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An automatized method to search for complex symbolic dynamics is proposed. The method can be used
to show that a given dynamical system is chaotic in the topological sense. Application of this method
in the analysis of a third-order memristor circuit is presented. Several examples of symbolic dynamics
are constructed. Positive lower bounds for the topological entropy of an associated return map are found
showing that the system is chaotic in the topological sense.
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1. Introduction
We say that a dynamical system is chaotic in the topological sense if its topological entropy is positive. This can be
shown by proving that there exist a horseshoe type chaos for the system, i.e. that there exist sets supporting symbolic
dynamics with positive topological entropy.

One of the frequently used methods to prove the existence of symbolic dynamics of a certain type is based on
the notion of covering relations [Zgliczyński, 1997]. This method has been successfully used to prove the existence
of topological chaos for a wide class of discrete systems [Zgliczyński, 1997; Galias & Zgliczyński, 2001] and
continuous systems [Zgliczyński, 1997; Galias, 1997; Galias & Zgliczyński, 1998; Arioli & Zgliczyński, 2001;
Wilczak, 2003]. Usually, sets supporting complex symbolic dynamics are found by trial-and-error, sometimes using
the information about positions of short periodic orbits and their stable and unstable directions. First, one constructs
candidate sets, and then modifies them by hand to satisfy certain conditions. This approach is cumbersome and
may lead to symbolic dynamics with suboptimal bounds for the topological entropy. In [Bánhelyi et al., 2007], a
method to construct candidate sets based on solving a constrained optimization problem via the penalty function
approach is discussed. There also exist automatic methods for construction of complex symbolic dynamics based
on the construction of isolating neighborhoods, index pairs, and Conley index theory [Szymczak, 1997; Day et al.,
2004; Mrozek, 2006; Day et al., 2008]. These methods involve sophisticated mathematical theories, and therefore
may be difficult to apply.

In this work, we propose an automatized algorithm to search and prove the existence of complex symbolic
dynamics based directly on the method of covering relations. The method starts with the graph representation of the
attractor, in which boxes covering the region of interest are graph vertices, and possible transitions between boxes are
graph edges. In the first phase of the algorithm, part of the graph is removed, and the invariant part of the remaining
graph is used to automatically construct candidates for sets supporting horseshoe type chaos. Then, the existence of
symbolic dynamics is proved rigorously using interval arithmetic methods. In this way, we automatically construct
quadrangles supporting symbolic dynamics and validate covering relations between them without the necessity of
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using Conley index theory tools. Moreover, instead of using exit sets composed of boxes as it is done in [Day et al.,
2008], we use one-dimensional quadrangle edges as exit sets, which makes it easier to satisfy conditions for the
existence of symbolic dynamics. We also propose a method to reduce the number of symbols and thus to simplify
the description of symbolic dynamics without degrading the topological entropy bound.

As an example of the applicability of this method, we study the existence of symbolic dynamics for a simple
third-order memristor circuit [Muthuswamy & Chua, 2010]. In [Galias, 2014], it has been shown that the system
is chaotic in the topological sense. More precisely, it was proved that symbolic dynamics defined on four symbols
with the topological entropy H ≈ 0.3222 is embedded in the dynamics of the associated return map. Here, using the
automatized search method, we construct symbolic dynamics on eight symbols with a larger topological entropy:
H ≈ 0.46712.

The layout of the paper is as follows. In Sec. 2, the notions of topological entropy, symbolic dynamics, and
covering relations are briefly recalled. Then, we propose an algorithm for automatized search for complex symbolic
dynamics. In Sec. 3, the problem of existence of symbolic dynamics in a return map associated with a simple third-
order memristor circuit is studied. Several examples of symbolic dynamics are constructed. We discuss the problem
how selection of the part of the attractor to be removed influences the results in terms of the bound of the topological
entropy obtained. We show the usefulness of the method by finding lower bounds for the topological entropy better
than the bounds known so far.

2. Automatized Method to Search for Complex Symbolic Dynamics
2.1. Topological entropy and symbolic dynamics
Topological entropy quantifies the complexity of the systems by means of calculating the number of trajectories of
a given length which can be distinguished under given accuracy. Let us recall a definition of the topological entropy
based on the notion of the (n, ε)-separated set [Bowen, 1971]. Let f : Rm 7→ Rm be a continuous map. The set E ⊂ X
is called (n, ε)-separated, if for any points x, y ∈ E, x , y there exist j ∈ {0, 1, . . . , n − 1} such that the distance
between points f j(x) and f j(y) is larger than ε. Let sn(ε) be the maximum cardinality of an (n, ε)-separated set,
i.e. sn(ε) = max{card E : E is (n, ε)-separated}, where card E denotes the cardinality of the set E. The topological
entropy of f is defined as

H( f ) = lim
ε→0

lim sup
n→∞

1
n

log sn(ε). (1)

We say that the map is chaotic in the topological sense if its topological entropy is positive.
Let us now define what is understood by the existence of symbolic dynamics of a certain type for map f . Let A =

(ai j)
p
i, j=1 be a matrix with entries 0 or 1. The subshift of finite type with the transition matrix A is the map σA = σ|ΣA,

where σ : Σp 7→ Σp is the shift operator (i.e. (σ(s))i = si+1) defined on the set Σp = {(. . . , s−1, s0, s1, s2 . . .) : sk ∈

{1, 2, . . . , p}} of bi-infinite sequences, and ΣA = {s ∈ Σp : ask sk+1 = 1 for all k}, The map σA = σ|ΣA is the shift
operator restricted to the set ΣA.

We say that the map f is semiconjugate with a subshift of finite type σA (or that for the map f there exist
symbolic dynamics with the transition matrix A) if there exists a homeomorphism h : Ω 7→ ΣA, with Ω ⊂ Rm such
that h ◦ f = σA ◦ h. The existence of the homeomorphism h means that there is a one-to-one relation between
trajectories in Ω and sequences of symbols in ΣA. The existence of symbolic dynamics means that the dynamics of f
is at least as complicated as the dynamics of σA.

The following theorem can be used to obtain lower bounds for the topological entropy of f based on the exis-
tence of symbolic dynamics [Robinson, 1995].

Theorem 1. If f is semiconjugate with a subshift with the transition matrix A then the topological entropy H( f ) of f
is not less than the logarithm of the dominant eigenvalue of A.

2.2. Covering relations
To prove the existence of symbolic dynamics of a certain type, one can use the method of covering relations. Let
us briefly recall the definition and properties of covering relations [Zgliczyński, 1997; Galias & Zgliczyński, 2001]
(compare also the notion of windows introduced in [Easton, 1975]). We will limit ourselves to the two-dimensional
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case. Let us consider a continuous map f : R2 7→ R2. Let us select p pairwise disjoint quadrangles Q1, Q2, . . . ,
Qp. For each quadrangle we choose two opposite edges and call them “horizontal”. Two other edges are called
“vertical”. We say that Qi f -covers Q j if (i) the image of Qi under f in enclosed in the interior of the stripe defined
by the horizontal edges of Q j and (ii) the images of vertical edges of Qi have empty intersection with Q j and are
located geometrically on the opposite sides of Q j, i.e. f (Qi) can be continuously deformed to the set enclosed in the
stripe defined be the horizontal edges of Q j without any intersection with the edges of Q j and then images of vertical
edges of Qi lie in the stripe on the opposite sides of Q j.

In the following, instead of standard quadrangles/stripes we will use topological quadrangles/stripes, i.e. sets
which can be continuously deformed to quadrangles/stripes. In the example shown in Fig. 1, the quadrangle Q1
f -covers Q2, while the quadrangle Q2 f -covers both Q1 and Q2.

Q1 Q2

f(Q1)

f(Q2)

Fig. 1. Covering relation examples. Vertical edges and their images are plotted using thick lines. Q1 f -covers Q2, Q2 f -covers Q1 and Q2.

Let us now describe how to use covering relations involving a given map f to obtain estimates for the topological
entropy of this map. The transition matrix A = (ai j)

p
i, j=1 for the quadrangles Q1, Q2, . . . , Qp is defined by

ai j =

{
1 if Qi f -covers Q j,
0 otherwise. (2)

From the existence of covering relations between quadrangles Qi described by the transition matrix A, it follows
that f is semiconjugate with a subshift with the transition matrix A (compare [Galias & Zgliczyński, 2001]). Hence,
to prove that the topological entropy of f is positive, it is sufficient to show that the logarithm of the dominant
eigenvalue of the transition matrix describing covering relations between sets Qi is positive.

For the standard horseshoe map [Smale, 1967] there are two quadrangles and all four covering relations between
them exist. Hence, the transition matrix has all entries equal to one. Since the dominant eigenvalue of the transition
matrix is 2, it follows that the topological entropy is log 2. For the example shown in Fig. 1, existing covering
relations can be described by the transition matrix

A0 =

(
0 1
1 1

)
. (3)

The leading eigenvalue of A0 is λ = (1+
√

5)/2 and hence from Theorem 1 it follows that the topological entropy of
f is bounded by H( f ) ≥ log λ ≈ 0.4812.

2.3. Algorithm to search and prove the existence of complex symbolic dynamics
In this section, we present the algorithm for automatized search for symbolic dynamics and proving the existence of
topological chaos. The algorithm will be described for the two-dimensional case. It is possible to extend these method
for higher-dimensional state spaces, although for higher dimensions the description of sets supporting symbolic
dynamics becomes more complicated.

First, we present the main steps of the algorithm and then describe the algorithm in more detail. The layout of
the algorithm to search and prove the existence of symbolic dynamics for the map f is as follows

(1) Find the graph representation of f .
(2) Remove some boxes and find the invariant part of the remaining boxes.
(3) Find eight-connected components.
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(4) Fill holes, “external holes” may also be removed.
(5) Define polygons Qi.
(6) Find exit components of borders ∂Qi.
(7) Define quadrangles Qi.
(8) Prove the existence of covering relations.
(9) Remove quadrangles not belonging to cycles of covering relations.

(10) Optional: simplify the symbolic dynamics description (quadrangle merging).
(11) Based on the transition matrix compute the lower bound of the topological entropy of f .

In the first step, we find the graph representation of the dynamics of f (compare [Galias, 2001, 2013]). To this
end, we cover the region of interest (for example a trapping region or a set enclosing the numerically observed
attractor) by ε-boxes, i.e. interval vectors with corners lying on a regular grid: v = ([k1ε1, (k1 + 1)ε1], [k2ε2, (k2 +

1)ε2], . . . , [kmεm, (km + 1)εm]), where ki are integer numbers, and ε = (ε1, ε2, . . . , εm) ∈ Rm, and m is the dimension
of the state space. Next, for each ε-box we compute enclosure of its image under f and find boxes which have non-
empty intersection with the enclosure. The set of ε-boxes is the vertex set of the graph and nonforbidden transitions
between boxes constitute the edge set.

In the second step, we remove some boxes from the graph. This step is necessary, since the graph obtained in
the first step usually has a single connected component, and hence cannot support complex covering relations. This
step is the only non-automatic step of the algorithm. The decision which boxes should be removed has to be done
by the user. However, in Sec. 3, we will show that the problem of selecting boxes to be removed in order to obtain
a good bound of the topological entropy is not very demanding. Generally, it is a good idea to remove a part of the
attractor containing a fold. After removing selected boxes, we find the invariant part of the remaining boxes. We
remove boxes, which are not the beginning of any edge and boxes which are not the ending of any edge. Removing
boxes is continued until no more boxes can be removed from the graph. Additionally, one may remove boxes which
do not belong to any cycles, which corresponds to finding the recurrent part of the graph (compare [Galias, 2001]).

Step (2) is carried out to define part of the state space, which supports complex symbolic dynamics. We use
a simple method of removing part of the initial set and finding its invariant part. This method was already used in
[Galias & Zgliczyński, 2001] as an initial step to define sets supporting symbolic dynamics. There, this step was
followed by modification of sets Qi by hand. Here, we use a fully automatic procedure to define the sets Qi. There
are other options to choose the region of interest, for example growing the set of boxes belonging to low period
cycles and their shortest connections (compare [Day et al., 2008]).

In step (3), the set of boxes is divided into eight-connected components. We say that two ε-boxes are eight-
connected if they have nonempty intersection, i.e. max(|k1 − l1|, |k2 − l2|) = 1, where (k1, k2), (l1, l2) are pairs of
integer numbers defining ε-boxes. Finding connected components in a graph is a standard problem in graph theory
and has fast solutions with the running time linear in the number of edges and nodes [Gibbons, 1985]. Note that
to find connected components one has to redefine graph edges, so that edges correspond to eight-connected boxes.
For the existence of complex symbolic dynamics, it is crucial that the number of connected components is at least
two. If not, we have to come back to step (2), and use a different criterion to remove boxes. It is also possible to
use four-connected components (we say that two ε-boxes are four-connected if their intersection is a segment, i.e.
|k1 − l1| + |k2 − l2| = 1). Using eight-connected components is usually better as it reduces the number of components
and makes it easier to define quadrangles Qi. Fig. 2(a) shows one of the eight-connected components produced by
the algorithm applied to the system studied in Sec. 3. Note that the leftmost box is not four-connected to other boxes
and hence if four-connected components are used this box would define a single-box component.

One can see that the eight-connected component shown in Fig. 2(a) contains two holes which have to be removed
before using border of this component to define the quadrangle. Removing holes is carried out in step (4). This is
a standard image processing algorithm [Soille, 1999]. One may also use the closing morphological operator with
an appropriate structuring element [Soille, 1999] to remove or reduce “external holes”. By an external hole we
mean a box which does not belong to a given component and whose three four-connected neighbors are in a given
component. One such hole can be seen in Fig. 2(a) above internal holes. Removing external holes is performed to
make the borders more smooth.

In step (5) polygons Qi are defined using border points of eight-connected components found in the previous
steps. Defining sets Qi in this way leads to polygons with right angles between edges. To make the polygon more



May 6, 2014 11:29 ijbc14mc

Automatized search for complex symbolic dynamics 5

(a) (b)

y

z

-1 -0.995 -0.99 -0.985 -0.98 -0.975

0.37

0.38

y

z

-1 -0.995 -0.99 -0.985 -0.98 -0.975

0.37

0.38

(c) (d)

y

z

-1 -0.995 -0.99 -0.985 -0.98 -0.975

0.37

0.38

y

z

-1 -0.995 -0.99 -0.985 -0.98 -0.975

0.37

0.38

Fig. 2. An example of construction of quadrangles, (a) eight-connected components, (b) holes are removed, polygons are defined, (c) exit
components are found, (d) quadrangles are defined

smooth one may remove border points for which the angle is concave (135◦). This step is mandatory if a connected
component contains boxes which are not four-connected (otherwise the polygon will not be well-defined due to
border self-intersections). A polygon obtained from eight-connected components shown in Fig. 2(a) are presented
in Fig. 2(b). One can see that due to removing concave border points borders of polygons Qi become more smooth.

In step (6), for each polygon Qk we find exit components of its border ∂Qk. Let us denote by Q the union of
polygons Qi. For each edge viv j of Qk we verify whether f (viv j) ∩ Q = ∅. It this is the case, we mark the edge as an
exit edge, otherwise the edge is marked as non-exit. The result of this step applied to polygons shown in Fig. 2(b)
is presented in Fig. 2(c). Exit edges are denoted using black color. One can see that the red border contains four
connected components of exit edges. It is desirable that each border ∂Qk contains exactly two exit components, as
it makes it possible to define a quadrangle Qk. To reduce the number of exit components, for each exit component
we verify whether it has empty intersection with f (

⋃
∂Qi). If this is true then we mark the component as non-exit.

The result of this step is shown in Fig. 2(d). One can see that the number of exit components has been reduced to
two, as needed. After this step, we have a number of polygons Qi with two exit components (polygons for which the
number of exit sets is not two are deleted).

In step (7) quadrangles Qi are defined. Exit components of ∂Qi define vertical edges of Qi and non-exit com-
ponents define horizontal edges. Since the number of exit components in each border ∂Qk is two, quadrangles are
properly defined.

In step (8), we prove the existence of covering relations between quadrangles defined in step (7). First, the set of
feasible covering relations is found nonrigorously and then each of them is proved independently. In order to prove
that Qi f -covers Q j it is sufficient to show that (i) the images of horizontal edges of Qi have empty intersection with
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the horizontal edges of Q j (ii) the images of vertical edges of Qi have empty intersection with Q j and (iii), when
we move along one of the horizontal edges of Qi the image is first outside Q j, then it intersects one of the vertical
edges of Q j, then it is inside Q j, then it intersects the other vertical edge of Q j and finally it is outside Q j. Note
that step (8) is the only part of the computations which has to be performed rigorously to ensure that the bound for
the topological entropy is correct. There are two options to achieve this goal. The first one is to use non-rigorous
computations in all previous steps and carry out rigorous computations involving covering relations in step (8) only.
To prove that Qi f -covers Q j, edges of Qi are covered by interval vectors, enclosures of their images are computed
rigorously, and conditions listed above are verified. If some of the conditions are not met one can locally use a finer
covering and repeat computations. The second options is to start with rigorous computations in step (1) and then
use these results in subsequent steps. The first version is faster if the algorithm is performed only once for a given
graph representation. This is a consequence of the fact that finding rigorous graph representation is slow and if fact
we do not need all the information gathered in this step, since symbolic dynamics is never defined on the whole
graph. Moreover, it is faster to prove the existence of covering relations by performing computations on borders of
quadrangles only.

In step (9), we remove quadrangles, which do not belong to any cycles of covering relations, and hence have no
influence on the complex symbolic dynamics. The transition matrix has to be redefined appropriately. This step is
not necessary, it does not change the lower bound of the topological entropy to be obtained. It is performed to reduce
the number of symbols.

Step (10) is optional. It is performed to simplify the symbolic dynamics. In this step we attempt to merge pairs
of quadrangles. The procedure to merge Qi and Q j is as follows. First, it is verified whether the quadrangles are
covered by the same quadrangles, i.e. that the columns i and j of the transition matrix are equal. Next, we construct
a quadrangle Qnew. We identify vertical edges Vi and V j of quadrangles Qi and Q j, which are close to each other.
Edges Vi and V j are removed and the two remaining edges of Qi and Q j define vertical edges of Qnew. The horizontal
edges of Qnew are formed by merging corresponding horizontal edges of Qi and Q j, adding a segment connecting
their ends. We have to make sure that the resulting quadrangle Qnew has empty intersection with other quadrangles.
Finally, we verify whether the quadrangle Qnew covers all quadrangles covered by Qi and Q j. It if it so, we remove
quadrangles Qi and Q j and insert the quadrangle Q to the set of quadrangles, and modify the covering matrix
accordingly. This step is continued until no quadrangles can be merged. After completion, the topological entropy is
the same but the number of quadrangles may by significantly reduced. This will be confirmed in several examples in
the following section.

Finally, we compute the leading eigenvalue of the transition matrix obtained in previous steps and the resulting
lower bound for the topological entropy using Theorem 1.

3. Analysis of a third order memristor circuit
Let us consider a three element memristor circuit [Muthuswamy & Chua, 2010] shown in Fig. 3. It consist of two
linear elements (the capacitor C and the inductor L) and a nonlinear memristor defined by the following equations:

uM = β(z2 − 1)iM,

dz
dt

= iM − αz − iMz,

where uM is the voltage across the device, iM is the current flowing through the device, and z is the internal variable
of the memristor device.

Dynamics of the circuit is described by
dx
dt

=
y
C
,

dy
dt

= −
1
L

(
x + β(z2 − 1)y

)
, (4)

dz
dt

= −y − αz + yz,

where x(t) = uC(t) is the voltage across the capacitor C, and y(t) = iL(t) is the current through the inductor L. We
will consider the circuit with the following parameter values: C = 1, L = 3, β = 1.5, α = 0.6.
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Fig. 3. The Muthuswamy-Chua memristor circuit

Let us choose the return map P : Σ 7→ Σ defined by

P(x) = ϕ(τ(x), x), (5)

where Σ = {(x, y, z) ∈ R3 : x = 0, ẋ < 0} = {(x, y, z) : x = 0, y < 0}, ϕ(t, x) is the trajectory of the system (4) based
at x, and τ(x) > 0 is the time needed for the trajectory ϕ(t, x) to reach the section Σ. A trajectory of P composed of
10000 points is shown in Fig. 4.
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Fig. 4. A trajectory of the return map P

For the rigorous evaluation of P we use integration methods based on interval arithmetic [Moore, 1979; Alefeld
& Herzberger, 1983]. The vector field (4) is integrated using the Taylor integration method of order 30 with automatic
control of the time step. The procedure for the rigorous evaluation of the return map P is written using the CAPD
library [CAPD]. For details see [Galias, 2014].

In [Galias, 2014], it has been shown that there exists complex symbolic dynamics defined on four quadrangles
Q1, Q2, Q3, and Q4. The quadrangles and their images computed nonrigorously are shown in Fig. 5. One can see
that Q1 P-covers Q4, Q2 P-covers Q2 and Q3, Q3 P-covers Q1, and Q4 P-covers Q2. The existence of these five
coverings have been confirmed. Hence, it has been shown that the following transition matrix

A1 =


0 0 0 1
0 1 1 0
1 0 0 0
0 1 0 0

 . (6)

describes a valid symbolic dynamics between the sets Qi. From Theorem 1 it follows that the topological entropy of



May 6, 2014 11:29 ijbc14mc

8 Z. Galias

the return map P is not smaller that the dominant eigenvalue of A1, i.e.:

H(P) ≥ 0.3222. (7)
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Fig. 5. Borders of quadrangles Q1, Q2, Q3, Q4, and their images under P computed nonrigorously

The sets Qi shown in Fig. 5 have been found by a trial-and-error approach. First, candidate sets have been
constructed and then their corners have been moved by hand to satisfy expected covering relations. Below, we
present results of application of the algorithm proposed in Sec. 2 to search for sets supporting complex symbolic
dynamics for the map P.

As a first step we construct the graph representation of the attractor using ε-boxes of size ε = (0.001, 0.001).
The covering of the attractor is composed of 4455 ε-boxes [see Fig. 6(a)], and there are 43543 edges (nonforbidden
connections) in the graph. In the second step, we remove boxes which are enclosed in the region {y > y0}, with
y0 = 0.1. As it will be shown later, this decision is not crucial for the final result. Many other choices of y0 lead
to symbolic dynamics with the same topological entropy. After this step there are bleft = 4090 boxes [shown in
Fig. 6(a) using the blue color] connected by 32397 edges. The invariant part of the set of remaining boxes contains
binv = 2458 boxes [see Fig. 6(b)] connected by 17057 edges.

The invariant part is composed of 34 eight-connected components. Three of them are removed because they are
very small and as a result we obtain 31 eight-connected components. In the next steps, internal and external holes are
removed, border of each component is found, and the smoothening procedure (removing concave border points) is
applied. Once polygons Qi are defined, they are used to define quadrangles. To this end, we identify polygon edges
with images located outside

⋃
Qi. Such edges constitute the exit set. We remove from the exit set components which

have empty intersection with f (
⋃
∂Qi). Each polygon with exactly two exit components defines a quadrangle (exit

components define vertical edges).
In this way, we obtain a set of p1 = 31 quadrangles, which is a candidate for a set of quadrangles supporting

complex symbolic dynamics. In the last step we have to verify whether this is the case. We prove that there are
n1 = 47 covering relations between the quadrangles Qi. The whole proof required covering of quadrangles’ edges
by 5320 interval vectors, finding rigorously enclosures of their images under P and verifying certain conditions as
described in Sec. 2. The proof took 131 seconds. This is the most time consuming part of the algorithm. Previous
steps involve nonrigorous computations and in this particular example could be carried out in a fraction of a second,
provided that the graph representation of the attractor is known. Next, the transition matrix is reduced by removing
quadrangles not belonging to cycles. As a result we obtain n2 = 26 quadrangles [see Fig. 6(c)] with p2 = 41 covering
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Fig. 6. (a) covering of the attractor by ε-boxes with ε = (0.001, 0.001), red boxes enclosed in the region {y > −0.1} are removed, (b) invariant
part of the set of remaining boxes, (c) symbolic dynamics defined on 26 quadrangles, (d) simplified symbolic dynamics defined on eight
quadrangles

relations. The corresponding transition matrix is

A2 =


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
, (8)

where white and black squares denote entries equal to zero and one, respectively. The resulting lower bound of the
topological entropy is

H(P) > 0.46712, (9)

which is significantly better than (7).
In the last step, which is performed to simplify the description of the symbolic dynamics we try to merge pairs

of quadrangles which are P-covered by the same quadrangles. The quadrangles are merged only if it does not change
the topological entropy. This process is repeated until no more quadrangles can be merged. In this way, we obtain
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Table 1. Performance of the algorithm when boxes enclosed in {y > y0}

are removed

y0 bleft binv p1 n1 p2 n2 p3 n3 B

−0.070 4455 4455 1 0 0 0 0 0 0
−0.080 4281 4004 11 14 3 3 3 3 0
−0.090 4172 3357 24 35 11 16 4 6 0.4140
−0.100 4090 2458 31 47 26 41 8 13 0.4671
−0.110 4022 2442 29 47 26 41 8 13 0.4671
−0.120 3962 2442 29 47 26 41 8 13 0.4671
−0.130 3902 2442 29 47 26 41 8 13 0.4671
−0.140 3845 2442 29 47 26 41 8 13 0.4671
−0.150 3790 2369 30 45 26 40 9 14 0.4564
−0.155 3763 2272 30 41 23 36 6 9 0.4421
−0.160 3733 2168 30 40 23 36 6 9 0.4421
−0.170 3674 1872 35 51 26 41 6 9 0.4421
−0.180 3613 1591 39 58 29 45 6 9 0.4421
−0.190 3552 1396 36 55 30 46 6 9 0.4421
−0.200 3491 1236 35 50 30 46 6 9 0.4421
−0.210 3430 1024 34 50 30 46 6 9 0.4421
−0.220 3372 809 31 47 31 47 8 12 0.4421
−0.225 3343 746 31 46 27 40 9 13 0.4279
−0.230 3313 693 31 44 22 33 4 6 0.4140
−0.240 3258 418 24 35 24 35 4 6 0.4140
−0.250 3196 418 24 35 24 35 4 6 0.4140
−0.255 3166 378 24 35 24 35 8 12 0.3970
−0.260 3138 338 24 34 23 33 7 10 0.3577
−0.265 3109 292 21 28 20 28 8 11 0.3381
−0.270 3080 174 14 13 3 3 3 3 0
−0.280 3019 19 3 3 3 3 3 3 0
−0.290 2961 19 3 3 3 3 3 3 0
−0.300 2904 7 1 1 1 1 1 1 0

p3 = 8 quadrangles shown in Fig. 6(d). The transition matrix has the form:

A3 =


��
�

� ��
� �

�
��
�
�

 . (10)

As expected, the bound for the topological entropy of P obtained from this covering matrix is the same as the
bound (9). However, the number of symbols is significantly reduced, and hence the description of symbolic dynamics
is much simpler. It is interesting to note that the time needed to confirm the existence of n3 = 13 coverings present in
matrix (8) is 130 seconds, which is roughly the same as for the proof of symbolic dynamics on 26 symbols defined
by matrix (8).

Let us now discuss how the selection of boxes to be removed influences the performance of the algorithm.
First, let us consider the case when removed boxes are enclosed in the half plane {y > y0}. The results are shown in
Table 3. We use the following notation: bleft is the number of boxes left, binv is the number of boxes in the invariant
part, p1 is the number of quadrangles defined by the eight-connected components and n1 is the number of covering
relations between them, p2 and n2 are the number of quadrangles and covering relations after removal of quadrangles
not belonging to cycles. Simplified symbolic dynamics which is obtained by application of the merging procedure is
defined on p3 quadrangles and involves n3 covering relations. The lower bound for topological entropy of P obtained
from the existence of symbolic dynamics (both original and simplified) is denoted by B.

When y0 = −0.07 no boxes are removed, the number of eight-connected components is one, and there are no
covering relations. For y0 = −0.08 there are 11 eight-connected components and 14 covering relations. However,
for 11 components, all sequences of covering relations involving them are finite and therefore they give no periodic
orbits. There are only three components belonging to cycles. One of them covers itself, which means that there exist
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Table 2. Performance of the algorithm when boxes enclosed in
{z > z0} are removed

z0 bleft binv p1 n1 p2 n2 p3 n3 B

0.21 3279 7 1 1 1 1 1 1 0
0.22 3367 19 3 3 3 3 3 3 0
0.23 3411 19 3 3 3 3 3 3 0
0.24 3456 24 3 3 3 3 3 3 0
0.25 3500 195 15 17 12 15 5 6 0.2406
0.26 3542 383 23 31 20 29 6 9 0.3822
0.27 3586 418 24 35 24 35 4 6 0.4140
0.28 3631 418 24 35 24 35 4 6 0.4140
0.29 3675 418 24 35 24 35 4 6 0.4140
0.30 3721 748 31 45 22 33 4 6 0.4140
0.31 3765 809 31 47 31 47 8 12 0.4421
0.32 3812 966 36 55 31 47 6 9 0.4421
0.33 3857 1186 34 52 30 46 6 9 0.4421
0.34 3903 1372 35 54 30 46 6 9 0.4421
0.35 3950 1434 36 56 30 46 6 9 0.4421
0.36 4001 1767 35 53 26 41 6 9 0.4421
0.37 4054 2062 31 48 24 38 6 9 0.4421
0.38 4105 2291 30 46 23 36 6 9 0.4421
0.39 4159 2442 29 47 26 41 8 13 0.4671
0.40 4213 2442 29 47 26 41 8 13 0.4671
0.41 4313 3846 18 26 7 11 4 6 0.4140
0.42 4455 4455 1 0 0 0 0 0 0

a fixed point belonging to this component. Two other components cover one another, which produces a period-2
orbit. In this case from the existence of symbolic dynamics on three symbols it follows that there exist two periodic
orbits. The bound of the topological entropy is zero. In the range y0 ∈ [−0.265,−0.09] the bound B is positive, which
means that the existence of symbolic dynamics guarantees the existence of infinitely many periodic orbits. Let us
note that B is constant over relatively long intervals, for example the maximum value B = 0.46712 is observed for
y0 ∈ [−0.14,−0.10]. The case y0 = −0.1 discussed previously in detail belongs to this set. In all cases, the maximum
value is realized on p2 = 26 symbols (compare Fig. 6(c)) by n2 = 41 covering relations, which after simplification
gives p3 = 8 quadrangles (compare Fig. 6(d)) and n3 = 13 covering relations. Thus, one can see that the choice
of the parameter y0 is not very important for the results obtained. For y0 ∈ {−0.29,−0.28} the invariant part is
composed of p1 = 3 very small eight-connected components built from binv = 19 boxes. The three components
are neighborhoods of period-1 and period-2 orbits. The bound B drops to zero. When y0 = −0.3 the invariant part
contains only a neighborhood of the fixed point. It is interesting to note that the lower bound B initially grows when
y0 is decreased (more boxes are removed) until it achieves the maximum value and then it decreases. It follows that
it is relatively easy (one may use for example the bisection method) to find the optimal choice of the parameter y0
for which the maximum is achieved.

Similar computations have been carried out for the case when removed boxes are enclosed in half planes {z > z0}

for various values of z0. Note that when z0 is close to 0.4 we remove the fold existing in the upper-left corner
of the attractor (compare with Fig. 4). The results are collected in Table 3. General conclusions are the same as
for the half planes defined by the condition {y > y0}. In particular, the same maximum value of the lower bound
B is achieved, which further confirms the statement that the problem of choosing boxes to be removed, which
is the only non-automatic part of the search procedure is not very demanding, and can be successfully solved.
Note, that the maximum values of B is obtained for z0 ∈ {0.39, 0.40}. This shows that indeed removing part of the
attractor containing a fold may be a good choice when searching for complex symbolic dynamics using the presented
algorithm.
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4. Conclusions
An automatized algorithm to search for sets supporting symbolic dynamics and to find lower bounds of the topo-
logical entropy has been proposed. The only decision, which has to be made by the user is the choice of which part
of the attractor should be removed. The method has been applied to the analysis of a return map associated with a
simple memristor circuit. For this system, symbolic dynamics more complex than the one known so far has been
found, thus showing the usefulness of the method. The problem of selecting the region of interest to obtain good
lower bounds of topological entropy has been discussed.

In future work, we plan to test other methods to define the region of interest and apply the algorithm for the
analysis of other dynamical systems with the goal of improving known lower bounds of topological entropy.
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