
1

Rigorous Study of the Chua’s Circuit
Spiral Attractor
Zbigniew Galias, Member, IEEE,

Abstract—It is shown that a certain set is positively invariant
for the return map associated with the Chua’s circuit. The
set contains the intersection of the numerically observed spiral
attractor and the planes defining the return map. A method
for rigorous integration of piece-wise linear systems in regions
containing trajectories tangent to hyperplanes separating the
linear regions necessary to carry out the proof is developed.

Index Terms—Chua’s circuit, piece-wise linear system, trap-
ping region, interval arithmetic.

I. INTRODUCTION

The dynamics of the Chua’s circuit is well understood in
terms of geometrical models [1], [2]. There are however only
few rigorous results concerning chaotic dynamics for this
system. The existence of a homoclinic orbit for some unknown
parameter value within a certain range was shown in [3]. The
existence of a nontrivial symbolic dynamics embedded in the
double-scroll attractor was proved in [4]. It was shown that
the system is chaotic in the topological sense, i.e. that the
topological entropy of the flow is positive. The lack of results
concerning the whole attractor is caused by the fact that there
are no general tools for the rigorous integration of piece-wise
linear (PWL) systems.

In this work, we consider the Chua’s circuit with parameter
values for which one observes a spiral attractor containing
trajectories tangent to hyperplanes separating linear regions
(called in the following the C0-hyperplanes). Integration of
such trajectories poses a problem, since standard methods [5],
[6] which work under the assumption that the vector field is
smooth are not applicable.

When intersections of trajectories with the C0-hyperplanes
are transversal it is possible to extend methods developed
for smooth systems to integration of PWL systems. This is
achieved by using the C0-hyperplanes as transversal sections.
When a trajectory intersects a C0-hyperplane, its intersection
with the plane is computed and the result is used as a set
of initial conditions for further computations. This approach
has been successfully used to find the trapping region for the
return map associated with the Chua’s circuit for the case
when the attractor does not contain trajectories tangent to
the C0-hyperplanes [7]. Clearly, this method will fail if some
trajectories of interest are tangent to the C0-hyperplanes.

This work was supported in part by the AGH University of Science and
Technology, grant no. 11.11.120.611.

Z. Galias is with the AGH University of Science and Technology,
Department of Electrical Engineering, 30–059 Krakow, Poland (e-mail:
galias@agh.edu.pl).

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE be sending an email to publ-permissions@ieee.org.

In order to carry out the analysis of the dynamics over the
whole spiral attractor we develop a method which can be used
to rigorously integrate PWL systems also in the case of a
tangency. This is an important tool in studies of PWL systems
since it provides a general technique for computing enclosures
of trajectories in such systems. The technique proposed is
based on the theory of differential inclusions used to obtain
estimates for solutions of perturbed continuous dynamical
systems.

The paper is organized as follows. In Section II, the
method for integration of PWL systems when intersections
with the C0-hyperplanes are transversal is recalled and then
the procedure for integrating PWL systems for the tangent case
is presented. A toy example of a two-dimensional system is
considered to explain how the method works. In Section III,
rigorous analysis of the Chua’s circuit with the spiral attractor
is performed. The case when some trajectories belonging to
the attractor are tangent to the C0-hyperplanes is considered.
It is proved that a certain region is a positively invariant set
for an associated return map. According to our knowledge
this has never been described in the literature before. Graph
representation of the dynamics is constructed and bounds
for the average return time over the attractor are calculated.
Discussion on the performance of the algorithms is presented.

The basic tool used to make the results of numerical com-
putations rigorous is interval arithmetic [8]. In the following,
boldface is used to denote intervals, interval vectors and
matrices, and the usual math italics is used to denote point
quantities. For a given interval x = [a, b] by x and x we denote
its left and right end points respectively, i.e. x = a and x = b.
The diameter of the interval x is defined as diam(x) = x−x.
The diameter of the interval vector x = (x1,x2, . . . ,xn) is
defined as the maximum of diameters diam(xk).

II. RIGOROUS INTEGRATION OF PWL SYSTEMS

Let the piece-wise linear (PWL) system be defined by

ẋ = f(x), (1)

where f : Rn 7→ Rn is a PWL continuous map. By x(t) =
ϕ(t, x̂) we denote the solution of (1) satisfying the initial
condition x(0) = x̂.

We assume that the state space Rn is composed of m linear
regions R1, R2, . . . Rm, and that in the region Rk the state
equation (1) has the form

ẋ = Akx+ vk, (2)

2

where Ak ∈ Rn×n, and vk ∈ Rn. If Ak is invertible then in
the linear region Rk solutions can be computed as

x(t) = ϕk(t, x̂) = eAkt(x̂− wk) + wk, (3)

where wk = −(Ak)−1vk.
Let Σ1,Σ2, . . . ,Σp be hyperplanes separating the linear

regions R1, R2, . . . Rm. They will be referred to as the C0-
hyperplanes.

In this section, we discuss how to calculate an enclosure
of the set ϕ(t,x) = {ϕ(t, x) : t ∈ t, x ∈ x} for a given
interval t = [t, t] with t > 0 and an interval vector x ⊂
Rn. We describe methods for finding enclosures for ϕ(t,x)
in various cases. First, the case when trajectories for t ∈ t
stay in a single linear region is considered.

A. Solutions enclosed in a single linear region

If all trajectories based at x ⊂ Rk remain in Rk for s ∈
[0, t] the problem is simple. The enclosure can be found by
evaluating the formula (3) in interval arithmetic (for details
see [4]). More precisely, one computes

y = eAkt(x− wk) + wk. (4)

Since the calculations are performed in interval arithmetic it
is ensured that the result y encloses the true solution. i.e.
ϕk(t,x) = {ϕk(t, x) : t ∈ t, x ∈ x} ⊂ y.

B. Transversal intersections

Another relatively easy case is when all trajectories based
at x ⊂ Rk enter another linear region Rl through the
hyperplane Σj , and intersections of trajectories with Σj are
transversal. The first step is to find s1 > 0 such that
ϕk([0, s1],x) ∈ Rk and s2 > s1 such that ϕk(s2,x) ⊂ Rl.
In order to obtain a narrow enclosure, s1 should be as large
as possible while s2 > s1 should be as small as possible. s1
and s2 can be optimized using the bisection technique. Next,
one evaluates y = ϕk(s,x), where s = [s1, s2] and finally,
the intersection z = y ∩ Σj is computed. The intersection z
serves as a set of initial conditions for further computations.
The problem of computing ϕ(t,x) has been reduced to the
problem of computing ϕ(t − s, z). Let us note that since
z ⊂ Σj ⊂ Rl, the hyperplane Σj has been crossed, and we
can start computations in the next linear region.

The procedure for computing an enclosure for ϕ(t,x) uti-
lizing this method of crossing a C0-hyperplane is presented as
the Algorithm 1. The Algorithm works as long as trajectories
of interest transversally intersect the C0-hyperplanes. It has
been successfully applied to the analysis of the Chua’s circuit
for parameter values, for which the attractor does not contain
trajectories tangent to the C0-hyperplanes (see [7]).

This method fails if for x ∈ x, a trajectory ϕ([0, t], x) is
tangent to a hyperplane separating linear regions. This case is
handled in the following sections.

Algorithm 1 Computation of ϕ(t,x), transversal case
loop
k ⇐ index such that x ⊂ Rk

find s1 > 0 such that ϕk([0, s1],x) ⊂ Rk

if s1 > t then
return y = ϕk(t,x)

end if
find s2 > s1 such that ϕk(s2,x) ∩Rk = ∅
s⇐ [s1, s2]
y⇐ ϕk(s,x)
l⇐ index such that ϕk(s2,x) ⊂ Rl

j ⇐ index such Σj separates Rk and Rl

if the vector field f over y is not transversal to Σj then
return ERROR

end if
x⇐ y ∩ Σj

t⇐ t− s
end loop

C. Integration of perturbed dynamical systems

Let us start by formulating a theoretical result which allows
one to compute enclosures of solutions of perturbed continu-
ous dynamical systems. Let us consider an ordinary differential
equation

ẋ = f(x), (5)

where x ∈ Rn and f : Rn 7→ Rn. Let us assume that we know
how to integrate

ẋ = g(x), (6)

which is a perturbation of (5). The following theorem provides
bounds on solutions of (5) based on solutions of (6).

Theorem 1: Let x(t) and y(t) be solutions of (5) and (6),
respectively. Let us assume that the map g is C1, x(0) = y(0),
and x(t), y(t) ∈ D ⊂ Rn for t ∈ [0, h], where the set D is a
bounded, closed, and convex. Then, for t ∈ [0, h]

|yi(t)− xi(t)| ≤ ∆i, (7)

where

∆ =
∫ t

0

eB(t−s)cds, (8)

Bij ≥

{
supx∈D

∣∣∣ ∂gi

∂xj
(x)
∣∣∣ , for i 6= j,

supx∈D
∂gi

∂xj
(x), for i = j,

(9)

and

ci ≥ |gi(x(t))− fi(x(t))| , for t ∈ [0, h]. (10)

The above theorem is a conclusion from the results on
integration of differential inclusions developed in [9], [10].

3

D. Tangent intersections

Here, it is shown how to use Theorem 1 for integration
of PWL systems in regions where trajectories are tangent to
the C0-hyperplanes. A simplified version of this method was
given in [11]. Here, we present a more detailed explanation
together with several improvements, which make the method
applicable to study of the Chua’s circuit.

Let us assume that x̂ ∈ Rk, the trajectory ϕ([0, τ), x̂) ⊂
Rk, ϕ(τ, x̂) ∈ Σj , where Σj is the hyperplane separating
the linear regions Rk and Rl. Further, we assume that the
trajectory ϕ(t, x̂) is tangent to Σj at the intersection point
ϕ(τ, x̂). The goal is to compute an enclosure of the set
ϕ(t,x) = {ϕ(t, x) : x ∈ x, t ∈ t}, for a given interval vector
x containing x̂ and t = [t, t] such that t > τ .

To solve the problem we consider the PWL system (1) as
a perturbation of the linear system:

ẋ = g(x) = Akx+ vk. (11)

In this case the elements of the matrix B defined in the
Theorem 1 can be computed as Bij = |(Ak)ij | for i 6= j
and Bii = (Ak)ii. One can easily show that

∆ =
∫ t

0

eB(t−s)cds =
∫ t

0

eBscds = t

∞∑
i=0

(Bt)i

(i+ 1)!
· c. (12)

When B is invertible the above formula reduces to

∆ =
∫ t

0

eB(t−s)cdx = B−1
(
eBt − I

)
c. (13)

The difference between g and f is zero over the region Rk

and for the region Rl can be computed as:

g(x)− f(x) = (Ak −Al)x+ vk − vl. (14)

From the continuity of the vector field f it follows that
when the trajectory remains close to the hyperplane Σj the
difference (14) is small.

The procedure starts by finding s1 > 0 such that
ϕk([0, s1],x) ⊂ Rk. The set u = ϕk(s1,x) serves as an
initial condition for integration along the tangency. To reduce
overestimation s1 should be as large as possible. It can be
optimized using the bisection method. In the second part of
the procedure, the PWL system is treated as a perturbed linear
system. We select s2, compute enclosure v of the solution
ϕk([0, s2],u) of the linear system (11). Next, the set v is
inflated to form the interval vector w ⊃ v, which serves
as a guess of the set containing the solution ϕ([0, s2],u)
of the nonlinear system. Next, one computes the vector
c = supx∈w |g(x)−f(x)|. It is found by evaluating in interval
arithmetic the formula (14) over the set w∩Rl, taking absolute
value of each element and selecting the right end-points of
the interval vector as a result. Finally, the vector ∆ if found
using formula (12) or (13). If v + [−1, 1]∆ ⊂ w we know
from the Theorem 1 that the solution of the PWL system is
enclosed in v + [−1, 1]∆. It follows that ϕ(s2,u) ⊂ z =
ϕk(s2,u)+[−1, 1]∆. If z∩Σj = ∅ and the vector field f over
the set z points away from the hyperplane Σj we can break
the computation along the tangency and continue integration
in the next linear region.

Algorithm 2 Computation of ϕ(t,x), general case
loop
k ⇐ index such that x ⊂ Rk

find s1 such that ϕk([0, s1],x) ⊂ Rk

if s1 > t then
return y = ϕk(t,x)

end if
u⇐ ϕk(s1,x)
t⇐ t− s1
select s2 > 0
l⇐ index such that ϕk(s2,u) ⊂ Rk ∪Rl

j ⇐ index such Σj separates Rk and Rl

SectionPassed ⇐ false
repeat

v⇐ ϕk([0, s2],u)
select w ⊃ v
repeat

compute c = supx∈w |g(x)− f(x)| using (14)
compute ∆ using (12) or (13)
z⇐ ϕk(s2,u) + [−1, 1]∆
if v + [−1, 1]∆ ⊂ w and z ∩ Σj = ∅ then

x⇐ z
t⇐ t− s2
SectionPassed ⇐ true

end if
select larger w

until SectionPassed or diam(w) > dmax

select larger s2
until SectionPassed

end loop

The procedure for passing C0-hyperplanes based on integra-
tion of a perturbed linear system is utilized in the Algorithm 2
for finding an enclosure for ϕ(t,x). In the inner repeat loop
the conditions v + [−1, 1]∆ ⊂ w and z∩Σj = ∅ are verified.
If at least one of them is not satisfied, the interval vector w
is inflated and the inner cycle is repeated. When the size of
w exceeds a predefined value dmax the inner loop is left and
s2 is increased.

Let us note that in the algorithm it is never assumed that the
intersection is tangent. Therefore, the Algorithm 2 is general
in the sense that it can be also used to cross a C0-hyperplane
in a transversal case.

Let us also note that for the transversal case we have
a choice of using either the simple method to cross the
section described in the Algorithm 1 or the perturbation based
method implemented in the Algorithm 2. These two options
are compared in the Section III. It will be shown that the
perturbation based method offers superior performance.

E. An illustrative example

To illustrate how the method works let us consider a two-
dimensional PWL system:(

ẋ1

ẋ2

)
= f

(
x1

x2

)
=
(
a11x1 + a12x2 + (|x1−1|−1)e

a21x1 + a22x2

)
.

(15)

4

There are two linear regions R1 = {x : x1 ≤ 1} and R2 =
{x : x1 ≥ 1} separated by the line Σ1 = {x : x1 = 1}. The
only point at which trajectories are tangent to Σ is (x1, x2) =
(1, e− a11/a12). This can be found by solving the equations
x1 = 1, ẋ1 = 0.

To find solutions of the nonlinear system (15) we treat it as
a perturbation of the linear system:(

ẋ1

ẋ2

)
= g

(
x1

x2

)
=
(
a11x1 + a12x2 + (x1 − 2)e

a21x1 + a22x2

)
. (16)

For x1 > 1 vector fields (15) and (16) are equal.
Hence, we can get bounds for the solution x(t) of (15) from

the solution y(t) of (16) using Theorem 1 with

B =
(
a11 + e |a12|
|a21| a22

)
, c =

(
supx∈w |(|x1−1|−x1+1)e|

0

)
.

Let us select a11 = 2, a12 = a21 = a22 = 1, and
e = 2. In this case the point of tangency is (x1, x2) = (1, 0).
The integration procedure is tested using the set of initial
conditions x = ([1.004, 1.0045], [−0.099,−0.091]) ⊂ U2 and
the integration time t = 0.2. The interval vector x and three
trajectories starting from the center and two corners of x are
plotted in Fig. 1. One can see that the trajectory based at the
center of x passes close to the point of tangency, the trajectory
based at the top-right corner of x does not leave the linear
region R2, while the trajectory based at the bottom-left corner
intersects the line x = 1 two times. No matter how we divide x
into smaller rectangles there will always be at least one interval
vector containing all three types of trajectories (tangent to Σ,
with no intersections with Σ, and with two intersections). The
tangent case is therefore unavoidable if we want to integrate
the system for the whole x.

0.998 1 1.002 1.004 1.006 1.008 1.01
−0.1

−0.05

0

0.05

0.1

 x

 u

 z
 y

x
1

x
2

Fig. 1. Two-dimensional PWL system, integration along the tangency

Results of applying the Algorithm 2 for the computation
of an enclosure of ϕ(0.2,x) are plotted in Fig. 1. The
intermediate enclosures u, z, and the final result y are shown.
The set u = ϕ2(s1,x) encloses the solution set at time s1
when all trajectories are just before intersection with Σ. The
rectangle z = ϕ2(s2,u)+∆ contains the solution set ϕ(s2,u)
when all trajectories has already passed the tangency area.

In this case s1 ≈ 0.064, and one can see that u = ϕk(s1,x)
is a very narrow enclosure of the set of true trajectories. The
set u is relatively large and in consequence the time s2 =

0.1044 needed to pass the tangency for all initial conditions
is also large. This results in a considerable overestimation, the
diameter of the set z is much larger than the diameter of the
true solution set. After the set z is found the final result y =
ϕ2(0.2− s1− s2, z) is computed using formulas for solutions
of linear systems. The diameters of the initial set and the result
are diam(x) = (0.0005, 0.008), diam(y) = (0.0065, 0.0104).

When the diameter of the initial set is reduced to diam(x) =
(10−5, 10−5) the time s2 needed to pass along the tangency
is significantly smaller s2 = 0.0215 and in consequence the
overestimation is also reduced. In this case the diameter of the
result is diam(y) = (6.63 · 10−5, 1.92 · 10−5).

III. RIGOROUS ANALYSIS OF THE CHUA’S CIRCUIT SPIRAL
ATTRACTOR

Let us consider the Chua’s circuit [1], a third-order PWL
system described by the following set of ordinary differential
equations:

C1ẋ1 = (x2 − x1)/R− g(x1),
C2ẋ2 = (x1 − x2)/R+ x3, (17)
Lẋ3 = −x2 −R0x3,

where g(z)=Gbz + 0.5(Ga −Gb)(|z+1| − |z−1|) is a three
segment PWL characteristics.

For this system there are three linear regions R1 = {x ∈
R3 : x1 ≤ −1}, R2 = {x : |x1| ≤ 1} and R3 = {x : x1 ≥ 1}
separated by planes Σ1 = {x : x1 =−1} and Σ2 = {x : x1 =
1}.

The circuit is studied with the following parameter values
(after appropriate parameter rescaling): C1 = 1, C2 = 8.3,
Ga = −3.4429, Gb = −2.1849, L = 0.06913, R = 0.33065,
R0 = 0.00036.

x1

x2

-2 -1 0 1 2

-0.4

-0.2

0

0.2

0.4

Fig. 2. Computer generated spiral attractor for the Chua’s circuit

For the parameter values considered the spiral attractor is
observed in computer simulations (compare Fig. 2). Let us
note that the attractor does not intersect Σ1. Trajectories are
tangent to Σ2 at x1 = 1, x2 = 1 + RGa = −0.138394885.
Note that some trajectories turn close to the plane Σ2, i.e.
intersections with Σ2 are not always transversal. This means
that the return map associated with the plane Σ2 is not
continuous over a neighborhood of the attractor.

5

A. Return map

Let P be the return map defined by the plane S = {x : x1 =
1.5}. This is a reasonable choice, since the attractor intersects
this plane transversally (compare Fig. 2), and therefore one can
expect that the return map is continuous in a neighborhood of
the intersection of the attractor and the plane S.

x2

x3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-8

-6

-4

-2

Fig. 3. A trajectory of the return map P defined by S = {x : x1 = 1.5}

A 10000 points trajectory of the return map is shown
in Fig. 3. The plot is composed of two separated parts
corresponding to different directions with which trajectories
of the continuous system intersect the plane S.

B. Comparison of algorithms

In order to compare the two algorithms presented in Sec-
tion II let us compute an enclosure for the image of the
interval vector x = (1.5,−0.22122

0,−6.8980
78) under the return

map P . The results obtained are y = (1.5, 0.2872
799,−2.320233)

for the Algorithm 1 and y = (1.5, 0.283961
104,−2.2815

716) for the
Algorithm 2. The second algorithm produces a much narrower
enclosure, with the diameter more than 8 times smaller than
for the first algorithm.

For x = (1.5,−0.282364
3,−7.61196

5) the difference in
performance is even larger. The second algorithm produces
the result 80 times smaller in each direction.

For x = (1.5,−0.163
2,−6.266

52) the first algorithm fails. This
is due to the fact that some trajectories based at x are tangent
to the plane Σ2. The second algorithms returns the result y =
(1.5, 0.1945

857,−2.509385).
Let us now compare the two algorithms for the com-

putation of longer trajectories. Let us choose x =
(1.5,−0.2212,−6.8978) as the initial point. Results on finding
enclosures of the trajectory ϕ(t, x) are shown in Fig. 4. For
each algorithm the diameter of the interval vector returned as
a function of the integration time is plotted.

For the trajectory ϕ(t, x) intersections with the plane Σ2

happen approximately at t = 0.8, t = 2.9, t = 6.9, t = 11.9,
t = 28.3, t = 29.6, t = 33.9, t = 37.3, t = 41.2,
and so on. One can clearly see that the intersection times
correspond to sudden increases in the size of the result for the
Algorithm 1. This is due to the fact that at each intersection

the Algorithm 1 computes the times when all trajectories are
before and after intersection. As one can see, this leads to
a huge overestimation. The Algorithm 2 handles intersections
via integration of perturbed dynamical systems and as one can
see this approach reduces overestimation.

0 10 20 30 40 50 60
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

t

d

Algorithm 1

Algorithm 2

Fig. 4. Comparison of the two algorithms for finding enclosures of
trajectories. The diameter d of the result as a function of the integration
time t

From the results presented in this section it follows that in
general one should use the Algorithm 2 also to handle the
transversal case.

C. A trapping region

Construction of a trapping region containing the attractor is
often the first step in the analysis of dynamical systems, since
it limits the interesting behavior to a bounded set. We say that
a set Ω is a trapping region for the map P if it is positively
invariant under the action of this map, i.e. P (x) ∈ Ω for every
x ∈ Ω. Clearly, each trajectory based in a trapping region Ω
stays in it forever.

We will prove that there exist a trapping region for the return
map P defined previously. The trapping region found encloses
the attractor observed numerically. Let us stress that this would
not be possible using solely the Algorithm 1.

The procedure starts with the construction of a candidate set.
A candidate is constructed using the following two properties.
First, it should enclose an observed attractor, so that the
dynamics is captured by the set selected. Second, the image
of its border (computed non-rigorously for now) should be
enclosed within this set.

The set Ω selected as a candidate is shown in Fig. 5. It
has been constructed by drawing two polygons enclosing a
numerically observed trajectory and then manually adjusting
positions of its corners so that P (xk) ∈ Ω, where xk for
k = 1, 2, . . . , p are points chosen along the border of Ω. For
now the evaluation of P is not performed rigorously. The set
Ω is composed of two polygons Q1, Q2. The definition of Ω
is given in the Appendix.

In order to prove that Ω is a trapping region one has to
show that P (x) ∈ Ω for each x ∈ Ω. This can be done by

6

x2

x3

Q1

Q2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-8

-6

-4

-2

Fig. 5. The set Ω and the image of its border computed non-rigorously

covering the set Ω by a number of interval vectors xk (called
also boxes), computing enclosures yk of images P (xk) and
verifying that yk ⊂ Ω for each k. Since it is not known a priori
what should be the size of covering rectangles, and perhaps
using a uniform size is not the best choice, in practice one
uses a subdivision technique. First, interval vectors covering
one polygon each are found. The interval vectors are added
to the list of boxes to be verified. For each box in the list
one computes its image under P . If the image can be found,
and it is enclosed in Ω then the box is removed from the
list. Otherwise, the box is split into smaller boxes and is
removed from the list. Smaller boxes which have non-empty
intersection with the set Ω are added to the list, while other
boxes are skipped. Computations are continued until the list
of boxes is empty. On completion of the procedure, the proof
is finished.

It is possible to speed up the procedure described above
by using the fact that the map P is one-to-one, which is a
consequence of the uniqueness of solutions of the dynamical
system considered. Instead of verifying that P (Ω) ⊂ Ω it is
sufficient to verify that (a) the image of the border ∂Ω is
enclosed in Ω and (b) the map P is well defined on Ω. If these
two conditions hold then from the uniqueness of solutions
and continuity of P it follows immediately that P (x) ∈ Ω
for each x ∈ Ω. For more details see [4]. Both conditions
can be verified using the subdivision technique. For the first
condition one starts with a set of boxes each covering a single
edge of ∂Ω and the procedure is continued in the same way as
before. For the existence condition the difference is that one
only checks if the image yk of a box xk can be computed,
and the enclosure condition yk ⊂ Ω is not verified. It will
be shown below that this modification drastically reduces the
computation time.

Using the procedure described above, it has been verified
that P (∂Ω) ⊂ Ω. The set of boxes xk covering ∂Ω for
which the condition P (xk) ⊂ Ω has been verified, are shown
in Fig. 6(a), while enclosures of their images are shown in
Fig. 6(b). There are 3694 boxes in the covering. The total
number of boxes for which the image was evaluated was 4363,
and the total computation time was 177 seconds on a single-

core 2.40 GHz computer. It is interesting to note that only for
two out of 3694 boxes the intersection with the plane Σ2 was
not transversal. These boxes are plotted in a different color in
Fig. 6. Trajectories based at the remaining boxes have either
two or none intersections with the plane Σ2 before returning
to the plane S.

(a)

x2

x3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-8

-6

-4

-2

(b)

x2

x3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-8

-6

-4

-2

Fig. 6. (a) the covering of the set ∂Ω by 3694 boxes for the proof of the
condition P (∂Ω) ⊂ Ω, (b) the image of the covering enclosed in the set Ω

The covering of the set Ω composed of 1893 boxes for
the proof of the existence of P is shown in Fig. 7. The
total number of evaluations of the map P was 2670 and the
computation time was 772 seconds. Therefore, the total time
necessary to prove that P (Ω) ⊂ Ω was less than 16 minutes.
It is interesting to note that the time needed to prove that Ω
is a trapping region without treating the border and interior
differently resulted in a covering composed of 406727 boxes
and the computation time of more than 6 hours (approximately
23 times longer).

D. Narrower enclosures of the attractor

The procedure used for the proof of the condition P (∂Ω) ⊂
Ω can be modified to get a narrower approximation of the
attractor. This is achieved by adding an additional condition
under which the box should be split — a box is split also if

7

x2

x3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-8

-6

-4

-2

Fig. 7. The covering of the set Ω by 1893 boxes for the proof of existence
of P (Ω)

the diameter of its image is above a given threshold. Using
the maximum diameter of an image equal to 0.01 required the
computation time of 35 minutes and resulted in the covering
of ∂Ω by 39613 boxes. The enclosure of the image of the
covering is shown in Fig 8.

x2

x3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-8

-6

-4

-2

Fig. 8. The enclosure of the image of the set ∂Ω under the map P

The narrow covering obtained in this way can be further
used as a new trapping region. Computing its image allows
one to obtain even better approximations of the attractor.

E. Graph representation of the dynamics of P

Once, there is a trapping region for the map P enclosing the
chaotic attractor one can study global dynamics of the system
over the attractor. One of the frequently used methods is the
construction of a directed graph representing the dynamics of
the map (compare [12], [13]). Graph representation helps in
finding narrow enclosures of the invariant part of the trapping
region, helps is locating periodic orbits, and so on.

To construct the graph, first, the trapping region is covered
by boxes of a specified size. Here, we use the so-called ε–
boxes of the form v = [k1ε1, (k1 + 1)ε1]× [k2ε2, (k2 + 1)ε2],
where k1,2 are integer numbers defining the position of the

box, and ε1,2 are fixed real numbers defining the ε–box
size. These boxes are graph vertices. Next, non-forbidden
transitions between boxes are found in order to define graph
edges. For each box vk enclosure yk of its image under P is
computed. The boxes vj which have non-empty intersection
with yk define graph edges starting at vertex vk, i.e. (vk,vj)
is an edge in the graph if and only if vj ∩ yk 6= ∅, where yk

is an enclosure of P (vk).
The trapping region, constructed in the previous sec-

tion has been covered by 13446 ε–boxes with (ε1, ε2) =
(1/2000, 1/200) (see Fig. 9(a)). Using the method described
above, it has been shown that there are 473848 non-forbidden
transitions between the boxes.

(a)

x2

x3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-8

-6

-4

-2

(b)

x2

x3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-8

-6

-4

-2

Fig. 9. Graph representation of the dynamics of P using ε–boxes with
(ε1, ε2) = (1/2000, 1/200), (a) initial graph representation with 13446
boxes, (b) reduced representation with 10896 boxes

Interesting dynamics happens in the invariant part of the
trapping region. For a trapping region Ω its invariant part under
the action of P is defined as Inv(Ω) =

⋂
k≥0 P

k(Ω).
The graph representation can be reduced if we remove boxes

which have empty intersection with the invariant part. A box
is outside the invariant part (and hence can be removed from
the graph) if there are no edges starting at this box or if there
are no edges ending in this box. The procedure is continued
until no more boxes can be removed. This procedure leads to

8

a graph with 11124 boxes and 399252 connections.
Further reduction can be obtained by computing narrower

enclosures of box images. The simplest method is to use the
subdivision technique. A box is divided into several smaller
boxes and their images are computed. In this way a graph
of 10896 boxes and 352706 connections has been constructed
(compare Fig. 9(b)). The number of graph vertices have been
reduced by 19%. Note that the finer structure of the covering
reveals that the left part has two leaves.

The same procedure has been carried out for ε–boxes with
(ε1, ε2) = (1/4000, 1/400). For the computation of box
images a subdivision technique has been used. Each box was
split into not more than 32×32 smaller boxes (when the image
was small enough the splitting was stopped). The smallest
boxes for which images were calculated were of the size
(1/(4000 · 32), 1/(400 · 32)). The computations took several
hours. After removing boxes not belonging to the invariant
part a graph with 12679 boxes and 61376 non-forbidden
connections has been obtained. The ε–boxes covering the
attractor are plotted in Fig. 10. The area of the covering
has been reduced by 71%, when compared to the case with
larger ε–boxes. Note, that the representation obtained is a very
accurate enclosure of the attractor of P shown in Fig. 3.

x2

x3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-8

-6

-4

-2

Fig. 10. Graph representation of the dynamics of P using ε–boxes with
(ε1, ε2) = (1/4000, 1/400), there are 12679 boxes and 61376 non-forbidden
connections in the graph representation

F. A bound for the average return time

Enclosures for the return times for individual boxes have
been found during the construction of the graph. Using this
information one can obtain a bound for the return time for
the map P over the attractor. The procedure is described
below. Let us denote by tk an enclosure of return times for
points belonging to vk. The hull of intervals tk is enclosed
in the interval T = [2.345, 6.563]. It follows that each point
belonging to the attractor has the return time belonging to the
interval T.

Using the information on non-forbidden connections one
can obtain bounds Tk for the return time of the k-th it-
erate of P . Tk can be computed as a union of intervals
ti1 + ti2 + · · · + tik

over all sequences (i1, i2, . . . , ik) such

that (vi1 ,vi2), (vi2 ,vi3),. . . ,(vik−1 ,vik
) are graph edges. The

results are collected in Table I.

k Tk Tk/k
1 [2.345,6.563] [2.345,6.563]
2 [5.338,9.417] [2.669,4.709]
3 [8.353,12.985] [2.784,4.329]
4 [11.329,15.996] [2.832,3.999]
5 [14.339,20.087] [2.867,4.018]
6 [17.425,23.046] [2.904,3.841]
7 [20.415,26.910] [2.916,3.845]
8 [24.582,29.895] [3.072,3.737]
9 [27.264,33.893] [3.029,3.766]

10 [31.123,36.870] [3.112,3.687]
100 [331.76,348.87] [3.3176,3.4887]

1000 [3338.4,3469.0] [3.3384,3.4690]
10000 [33404,34670] [3.3404,3.4670]

TABLE I
BOUNDS Tk FOR THE RETURN TIME OF THE k-TH ITERATE OF P , BOUNDS

Tk/k FOR THE AVERAGE RETURN TIME

Tk/k is an enclosure for the average return time for all
points belonging to the attractor. For k = 10000 we obtain the
bound [3.3404, 3.4670] for the average return time (compare
Table I).

IV. CONCLUSION

It has been shown that there exists a trapping region for the
return map associated with the Chua’s circuit spiral attractor.
A graph representation of the dynamics of the spiral attractor
has been constructed, and a bound for the average return time
has been found.

The algorithm for rigorous integration of piece-wise linear
systems necessary to carry out computer assisted proofs has
been developed. The algorithm is general in the sense that
it also handles the case of trajectories tangent to hyperplanes
separating linear regions. It has been shown that the algorithm
provides narrower enclosures of the true trajectories also in the
case of transversal intersections. The proposed algorithm may
help to understand the dynamics of the double-scroll attractor,
which also contains trajectories tangent to the C0-hyperplanes.

The methods can be used without major modifications for
the integration of piece-wise smooth systems, i.e. systems with
a continuous vector field, where the state space can be divided
into regions where the vector field is C1. The only difference
when compared to piece-wise linear systems is that one cannot
use exact formulas for the integration in smooth regions and
standard techniques for integration of nonlinear systems have
to be employed.

ACKNOWLEDGMENT

The author would like to acknowledge fruitful discussions
with Prof. P. Zgliczyński.

9

APPENDIX
DEFINITION OF THE TRAPPING REGION Ω

The trapping region Ω is the union of two convex polygons
Q1, Q2:

Q1 = ((−0.28252,−7.60875), (−0.28060,−7.64744),
(−0.26857,−7.54685), (−0.21417,−7.00526),
(−0.18461,−6.70352), (−0.15415,−6.36824),
(−0.12497,−6.05103), (−0.08107,−5.54296),
(−0.06994,−5.37532), (−0.07429,−5.32374),
(−0.09528,−5.53006), (−0.12254,−5.82665),
(−0.15658,−6.19545), (−0.18909,−6.55135),
(−0.22160,−6.90210), (−0.25120,−7.21944)),

Q2 = ((0.06747,−3.61542), (0.07835,−3.82577),
(0.10256,−4.22553), (0.11576,−4.47425),
(0.17186,−4.34798), (0.23204,−4.05334),
(0.28173,−3.60182), (0.30541,−3.19039),
(0.31028,−2.87016), (0.30833,−2.64891),
(0.30477,−2.50918), (0.29926,−2.39273),
(0.29045,−2.30838), (0.28160,−2.23569),
(0.26880,−2.16689), (0.24946,−2.10743),
(0.22509,−2.10315), (0.18741,−2.29958)).

REFERENCES

[1] L. Chua and G. Lin, “Canonical realisation of Chua’s circuit family,”
IEEE Trans. Circ. Syst., vol. CAS–37, no. 7, pp. 885–902, Jul. 1990.

[2] L. Chua, M. Komuro, and T. Matsumoto, “The double scroll family,”
IEEE Trans. Circ. Syst., vol. CAS–33, pp. 1037–1118, Nov. 1986.

[3] T. Matsumoto, L. Chua, and K. Ayaki, “Reality of chaos in the double
scroll circuit: a computer-assisted proof,” IEEE Trans. Circ. Syst., vol.
CAS–35, no. 7, pp. 909–925, Jul. 1988.

[4] Z. Galias, “Positive topological entropy of Chua’s circuit: A computer
assisted proof,” Int. J. Bifurcation and Chaos, vol. 7, no. 2, pp. 331–349,
1997.

[5] R. Lohner, “Enclosing the solutions of ordinary initial and boundary
value problems,” in Computerarithmetic, Scientific Computation and
Programming Languages. Stuttgart: Teubner, 1987, pp. 225–286.

[6] Z. Galias, “Counting low-period cycles for flows,” Int. J. Bifurcation
and Chaos, vol. 16, no. 10, pp. 2873–2886, 2006.

[7] ——, “On rigorous study of Poincaré maps defined by piecewise linear
systems,” in Proc. IEEE Int. Symposium on Circuits and Systems,
ISCAS’05, Kobe, Japan, May 2005, pp. 3407–3410.

[8] R. Moore, Interval Analysis. Englewood Cliffs, NJ: Prentice Hall, 1966.
[9] E. Hairer, S. Nørsett, and G. Wanner, Solving ordinary differential

equations. I. Nonstiff problems. New York: Springer Verlag, 1993.
[10] P. Zgliczyński and T. Kapela, “A Lohner-type algorithm for control

systems and ordinary differential inclusions,” Discrete and Continuous
Dynamical Systems B, vol. 11, pp. 365–385, 2009.

[11] Z. Galias, “On rigorous integration of piece-wise linear continuous
systems,” in Proc. IEEE Int. Symposium on Circuits and Systems,
ISCAS’11, Rio de Janeiro, May 2011, pp. 1339–1342.

[12] M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf, “Exploring invariant
sets and invariant measures,” Chaos: and Interdisciplinary Journal of
Nonlinear Science, vol. 7, no. 2, pp. 221–228, 1997.

[13] Z. Galias, “Interval methods for rigorous investigations of periodic
orbits,” Int. J. Bifurcation and Chaos, vol. 11, no. 9, pp. 2427–2450,
2001.

