which are several orders of magnitude larger than
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Fig. 4. Derivatives λp for period-8 orbits versus a
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Fig. 5. Periodic windows’ widths versus a for period-19 windows (a), period-20 windows (b), period-21 windows (c), and period-22 win-
dows (d)

widths of saddle-node windows for similar values of a. In a sense, periodic windows inherit width from their parents,
and in consequence their width is much larger than the width of saddle-node windows with the same period and
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a similar value of a (cf. Fig. 4 and the discussion in the text). This explains why µ2k > µ2k−1 (cf. Fig. 3 and Table 1).
However, we still need to explain why for odd and composite p the total width is larger than for prime p. Let

us note that parts of the plots concerning saddle-node windows depicted with dots only are similar, especially for
p of the same parity (compare Fig. 5(a) with (c) and (b) with (d)). For p = 19, which is a prime number, there
are no results outside this part of the plot. For p = 20 and p = 22 there are 51 and 93 period-doubling windows,
respectively. Let us note that for p = 21 there exist windows forming a similar structure as period-doubling windows
for p = 20 and p = 22. To explain this phenomenon let us recall how the period-doubling sequences emerge
from their parents. Let us assume that u = (u0, u1, . . . , uk−1) is an odd-parity sequence and that u is the smallest
cyclic permutation of u. Period-doubling sequence s of length p = 2k is created from u by concatenating u and
v = (u0, u1, . . . , uk−3, 1 − uk−2, uk−1), which is obtained from u by flipping the second to last symbol, i.e. s = (u, v).
Note that since u is odd-parity and v is even-parity, the resulting sequence is of odd parity. In a similar way, we
may obtain sequences of length p = lk from u by concatenating l1 copies of u and l − l1 copies of v, where l1
is odd to preserve the odd-parity of the final sequence. This process is called period l-tupling. For example, when
p = 3k period-tripling of u produces the sequence s = (u, v, v). Period-quadrupling with p = 4k gives two choices:
s = (u, v, v, v) and s = (u, u, u, v), while for p = 5k there are three possibilities: s = (u, v, v, v, v), s = (u, u, u, v, v),
and s = (u, u, v, u, v).

Let us now consider p = 21. There are nine periodic windows with period k = 7. Each of them pro-
duces a single period-21 odd-parity sequence via period-tripling. Periodic windows corresponding to the result-
ing period-21 sequences are plotted in Fig. 5(c) using triangle symbols. In each case, the period-p window lies
close to the corresponding period-k window. For example, the sequence u = (0111101) with the periodic win-
dow (aleft, aright) ≈ (3.7016408, 3.7021549) leads to s = (0111101 0111111 0111111) with the periodic window
(aleft, aright) ≈ (3.7026674, 3.7026768). Period-21 sequences can also be obtain by concatenating period-3 sequences.
There is one odd-parity period-3 sequence u = (001). From it, via period-septupling one can obtain the following
nine period-21 sequences: (u, v, u, u, u, u, v), (u, v, u, u, v, u, u), (u, v, v, u, v, u, v), (u, v, v, u, u, u, u), (u, v, v, u, u, v, v),
(u, v, v, v, u, v, u), (u, v, v, v, u, u, v), (u, v, v, v, v, u, u), (u, v, v, v, v, v, v), where v = (011). Periodic windows corre-
sponding to these sequences are plotted in Fig. 5(c) using square symbols. Since all sequences are created from the
same period-3 sequence, the corresponding periodic windows are located close to each other in the parameter space.

Let us now go back to the case p = 22. There are 93 period-doubling windows for p = 22 obtained from odd-
parity period-11 sequences. Period-22 sequences can also be obtained by concatenating period-2 sequences. There
is one period-2 odd-parity sequence: u = (01). From it, via period 11-tupling one can create 93 period-22 odd-parity
sequences. Periodic windows corresponding to these sequences are plotted in Fig. 5(d) using diamond symbols.

The case p = 20 is more complex because p = 20 has more divisors. Similarly as for p = 22, there are period-
doubling windows and sequences created from u = (01). For p = 20, there are 53 period-doubling windows denoted
with the circle symbol and 53 period 10-tupling windows created from u = (01) denoted using diamond symbols
in Fig. 5(b). Other divisors of 20 are 4 and 5. There are two period-4 odd-parity sequences: u′ = (0001) and u′′ =

(0111). Each of them produces three period-20 sequences via period-quintupling: s = (u, v, v, v, v), s = (u, u, u, v, v),
and s = (u, u, v, u, v). These sequences are denoted using square symbols in Fig. 5(b). Sequences created from
u′ = (0001) exist for a close to 3.9615, while sequences created from u′′ = (0111) exist for a < 3.6. Note that these
three sequences can be also created from the sequence (01) via period 11-tupling, and hence are also denoted using
diamond symbols. There are three period-5 odd-parity sequences: (00001), (00111), and (01101). Each of them
produces two period-20 sequences via period-quadrupling: (u, v, u, u) and (u, v, v, v). These sequences are denoted
using triangle symbols in Fig. 5(b). Sequences of the type (u, v, u, u) are also period-doubling sequences and hence
in Fig. 5(b) they are denoted also using circle symbols.

Period-doubling and more generally period-tupling sequences are observed for composite periods. As one can
see in Fig. 5 widths of period-tupling sequences are in general larger than widths of other sequences. This explains
why for periods being composite numbers the total width of periodic windows is larger than for prime periods.

5. Conclusions
A systematic method to find all low-period windows for the quadratic map has been proposed. The method has been
used to find very accurate approximations of the positions of periodic windows with periods p ≤ 32. The existence
of each periodic window was confirmed and very accurate rigorous bounds of its width has been found using the



July 28, 2015 20:44 ijbc15le

14 REFERENCES

interval Newton operator. It was shown that the proposed forward shooting method is very efficient for the evaluation
of the interval operator. Properties of periodic windows have been discussed and relation between the total width of
period-p windows and factorization of p has been studied. In future work, we plan to extend these results to periodic
windows with larger periods with the goal to improve known bounds of the measure of the set of parameter values
for which the behaviour of the quadratic map is regular.
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