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Abstract— It is shown that a certain set is positively invariant
for the return map associated with the Chua’s circuit. The set
contains the intersection of the numerically observed double-
scroll attractor and the planes defining the return map. The
proof is based on rigorous numerics.

I. INTRODUCTION

The double scroll is a chaotic attractor observed from a
simple third-order electronic circuit with a piece-wise linear
characteristics of the nonlinear element [1]. The attractor has
been extensively studied in numerical simulations but only a
few rigorous results concerning its chaotic dynamics exist. The
existence of a Shilnikov-type homoclinic orbit for an unknown
parameter value within a certain range is proved in [2] and
[3]. In [4], the existence of a nontrivial symbolic dynamics
embedded in the double scroll attractor was proved.

The starting point to study the dynamics over the whole
attractor is the existence of a trapping region enclosing the
attractor. There are several results concerning the existence of
a trapping region for the Chua’s circuit for different parameter
values. First results concerning the spiral attractor for the
Chua’s circuit were reported in [5]. A trapping region for
the spiral Roessler-type attractor was constructed in [6]. The
case of the spiral attractor containing trajectories tangent
to the planes separating linear regions (the C0-planes) was
considered in [7]. In this work, we deal with the double scroll
attractor. A candidate trapping region Ω for the associated
Poincaré map is constructed. It is proved that each trajectory
based in Ω either returns to it or converges to the origin. The
proof uses methods for computing enclosures of trajectories
passing arbitrarily close to an unstable equilibrium.

The paper is organized as follows. In Section II, methods
for integration of piece-wise linear (PWL) systems are pre-
sented. The procedure for integration of PWL systems when
intersections of trajectories with the C0-planes are transversal
or tangent is recalled and a method for computing enclosures
of trajectories passing close to an unstable equilibrium is
presented. In Section III, the existence of a trapping region for
the double scroll attractor is proved. The return map is defined,
and details of the computer-assisted proof that a certain set is
a trapping region for the return map are presented.

During computations, interval arithmetic is used to ensure
that the results obtained are rigorous. In the following, bold-
face is used to denote intervals, interval vectors and matrices,
and the usual math italics is used to denote point quantities.

II. RIGOROUS EVALUATION OF RETURN MAPS FOR
PIECE-WISE LINEAR SYSTEMS

Let the piecewise linear system be defined by

ẋ = f(x), (1)

where f : Rn 7→ Rn is a piece-wise linear continuous map.
By x(t) = ϕ(t, x̂) we denote the solution of (1) satisfying the
initial condition x(0) = x̂.

Let us assume that the state space Rn is composed of
m linear regions R1, R2, . . . Rm, separated by hyperplanes
Σ1,Σ2, . . . ,Σp. In the following, the hyperplanes Σj will be
referred to as the C0-hyperplanes. Let ẋ = Akx + vk be the
state equation in the region Rk, where Ak ∈ Rn×n, vk ∈ Rn.
If Ak is invertible, the explicit solution has the form ϕk(t, x̂) =
eAkt(x̂− w(k)) + w(k), where w(k) = −(Ak)−1w(k).

Let P be the return map defined by the union S of
hyperplanes Sk, i.e. P (x) = ϕ(τ(x), x), where τ(x) > 0
is the first time at which the trajectory ϕ(t, x) returns to S.

In this section we present a method for finding an enclosure
of the set P (x), where x is an interval vector enclosed in S.

A. Transversal intersections

If for each x ∈ x the trajectory ϕ([0, τ(x)], x) remains in
a single region Rk the problem is relatively easy. The first
step is to find t1 > 0 such that ϕk((0, t1],x) ∈ Rk and t2 >
t1 such that ϕk(t2,x) is on the other side of S. Next, one
evaluates the formula for the solution of a linear system in
interval arithmetic. More precisely one computes

y = ϕk(t,x) = eAkt(x− w(k)) + w(k), (2)

where t = [t1, t2]. Finally, the intersection of y and S is
computed. Clearly, P (x) ⊂ y ∩ S.

Similar approach can be used when trajectories
ϕ([0, τ(x)], x) visit several linear regions and the intersections
with the planes Σj are transversal. The problem can be
decomposed into passing several linear regions. For each
region the minimum t1 and maximum t2 travel times are
found, formula (2) is used to find an enclosure y of the
intersection area, and the intersection of y ∩ Σ is computed.

B. Tangent intersections

Let us now assume that some trajectories based at x ⊂ Rk
are tangent to the plane Σj separating the linear regions Rk
and Rl. The method presented above cannot be used since
some trajectories based in x intersect Σj , while others do not.



To pass the tangency area, we consider the PWL system (1)
as a perturbation of the linear system:

ẋ = g(x) = Akx+ vk, (3)

The following theorem provides bounds for the solutions of (1)
based on the solutions of the linear system (3).

Theorem 1: Let x(t) and y(t) be solutions of ẋ = g(x)
and ẏ = f(y), respectively. Let us assume that x(0) = y(0),
and x(t), y(t) ∈ D ⊂ Rn for t ∈ [0, h], where the set D is
bounded, closed, and convex. Then for t ∈ [0, h]

|yi(t)− xi(t)| ≤ ∆i =
(∫ t

0

eB(t−s)cds
)
i

, (4)

where Bij = |(Ak)ij | for i 6= j, Bii = (Ak)ii, and ci ≥
|gi(x(t))− fi(x(t))|, for t ∈ [0, h].

The above theorem is a conclusion from the results on
integration of differential inequalities developed in [8], [9].

The procedure for passing the tangency area starts by
finding s1 > 0 such that ϕk([0, s1],x) ⊂ Rk. The set u =
ϕk(s1,x) serves as an initial condition for integration along
the tangency. For t ≥ s1 the PWL system is treated as a
perturbed linear system. We select s2, compute an enclo-
sure v of the solution ϕk([0, s2],u) of the linear system (3).
Next, the set v is increased to form the interval vector w,
which serves as a guess of the set containing the solution
ϕ([0, s2],u) of the PWL system. Finally, one computes ∆
and c = supx∈w |g(x) − f(x)|. The difference between g
and f is zero over the region Rk and for the region Rl can
be computed as g(x) − f(x) = (Ak − Al)x + vk − vl. If
v + [−1, 1]∆ ⊂ w, it follows from the Theorem 1 that the
solution of the PWL system is enclosed in v + [−1, 1]∆ and
that ϕ(s2,u) ⊂ z = ϕk(s2,u) + [−1, 1]∆. If z ⊂ Rk and the
vector field f over the set z points away from the plane Σj we
continue integration from the initial set z using the standard
algorithm. For the details see [7].

C. Integration of a linear vector field near the origin

The methods described so far are applicable when the
return times τ(x) for x ∈ x are bounded. If the attractor
is singular (which is the case for the Chua’s circuit double
scroll attractor) and it contains an unstable equilibrium, the
algorithm presented above fails for some points belonging to
the attractor. This is due to the fact that some trajectories pass
arbitrarily close to the equilibrium and for such trajectories
the return time may be arbitrarily large. Therefore, we have
to develop another method to cope with such trajectories.

In this section, we present a method to integrate a linear 3D
vector field near the origin. We assume that the matrix defining
the vector field has one positive real eigenvalue, and two
complex eigenvalues with negative real parts. For the Chua’s
circuit, the origin, which is the only equilibrium belonging to
the attractor, has this type of stability. The method is similar to
the method presented in [10], where the case of one positive
and two negative real eigenvalues was considered. In [10], the
method was applied to the integration of the Lorenz system
near the origin.

Let us consider a linear dynamical systemẋ1

ẋ2

ẋ3

 =

λ 0 0
0 α β
0 −β α

x1

x2

x3

 = Dx. (5)

with λ > 0, α < 0, and β > 0. The origin is an unstable
equilibrium with the two-dimensional stable manifold Ws =
{x = (x1, x2, x3) : x1 = 0}, and one-dimensional unstable
manifold Wu = {x : x2 = x3 = 0}. The explicit solution
has the form: x1(t) = eλt x1(0), x2(t) = eαt(cos(βt)x2(0) +
sin(βt)x3(0)), x3(t) = eαt(− sin(βt)x2(0) + cos(βt)x3(0)).

Consider a cylinder C(h̄, r̄) = {x : |x1| ≤ h̄, x2
2+x2

3 ≤ r̄2}.
The half of the cylinder with x1 ≥ 0 for the case h̄ = 1 and
r̄ = 1 is shown in Fig. 1.
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Fig. 1. Integration of the linear system (5) near the origin, λ = 0.728,
α = −0.319, β = 0.892, the cylinder C(1, 1), two trajectories with initial
points (0.1, cos(π/2), sin(π/2)) and (0.1, cos(3π/4), sin(3π/4)), the exit
set for the stripe of initial conditions enclosed in the cylinder side is the
spiral-shaped region enclosed in the cylinder base

Let us select an initial point x(0) ∈ C(h̄, r̄). For x1(0) =
0 the trajectory converges to the origin along the stable
manifold Ws. For x1(0) 6= 0, since α < 0 and λ > 0, the
trajectory exits the cylinder through one of its bases after the
time τ satisfying h̄ = eλτ |x1(0)|, i.e.

τ = λ−1 log(h̄/|x1(0)|).

The position of the exit point is x1(τ) = sgn(x1(0))h̄,
x2(τ) = eατ (cos(βτ)x2(0) + sin(βτ)x3(0)), x3(τ) =
eατ (− sin(βτ)x2(0) + cos(βτ)x3(0)).

Two example trajectories for λ = 0.728, α = −0.319,
β = 0.892 are shown in Fig. 1. The initial points
are (0.1, cos(π/2), sin(π/2)) and (0.1, cos(3π/4), sin(3π/4)).
One can see that both trajectories exit the cylinder C(1, 1)
through the circle centered at the x1 axis. More generally, one
can show that x2

2(τ) + x2
3(τ) = e2ατ (x2

2(0) + x2
3(0)).

When x1(0) > 0 is decreased to zero and x2(0), x3(0) are
kept constant, the exit time increases exponentially, and the



exit point moves closer to the x1 axis along a spiral. An ex-
ample is shown in Fig. 1. The set of initial conditions x1(0) ∈
(0, 0.1], (x2(0), x3(0)) = (cos γ, sin γ), γ ∈ [π/2, 3π/4] is a
stripe belonging to the cylinder side. The corresponding exit
set is a spiral-shaped region enclosed in the the cylinder base.

From the discussion presented above, it follows that the set
of initial points {x1(0) ∈ (0, h], x2

2(0) + x2
3(0) ≤ r2} with

h ≤ h̄ and r ≤ r̄ exits the cylinder C(h̄, r̄) through the disc
{x1 = h̄, x2

2 + x2
3 ≤ e2ατ r2}, where τ = λ−1 log(h̄/h) is the

minimum flow time. Flow times belong to the interval [τ,∞).
The numerical procedure for the integration close to the

origin is following. First, we select h̄ and r̄. A trajectory is
integrated using standard methods until the solution set X is
enclosed in the cylinder C(h̄, r̄). Next, we find −h2 < 0 < h1

and r > 0 such that X ⊂ {(x1, x2, x3) : x1 ∈ [−h2, h1], x2
2 +

x2
3 ≤ r2} and compute the exit sets E1 = {x1 = h̄, x2

2 +
x2

3 ≤ e2ατ1 r2}, and E2 = {x1 = −h̄, x2
2 + x2

3 ≤ e2ατ2 r2},
where τ1 = λ−1 log(h̄/h1) and τ2 = λ−1 log(h̄/h2). The flow
times for the exit sets E1 and E2 are [τ1,∞) and [τ2,∞),
respectively.

For a general linear vector field with one positive real
eigenvalue, and a pair of complex eigenvalues with negative
real parts one has to apply an appropriate transformation
converting the vector field to the diagonal form (5) prior to
applying the computation procedure described above.

III. ANALYSIS OF THE CHUA’S CIRCUIT

The Chua’s circuit [1] is described by the following equation

C1ẋ1 = (x2 − x1)/R− g(x1),
C2ẋ2 = (x1 − x2)/R+ x3, (6)
Lẋ3 = −x2 −R0x3,

where g(z)=Gbz+ 0.5(Ga −Gb)(|z+1| − |z−1|) is a three-
segment piecewise linear characteristics.

There are three linear regions R1 = {x ∈ R3 : x1 < −1},
R2 = {x : |x1|< 1} and R3 = {x : x1> 1} separated by the
C0-planes Σ1 = {x : x1 =−1} and Σ2 = {x : x1 =1}.

The circuit is studied with the following parameter values
(after parameter rescaling): C1 = 1, C2 = 9.3515 Ga =
−3.4429, Gb = −2.1849, L = 0.06913, R = 0.33065, R0 =
0.00036, for which the double scroll attractor is observed in
computer simulations (see Fig. 2). It can be seen that some
trajectories turn close to the planes Σk, which means that
intersections with the C0-planes are not always transversal.
Moreover, some trajectories pass very close to the origin,
which is an equilibrium of the system. In the region R2 the
vector field has the form ẋ = A2x. The eigenvalues of A2 are
λ ≈ 0.728, α ± iβ ≈ −0.319 ± i0.892, and hence the origin
has the type of stability studied in Section II-C.

A. The return map

Let P be the return map defined by the planes S1 =
{x : x1 = −1.5}, S2 = {x : x1 = 1.5}. The attractor intersects
these plane transversally (compare Fig.2).

A trajectory of P is shown in Fig. 3. It consists of four
parts. The two top ones P3,4 (depicted with red) correspond
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Fig. 2. Computer generated double scroll attractor for the Chua’s circuit

to intersections with the plane S1, while the two bottom ones
P1,2 (depicted with blue) correspond to intersections with the
plane S2. P1 is mapped into P2. P2 is mapped into the dark
blue part of P1 and the light red part of P3. Similarly, P3 is
mapped into P4, and P4 is mapped to the light-blue part of
P1 and the dark-red part of P3.
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Fig. 3. A trajectory of the return map P defined by the planes S1 =
{x : x1 = −1.5}, S2 = {x : x1 = 1.5}

B. A trapping region

In this section, we prove that there exist a trapping region
for the return map P defined above. We say that a set A is a
trapping region for the map f if it is positively invariant under
the action of this map, i.e. f(x) ∈ A for every x ∈ A.

We start with the construction of a candidate set Ω satisfying
the following two properties: (a) Ω encloses an observed
attractor, so that the dynamics is captured by the set selected,
(b) the image of the border ∂Ω of Ω is enclosed in Ω. The
candidate set Ω = Q1 ∪ Q2 ∪ Q3 ∪ Q4 is shown in Fig. 4.
It has been constructed by drawing four polygons enclosing
the numerically observed trajectory and then adjusting their
corners so that P (xi) ∈ Ω, where xi ∈ ∂Ω are test points. For
now, the evaluation of P is not performed rigorously.
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Fig. 4. The set Ω and the image of its border computed non-rigorously

P is not defined on the whole Ω. Some trajectories based in
Ω converge to the origin and never come back to S. Therefore,
we study the intersection of Ω with the domain Dom(P ) of P .
Let us denote Ω̄ = Ω ∩ Dom(P ), and Q̄k = Qk ∩ Dom(P )
for k = 1, 2, 3, 4. In order to prove that Ω̄ is a trapping region
one has to show that P (x) ∈ Ω for each x ∈ Ω̄. From the
symmetry of the problem it follows that it is sufficient to prove
that P (Q̄1∪Q̄2) ⊂ Ω. From the uniqueness of solutions of the
dynamical system considered it follows that it is sufficient to
verify that (a) the image of the set (∂Q1∪∂Q2)∩Dom(P ) is
enclosed in Ω and (b) the map P is well defined on Q̄1 ∪ Q̄2.

In theory, one could use the method presented in the
previous section to prove the conditions (a) and (b). In practice
however, this approach is too slow due to long integration
times and strong overestimation in computed enclosures for
trajectories passing close to the equilibrium at the origin.
Therefore, such trajectories are treated in a different way.

Let E be the matrix transforming the vector field A2

into the diagonal form (5), i.e. D = E−1A2E. We have
shown that each trajectory starting at the base of the
cylinder C(0.5, 0.02) (in transformed coordinates) hits the
set Q1 ∪ Q3. Specifically, it was shown that P (Ey) ∈
(1, [−0.278,−0.028], [2.50, 4.87]) ⊂ Q3 for all y =
(0.5, r cosφ, r sinφ), with r ∈ (0, 0.02], φ ∈ [0, 2π].

To prove the condition (a), the set ∂Q1 ∪ ∂Q2 was covered
by 4312 boxes xi. For 4218 boxes enclosures of P (xi) were
found and it was verified that P (xi) ⊂ Q1 ∪ Q2 ∪ Q3. For
the remaining 94 boxes, it was shown that the corresponding
trajectories enter the cylinder C(0.5, 0.02). Enclosures of the
images P (xi) are shown in Fig. 5.

To prove that P is well defined on Q̄1∪Q̄2, the set Q1∪Q2

was covered by 616 boxes xi. For 606 boxes enclosures of
P (xi) have been found. For the remaining 8 boxes, it was
shown that the corresponding trajectories enter the cylinder
C(0.5, 0.2). It follows that each trajectory based in Q1 ∪Q2

either returns to S or converges to the origin.
Summarizing, we have proved that each trajectory based at

Ω either returns to Ω or converges to the origin. It follows that
Ω̄ if a trapping region for P , and the set {ϕ(t, x) : x ∈ Ω, t ∈
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Fig. 5. An enclosure of the image of ∂(Q1 ∪ Q2) computed rigorously,
P (∂(Q1 ∪Q2)) ⊂ Q1 ∪Q2 ∪Q3

[0, τ(x))} is a trapping region for the double scroll attractor.

IV. CONCLUSION

Rigorous integration methods for piece-wise linear systems
have been studied. An algorithm handling also the case of
trajectories passing arbitrarily close to an equilibrium has
been described. The method can be applied directly if the
equilibrium has one positive real eigenvalue, and a pair of
complex eigenvalues with negative real parts. Other stability
types can be handled in a similar way.

The existence of a trapping region for the return map
associated with the Chua’s circuit double scroll attractor has
been proved.
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[9] P. Zgliczyński and T. Kapela, “A Lohner-type algorithm for control
systems and ordinary differential inclusions,” Discrete and Continuous
Dynamical Systems B, vol. 11, pp. 365–385, 2009.

[10] W. Tucker, “The Lorenz attractor exists,” C. R. Acad. Sci. Paris, vol.
328, pp. 1197–1202, 1999.


