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Abstract

Modification of a parameter of a chaotic system may lead to the emergence of a periodic attractor. Under
certain assumptions periodic windows (regions in the parameter space in which a periodic attractor exists)
densely fill a chaotic region. Usually it is very difficult to prove this property. In this work, we propose
a systematic procedure to locate and prove the existence of periodic windows. The method combines the
symbolic dynamics based approach to find unstable periodic orbits (UPOs), the continuation method to
locate periodic windows (PWs), and interval arithmetic tools to prove their existence. The proposed method
is applied to the Rössler system. The existence of several thousands of PWs close to the classical parameter
values is proved and periodic attractors very close in the parameter space to the classical Rössler attractor
are found. Estimates of measures of sets of parameters for which a periodic attractor exists are calculated.

Keywords: periodic window, Rössler system, symbolic dynamics, continuation method, rigorous numerical
analysis, computer-assisted proof.

1 Introduction

Dynamical systems which exhibit a transition to chaos via a cascade of period-doubling bifurcations often
support a sequence of periodic windows which densely fill the chaotic region [1–3]. Periodic windows may be
observed in bifurcation diagrams of such systems. Narrow periodic windows are virtually impossible to see when
sampling the parameter space due to requirements of very fine sampling and long convergence times [4, 5].

In this study an efficient method to find and prove the existence of periodic windows (PWs) is presented. We
use a combination of the symbolic dynamics based method to find unstable periodic orbits (UPOs) embedded in
numerically observed chaotic attractors for selected points in the parameter space, the continuation method to
locate PWs in the region of interest and interval arithmetic tools to prove the existence of periodic attractors.
The method is applied to analyze the existence of periodic windows for the Rössler system [6] close to the
classical case (a, b) = (5.7, 0.2). We aim at finding a large number of periodic windows providing a good
approximation of the measure of the set of regular parameter values for which periodic attractors exist. We
also want to find periodic attractors as close to the classical case as possible.

Investigations of the existence of periodic orbits (cycles) and periodic windows for the Rössler system [6] are
carried out by many researchers. Symbolic dynamics representation of cycles for the Rössler system is studied
in [7]. The authors extract all periodic orbits with periods p ≤ 11 of the associated return map and develop
some rules of growth and pruning of the populations of periodic orbits. The existence of topological chaos for
the Rössler system using the method of covering relations and the existence of infinitely many cycles is proved
in [8]. A rigorous method based on the interval Newton operator and generalized bisection technique to find all
short periodic orbits is developed in [9]. The method is used to locate all periodic orbits with periods p ≤ 20.
Rigorous numerical methods are used in [10] to validate a part of the bifurcation diagram. The authors prove the
existence of two period-doubling bifurcations and the existence of a branch of periodic points connecting them.
Various types of attractors existing for the Rössler model are studied in [11]. Using non-rigorous computations,
the authors search for periodic and chaotic regions in the parameter space using various chaos indicators such
as the maximum Lyapunov exponent (MLE) or the OLIF2 chaos indicator. Statistical properties of UPOs
embedded in the Rössler attractor are investigated in [12]. Homoclinic chaos in the Rössler system is studied
in [13]. Using symbolic approach the authors study homoclinic bifurcations and detect regions of structurally
stable and chaotic dynamics in the parameter space of the Rössler model. A connection between chaotic and
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hyperchaotic trajectories in a four-dimensional Rössler system is proved in [14]. Conditions for the existence of
a Hopf bifurcation in the Rössler system are formulated in [15]. An extension of the Sharkovskii theorem for
the Rössler system is proposed in [16].

In the remaining part of this paper we define the Rössler system in Section 2. In Section 3 a procedure
to find periodic windows is presented. Symbolic dynamics representations of trajectories is introduced and
methods to reduce the number of symbol sequences needed to find UPOs for a fixed parameter value and PWs
in a given region of the parameter space are described. A method to prove the existence of periodic attractors is
recalled. Properties of periodic windows associated with primary and period-tupling periodic symbol sequences
are discussed. A study of the existence of PWs for the Rössler system in a region of the parameter space
close to the classical case (a, b) = (5.7, 0.2) is carried out in Section 4. Two cases are considered. First, the
parameter b = 0.2 is fixed and a ∈ [5.6, 5.8] is treated as a bifurcation parameter. In the second case a = 5.7
and b ∈ [0.175, 0.215] is treated as a bifurcation parameter. For each case periodic orbits existing for endpoints
of the considered parameter range are found. Next, periodic orbits found for the endpoints are continued to
locate PWs in the region of interest. The existence of periodic windows is proved using the interval Newton
method. Their widths are estimated using the continuation method and the (non-rigorous) Newton method.

For the interval computations the CAPD library [17, 18] is used. For the multiprecision computations the
GNU MPFR library [19] is used.

2 The Rössler system

The Rössler system [6] is three-dimensional continuous time dynamical system defined by:

ẋ = −y − z,
ẏ = x+ cy, (1)

ż = b+ z(x− a).

We consider the case where the parameters b and c are equal. Under this assumptions the Rössler system is a
two-parameter family of three-dimensional vector fields. An example trajectory of the Rössler system observed
for the classical case (a, b) = (5.7, 0.2) is shown in Fig. 1(a).
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Figure 1: Example trajectories of the Rössler system for a = 5.7, b = 0.2; (a) a trajectory of the flow,
(b) a trajectory of the return map Pa,b.

Let us fix the parameters a, b. To define the return map Pa,b we select the return plane Σ = {v = (x, y, z) ∈
R3 : x = 0, ẋ = −y− z > 0}. Let us denote by ϕ(t, v) the trajectory of the system (1) started at v. We will use
the local coordinate system u = (y, z) for points in Σ. For v = (0, y, z) ∈ Σ let us denote by τ(v) the smallest
positive t for which the trajectory started at v returns to Σ, i.e. ϕ(t, v) ∈ Σ. The image of u = (y, z) under Pa,b
is defined as (0, Pa,b(u)) = ϕ(τ(v), v). A trajectory of P5.7,0.2 is plotted in Fig. 1(b).

3 Finding Periodic Windows

Construction of bifurcation diagrams is a standard method to find periodic windows (PWs).
Bifurcation diagrams with b being the bifurcation parameter are plotted in Fig. 2. In each case 2001

parameter values filling uniformly the region of interest are selected. For each parameter value a trajectory of
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Figure 2: Bifurcation diagrams with b being the bifurcation parameter

the return map composed of 10000 points is computed. The first 5000 points are skipped and the remaining
points are used to plot bifurcation diagrams. The y variable range is divided into 1000 bins and each bin is
plotted with a grey level corresponding to the number of times a given bin was visited by the trajectory.

In the first case the parameter range is b ∈ [0.05, 0.4]. Several wide periodic windows can be easily
identified. More detailed bifurcation diagrams are constructed for b ∈ [0.175, 0.215], b ∈ [0.199, 0.201], and
b ∈ [0.1999, 0.2001]. The distance between sampling points for these three cases is ∆b = 2 · 10−5, ∆b = 10−6,
and ∆b = 10−7, respectively. For b ∈ [0.175, 0.215] periodic attractors are observed for 545 parameter val-
ues (out of 2001), which corresponds to 30 periodic windows detected. Period-3 window enclosing the interval
b ∈ [0.18244, 0.18830] is the widest one. A period doubling cascade (period-6, period-12 and period-24 windows)
originating from this periodic window can also be seen. In the last two cases only few narrow PWs may by
identified (7 and 2, respectively).

Finding periodic windows by monitoring bifurcation diagrams permits detection of relatively few PWs only.
First, to detect a periodic window we have to select a parameter value belonging to this window. It means
that detection of narrow PWs requires very dense sampling of the parameter space. Practically, there is no
chance to detect narrow windows with the width below 10−12 when the sampling distance is ∆b = 10−7 which
is used in the case b ∈ [0.1999, 0.2001] and 2001 sampling points. We show that the method presented in this
work is capable of finding periodic windows with the widths below 2 · 10−20. Second, for narrow windows the
convergence time to the corresponding attractor is usually very large (compare [20]). In consequence, very long
trajectories must be computed to obtain convergence and to find a periodic attractor.

Bifurcation diagrams with a being the bifurcation parameter are plotted in Fig. 3. Four cases are considered:
a ∈ [2, 10], a ∈ [5.6, 5.8], a ∈ [5.69, 5.71], a ∈ [5.699, 5.701]. 14 periodic windows are detected in [5.6, 5.8]. The
widest is the period-7 window observed for a ∈ [5.7643, 5.7654]. Three PWs are detected for a ∈ [5.69, 5.71]. In
the last case no PWs are found. It may seem that for a ∈ [5.699, 5.701] the system is chaotic. In the following
sections, we show that this is not true, and there are thousands of narrow periodic windows in this interval.

3.1 Symbolic dynamics based method to find periodic windows

In this section an efficient method to find periodic windows is presented. We assume that all parameters of the
system are fixed apart from a single parameter µ which is called the bifurcation parameter. The problem is to
find PWs of the return map Pµ in the interval µ ∈ [µmin, µmax]. We assume that trajectories observed for the
endpoints of µ ∈ [µmin, µmax] are chaotic.

Let us select µ ∈ [µmin, µmax] and let (vk)N−1k=0 be a long numerically generated trajectory of the return
map Pµ. In the first step, using the symbolic dynamics based method UPOs of Pµ are found (see [21] for a
detailed description). Let us briefly recall this approach. First, the state space is divided in m regions and a
point vk belonging to the trajectory (vk)N−1k=0 is assigned a symbol sk ∈ {0, 1, . . . ,m − 1}, which is the index
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Figure 3: Bifurcation diagrams with a being the bifurcation parameter

of the region to which it belongs. The state space is divided into region corresponding to different symbols
based on the plot of a single variable versus its previous iterate. Extreme values of the obtained plot are used
to split the state space. In this study we use the variable y for this task. The plots of yk+1 versus yk have
a single extremum which is a minimum and in consequence the number of symbols is m = 2. We say that
(vk)p−1k=0 is a periodic orbit of Pµ with the (minimal) period p if Pµ(vk) = v(k+1) mod p for k = 0, 1, . . . , p− 1 and
Pµ(vk) 6= v0 for any non-negative k < p− 1. To find period-p orbits we consider all cyclically different symbol

sequences s = (sk)p−1k=0 with the (minimal) period p. For each symbol sequence s we construct an initial guess
w̃ = (ũ0, ũ1, . . . , ũp−1) of the position of an UPO with this symbol sequence. The construction is found using
the symbol sequence representation of the trajectory (vk)N−1k=0 (for details see [21]). The initial guess w̃ is then
used as an initial point for the Newton method. The Newton operator

N(w) = w − (F ′(w))
−1
F (w). (2)

is applied to the map F defined by

F


u0
u1
. . .
up−1

 =


Pµ(u0)− u1
Pµ(u1)− u2

. . .
Pµ(up−1)− u0

 . (3)

It is clear that if F (w) = 0, where w = (u0, u1, . . . , up−1), then P pµ(u0) = u0, which means that w is a periodic
orbit of Pµ. Successive iterations of the Newton operator are calculated to obtain an accurate position w̄ of the
orbit. When the Newton method converges we may hope that there exist a true periodic orbit in a neighborhood
of the obtained result. The number of period–p symbol sequences to be considered may be reduced by excluding
forbidden (unobserved) symbol sequences, which are identified by monitoring the trajectory (vk)N−1k=0 . Examples
are shown in the following sections. The calculations described above are repeated for both endpoints µmin and
µmax. In this way we obtain positions of UPOs for the maps Pµmin

and Pµmax
which serve as starting points for

the continuation method to find PWs in the interval µ ∈ [µmin, µmax].
Next, the continuation method is applied for each UPO to find PWs in µ ∈ [µmin, µmax] [20]. We start at

µ = µmin or µ = µmax and change µ to move along the interval [µmin, µmax]. After each parameter change
the position of the orbit for new parameter value is found using the Newton method. If the Newton method
converges then the parameter change is accepted. Otherwise, it is not accepted, the step ∆µ is decreased and
computations are repeated. This process is carried out until a stable periodic orbit is found, or the parameter
µ is outside the interval µ ∈ [µmin, µmax], or the step ∆µ is smaller than a predefined minimal value. When a
periodic attractor is found the continuation method is used to find endpoints of the periodic window.

To prove the existence of a PW containing the parameter value µ we need to prove that the return map Pµ
supports a periodic attractor. Let us denote by w̄ an approximate position of a periodic orbit of Pµ. To prove
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the existence of a periodic orbit in a neighborhood of w̄ = (ū0, ū1, . . . , ūp−1) we may use the interval Newton
operator [22] defined as

N(w, w̄) = w̄ − (F ′(w))
−1
F (w̄), (4)

where w = (u0,u1, . . . ,up−1) is an interval vector containing w̄. To carry out the existence proof one selects a
narrow interval vector w centered at w̄ and verifies the condition N(w, w̄) ⊂ w. If this condition is satisfied then
there exist a single zero of F in w (compare [22]). In case the existence condition does not hold one may inflate
the interval vector w and repeat the computation. To prove that the periodic orbit is stable it is sufficient to
show that bounds of eigenvalues of the Jacobian matrix (P p)′(u0) = P ′(up−1) · · ·P ′(u1)P ′(u0) are enclosed in
the unit circle.

3.2 Primary and period-tupling windows

In the following, we consider the case when the return map is approximately equivalent to a one-dimensional
map f : I 3 y 7→ f(y) ∈ I with a single extremum, which is a minimum. This is the case observed for the Rössler
system in the region of interest. In this case one may use certain properties of underlying symbolic dynamics
to eliminate certain symbol sequences from the search procedure and to select symbol sequences corresponding
to wide periodic windows. Let us introduce several notions which are necessary to describe this procedure. We
follow the notations used in [3, 7, 23–25]. We assume that the minimum of f is at y = yts. To a trajectory (yk)
of f we associate the symbol sequence sk satisfying conditions sk = 1 when yk < yth and sk = 0 otherwise.
Note that the symbol assignment is different than for the logistic map (compare [25]), where the symbol sk = 0
is assigned to points with yk < yth. This difference is caused by the fact that in our case the map f has a single
minimum, while for the logistic map a single maximum exists.

Period-p orbit (y0, y1, . . . , yp−1) corresponds to a symbol sequence s = (s0, s1, . . . , sp−1) with the (minimum)

period p. We say that a periodic sequence s = (s0, s1, . . . , sp−1) is odd-parity (even-parity) if the sum
∑p−1
k=0 sk is

an odd number (even number). Let us introduce the ordering ‘≺’ in the set of symbol sequences (see also [7]). We

say that s ≺ t if sk < tk and
∑k−1
j=0 sj is even or sk > tk and

∑k−1
j=0 sj is odd, where k is the smallest index such

that sk 6= tk. We say that a period–p sequence s = (s0, s1, . . . , sp−1) is minimal if none of its cyclic permutations
is smaller than s according to the ordering ‘≺’. Each minimal sequence must start with the number of zeros
not smaller than the number of initial zeros of its cyclic permutations. For example the sequence s = (0010101)
is minimal since its permutation starts either with 1 or with 01 and it is clear that (0010101) ≺ (1 . . . ) and
(0010101) ≺ (01 . . . ). In case of minimal periodic sequences the ordering ‘≺’ has an important property that
it agrees with the ordering of corresponding periodic windows in the parameter space. Two minimal periodic
sequences with different periods can be compared by first converting each of them to the corresponding infinitely
long symbol sequence in the following way s = (s0, s1, . . . , sp−1) = (s0, s1, . . . , sp−1, s0, s1, . . . , sp−1, . . . ).

Let s = (s0, s1, s2, . . . , sp−2, sp−1) be a period-p odd-parity minimal symbol sequence. The sequence s̄ =
(s0, s1, . . . , sp−3, 1− sp−2, sp−1) which differs from s only at the second to last position is called an even-parity
partner of s if it has the (minimal) period equal to p. A period-p odd-parity minimal symbol sequence s
which has an even-parity partner s̄ is called a saddle-node sequence. Saddle-node sequences and their even-
parity partners correspond to periodic orbits created via a saddle-node bifurcation. A period-p odd-parity
minimal symbol sequence s = (s0, s1, s2, . . . , sp−3, sp−2, sp−1) with no even-parity partner (the sequence s̄ has
the (minimal) period smaller than p) is called a period-doubling sequence. Such sequences correspond to periodic
orbits created via a period-doubling bifurcation. The names for saddle-node and period-doubling sequences are
derived from the type of bifurcation to which they lead.

Let s be a saddle-node sequence with the period-p and s̄ its even-parity partner. Let us select n ≥ 2 and an
odd integer n1 < n. The sequence t obtained by concatenation of n1 copies of s and n2 = n− n1 copies of s̄ is
called a period-n-tupling sequence generated from s. From the fact that n1 is odd it follows that the sequence t
is an odd-parity sequence. A period-doubling sequence t = (s, s̄) is a special case of a period-tupling sequence
with n1 = 1 and n = 2. For each saddle-node sequence s there exist a single period-tripling sequence t = (s, s̄, s̄)
(n1 = 1), and two period-quadrupling sequences: t = (s, s̄, s̄, s̄) with n1 = 1, t = (s, s̄, s, s) with n1 = 3. We
will use the following notation to define period-tupling sequences. Let s be a saddle-node sequence and t be an
odd-parity sequence with the period n. st denotes the period-n-tupling sequence st = (δ(t0), δ(t1), . . . , δ(tn−1)),
where δ(tk) = s if tk = 1 and δ(tk) = s̄ otherwise. For example for s = (0010101), s̄ = (0010111) and
t = (100) we obtain st = s(100) = (s, s̄, s̄) = (0010101 0010111 0010111). Sequences, which are not period-
tupling sequences are called primary sequences. PWs corresponding to primary and period-tupling sequences
are called primary and period-tupling windows, respectively. In the following, we show that period-tupling
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windows are usually much wider than primary windows with the same period. Thus, study of period-tupling
windows is essential in obtaining accurate approximations of the total width of periodic windows.

4 Periodic windows for the Rössler system close to the classical case

In this section, the existence of periodic windows for the Rössler system close to the classical parameter values
(a, b) = (5.7, 0.2) is studied. We find PWs existing in the regions (a, b) ∈ [5.6, 5.8] × {0.2} and (a, b) ∈
{5.7} × [0.175, 0.215] using the approach presented in Section 3. Let us first consider the case a ∈ [5.6, 5.8],
b = 0.2.

4.1 Periodic windows for a ∈ [5.6, 5.8], b = 0.2

In the first step UPOs existing for a ∈ {5.6, 5.7, 5.8} and b = 0.2 are found. For each case a trajectory (vk)N−1k=0

of Pa,b with the length N = 106 is generated, the minimum value of y in the time series is found and its preimage
is used to define the threshold value yth for the symbolic dynamics representation. Threshold values used to
split the attractor are yth = −6.6412775, yth = −6.73872, and yth = −6.836085 for a = 5.6, a = 5.7, and
a = 5.8, respectively (compare Fig. 4).
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Figure 4: Symbolic representations of trajectories of P ; (a) a = 5.6, b = 0.2, the threshold value yth =
−6.6412775, (b) a = 5.8, b = 0.2, the threshold value yth = −6.8360850.

For a = 5.6 the following short sequences of the length l ≤ 12 are not observed in the trajectory (vk)N−1k=0 :
(000), (0011), (001010), (0010111), (001011010), (0010110111). These sequences are called forbidden and are
excluded in the search for unstable periodic orbits. Note that the so-called forbidden sequences found are
not proved to be forbidden, they are just not observed in the computer generated trajectory (vk)N−1k=0 . In
consequence, the elimination procedure (skipping forbidden sequences) may remove some admissible (non-
forbidden) sequences which are rarely observed in a chaotic trajectory. To reduce this risk one should consider
a trajectory significantly longer than 2lmax , where lmax is the maximum length of a forbidden symbol sequence
which we search for. We use lmax = 12 and trajectories of the length N = 106 > 4096 = 212. All cyclically
different symbol sequences with periods p ≤ 27 not containing forbidden sequences are generated. There
are Snf = 51676 such sequences. For each symbol sequence a candidate of the corresponding periodic orbit is
constructed. An accurate approximation of the periodic orbit position is found by applying the Newton method.
Convergence of the Newton method indicates that there may exist a periodic orbit in a neighborhood of the
position found by the Newton method. The convergence is observed in case of P≤27 = 50233 symbol sequences
out of Snf = 51676 non-forbidden sequences.

Next, the interval Newton operator (4) is applied to prove the existence of periodic orbits. This procedure
is successful in case of 50045 periodic orbits when calculations were carried out using double-precision interval
computations. For the remaining 188 orbits the calculations are carried out using multiprecision computations
with the GNU MPFR library [19]. All the periodic orbits found are unstable, which is verified by computing
bounds of eigenvalues of the Jacobian matrix of P pa,0.2 over the verified enclosure of a period–p orbit of P . If
at least one eigenvalue lies outside the unit circle then the orbit is unstable. This condition is verified for all
periodic orbits. At a final step, we confirm that all UPOs found are different. This is achieved by verifying
that intervals being rigorous bounds of periodic orbits flow times are pairwise disjoint. Summarizing, we proved
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that the number of UPOs with the periods p ≤ 27 is not less than P≤27 = 50233. We would like to stress
that this is a lower bound. There may exist periodic orbits which are not detected by the search procedure.
One of the reasons may be that the Newton method does not converge or converges to a periodic orbit with
a different symbol sequence. Another reason may be excluding some admissible sequences in the process of
finding forbidden sequences. However, it was shown in [21] that the symbolic dynamics based search method
is successful in locating all periodic orbits with periods p ≤ 20 for classical parameter values a = 5.7, b = 0.2.
Thus, we may hope that the majority (perhaps all) of periodic orbits with periods p ≤ 27 have been found.

Note that the total number of cyclically different symbol sequences with periods p ≤ 27 is Sall = 10358999
and the number of admissible (non-forbidden) symbol sequences is Snf = 51676. This shows that eliminating
forbidden sequences significantly reduces the computation time. Let us also note that that the number P≤27 =
50233 of cycles found is only slightly smaller than the number Snf = 51676 of symbol sequences considered,
which indicates that the the elimination procedure is successful.

For a = 5.8 the forbidden sequences of the length p ≤ 12 are (000), (0011), (0010100), (00101011),
(0010101010), (00101010111). In this case there are Snf = 138298 cyclically different non-forbidden symbol
sequences with periods p ≤ 27 and they lead to P≤27 = 134631 periodic orbits. Their existence and stability
properties are proved by applying the interval Newton method implemented in double precision (134225 cases)
and multiple precision (406 cases) interval arithmetic.

The numbers Pp of unstable period–p orbits found for endpoints and the midpoint of the interval (a, b) ∈
[5.6, 5.8] × {0.2} are given in Table 1. We also report the number Qp of fixed points of the pth iterate of the

return map Pa,0.2, which can be computed using the formula Qp =
∑p−1
k=1,p mod k=0 kPk.

Table 1: The numbers Pp of unstable period–p orbits found, the numbers Qp of fixed points of P pa,b, and
estimates Hp of the topological entropy of Pa,0.2 based on Qp, (a, b) ∈ {5.6, 5.7, 5.8} × {0.2}.

a = 5.6, b = 0.2 a = 5.7, b = 0.2 a = 5.8, b = 0.2
p Pp Qp Hp Pp Qp Hp Pp Qp Hp

1 1 1 0.00000 1 1 0.00000 1 1 0.00000
2 1 3 0.54931 1 3 0.54931 1 3 0.54931
3 2 7 0.64864 2 7 0.64864 2 7 0.64864
4 1 7 0.48648 1 7 0.48648 1 7 0.48648
5 2 11 0.47958 2 11 0.47958 2 11 0.47958
6 3 27 0.54931 3 27 0.54931 3 27 0.54931
7 4 29 0.48104 4 29 0.48104 6 43 0.53731
8 5 47 0.48127 7 63 0.51789 7 63 0.51789
9 10 97 0.50830 10 97 0.50830 12 115 0.52721
10 11 123 0.48122 15 163 0.50938 19 203 0.53132
11 18 199 0.48121 24 265 0.50725 28 309 0.52121
12 28 367 0.49211 36 463 0.51148 42 535 0.52352
13 42 547 0.48496 58 755 0.50975 72 937 0.52636
14 60 871 0.48355 88 1263 0.51009 105 1515 0.52308
15 100 1517 0.48830 138 2087 0.50957 172 2597 0.52414
16 143 2335 0.48474 216 3519 0.51037 272 4415 0.52455
17 222 3775 0.48448 340 5781 0.50955 434 7379 0.52391
18 343 6291 0.48594 531 9675 0.50985 684 12447 0.52385
19 528 10033 0.48493 848 16113 0.50986 1112 21129 0.52413
20 806 16247 0.48478 1330 26767 0.50975 1770 35607 0.52401
21 1270 26705 0.48536 2120 44555 0.50974 2858 60067 0.52396
22 1947 43035 0.48499 3364 74275 0.50980 4604 101599 0.52404
23 3034 69783 0.48492 5368 123465 0.50973 7458 171535 0.52402
24 4731 113951 0.48515 8551 205743 0.50977 12034 289407 0.52398
25 7378 184461 0.48501 13698 342461 0.50976 19562 489061 0.52401
26 11493 299367 0.48498 21899 570131 0.50975 31732 825971 0.52401
27 18050 487447 0.48507 35154 949255 0.50976 51638 1394341 0.52400

≤ 27 50233 1265565 0.48507 93809 2374821 0.50976 134631 3416769 0.52400

As a byproduct of these computation we may compute estimates Hp = p−1 log Qp of the topological entropy
of Pa,0.2 based on the number Qp of fixed points of P pa,0.2. Note that these estimates stabilize quite fast and that
three most significant digits of these estimates do not change for p ≥ 20. One may also see that the complexity of
Pa,0.2 measured in terms of the topological entropy grows from 0.485 to 0.524 when the parameter a is increased
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from a = 5.6 to a = 5.8.
In the second step of the procedure to find PWs in the interval a ∈ [5.6, 5.8] we continue periodic orbits

found for the endpoints a = 5.6 and a = 5.8 within the interval a ∈ [5.6, 5.8]. It is expected that a PW with the
specific symbol sequence s exists in the interval a ∈ [5.6, 5.8] only if this sequence is admissible for exactly one of
the endpoints of this interval. This is related to the fact that the plots of yk+1 versus yk for a ∈ [5.6, 5.8], b = 0.2
are very close to plots of a one-dimensional map with a single extremum and moreover that the complexity of
the map measured in terms of the topological entropy changes monotonically when the parameter a is changed.
For such maps (a good example is the logistic map) a stable periodic orbit is born via a saddle-node or period-
doubling bifurcation for a certain parameter value, which is the first endpoint of the periodic window. At the
second endpoint the orbit loses stability. However, further modifications of the parameter do not make the
orbit disappear as this would require another bifurcation and this scenario is not observed for such systems.
The property that a periodic window associated with a given symbol sequence exists only if this sequence is
admissible for exactly one of the endpoints is confirmed by continuing orbits found for a = 5.6. Each periodic
orbit existing for a = 5.6 could be continued past the point a = 5.8 and in consequence no PWs in the interval
a ∈ [5.6, 5.8] are detected. This is in full agreement with the fact that all sequences admissible for a = 5.6
are also admissible for a = 5.8. Continuation of periodic orbits found for a = 5.8 leads to W≤27 = 42216
periodic windows. Their existence is confirmed by applying the interval Newton method to prove the existence
of a periodic orbit for a parameter value belonging to the periodic window and proving that the orbit is stable
by verifying that the dominant eigenvalue (with the maximum absolute value) of the corresponding Jacobian
matrix is smaller than one in absolute value. Widths of PWs are estimated using the continuation method. For
each PW we locate two points being close to endpoints of the PW for which the (non-rigorous) Newton method
converges to a stable periodic orbit. These results are not rigorous. The distance between these two points is
used as a non-rigorous lower bound on the periodic window width. In case of narrow periodic windows all the
calculations are carried out in multiple precision. This includes the continuation procedure to find a parameter
value belonging to the periodic window and also the calculations involving the interval Newton operator to
prove the existence of a periodic attractor.

During these computations it is confirmed that it is sufficient to consider odd-parity sequences only. Even-
parity sequences do not lead to new PWs. As an example let us consider two period–7 symbol sequences which
are admissible for a = 5.8 and are not admissible for a = 5.6. s = (0010101) is an odd-parity sequence and
s̄ = (0010111) is its even-parity partner. Dominant eigenvalues of the Jacobian matrices of P 7

a,0.2 computed
along the continued periodic orbits are plotted in Fig. 5. The orbit is stable when the dominant eigenvalue
satisfies the condition |λ| < 1. One can see that the odd-parity sequence s = (0010101) leads to a PW while
the even-parity sequence s̄ = (0010111) leads to a saddle-node bifurcation points where two period-7 orbits are
born.
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Figure 5: The dominant eigenvalue of the Jacobian matrix of P 7
a,0.2 computed along period–7 orbits versus the

bifurcation parameter a.

The results regarding the number of periodic windows and their widths are reported in Table 2. Wp denotes
the number of period–p windows found, and wp is their total width. We also report the number Wp,PR and the
total width wp,PR of period–p primary windows. In total, W≤27 = 42216 PWs with periods p ≤ 27 are found
and their total width is w≤27 ≈ 3.064 · 10−3. The widest one is the period–7 window with the symbol sequence
s = (0010101) and the width w ≈ 1.188 · 10−3. The narrowest PW found have widths below 10−18.

Note that for each p ≤ 27 the number 2 · (Wp −Wp,PD) + Wp,PD is equal to the difference between the
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Table 2: Period windows existing for (a, b) ∈ [5.6, 5.8] × {0.2}, Wp is the number of period–p windows found,
wp is the total width of period-p windows, Wp,PR and wp,PR are the number and the total width of primary
period–p windows found, , Wp,PD is the number of period-doubling windows found

p Wp wp wp,max Wp,PR wp,PR wp,PR,max Wp,PD

7 1 1.188 · 10−3 1.188 · 10−3 1 1.188 · 10−3 1.188 · 10−3 0
8 1 3.493 · 10−4 3.493 · 10−4 1 3.493 · 10−4 3.493 · 10−4 0
9 1 4.646 · 10−5 4.646 · 10−5 1 4.646 · 10−5 4.646 · 10−5 0
10 4 2.245 · 10−4 9.284 · 10−5 4 2.245 · 10−4 9.284 · 10−5 0
11 5 8.916 · 10−5 4.563 · 10−5 5 8.916 · 10−5 4.563 · 10−5 0
12 7 1.548 · 10−5 4.685 · 10−6 7 1.548 · 10−5 4.685 · 10−6 0
13 15 5.553 · 10−5 1.863 · 10−5 15 5.553 · 10−5 1.863 · 10−5 0
14 23 6.252 · 10−4 5.952 · 10−4 22 3.002 · 10−5 1.320 · 10−5 1
15 36 6.014 · 10−6 1.142 · 10−6 36 6.014 · 10−6 1.142 · 10−6 0
16 65 1.884 · 10−4 1.737 · 10−4 64 1.467 · 10−5 2.443 · 10−6 1
17 106 1.352 · 10−5 2.510 · 10−6 106 1.352 · 10−5 2.510 · 10−6 0
18 171 2.543 · 10−5 2.326 · 10−5 170 2.176 · 10−6 1.755 · 10−7 1
19 292 4.882 · 10−6 4.081 · 10−7 292 4.882 · 10−6 4.081 · 10−7 0
20 484 1.169 · 10−4 4.618 · 10−5 480 4.678 · 10−6 5.487 · 10−7 4
21 794 2.253 · 10−5 2.174 · 10−5 793 7.878 · 10−7 3.230 · 10−8 0
22 1331 4.639 · 10−5 2.290 · 10−5 1326 1.779 · 10−6 1.515 · 10−7 5
23 2212 1.688 · 10−6 1.130 · 10−7 2212 1.688 · 10−6 1.130 · 10−7 0
24 3655 1.471 · 10−5 6.479 · 10−6 3647 4.881 · 10−7 5.894 · 10−8 7
25 6092 6.414 · 10−7 2.550 · 10−8 6092 6.414 · 10−7 2.550 · 10−8 0
26 10127 2.834 · 10−5 9.325 · 10−6 10112 5.783 · 10−7 2.377 · 10−8 15
27 16794 1.158 · 10−6 8.596 · 10−7 16793 2.980 · 10−7 2.705 · 10−8 0

≤27 42216 3.064 · 10−3 1.188 · 10−3 42179 2.051 · 10−3 1.188 · 10−3 34

28–224 843 3.910 · 10−4 1.404 · 10−4 0 0 0 464

all 43059 3.455 · 10−3 1.188 · 10−3 42179 2.051 · 10−3 1.188 · 10−3 498

number of UPOs found for a = 5.8 and a = 5.6. For example for p = 24 we have Wp = 3655, Wp,PD = 7,
2 · (Wp −Wp,PD) + Wp,PD = 7303 and Pp(a = 5.8) − Pp(a = 5.6) = 12034 − 4731 = 7303. This is due to the
following facts: (i) all sequences admissible for a = 5.6 are also admissible for a = 5.8, (ii) period-doubling
sequences admissible only for a = 5.8 lead to period-doubling windows (such sequences do not have even-parity
partners), and (iii) half of the remaining sequences admissible only for a = 5.8 lead to saddle-node windows (the
other half are their even-parity partners which do not produce new PWs). There is no case in which only one
periodic orbit was detected for a pair of a saddle-node sequence and its even-parity partner. These observations
further confirm that the symbolic dynamics approach permits finding all UPOs with a given period. The results
obtained also show that the continuation method works fine for small periods (a PW is found for each even
parity symbol sequence admissible only for one endpoint of the bifurcation interval). It is interesting to observe
that for even p the number Wp,PD of period-doubling windows is the same as the number Wp/2 of periodic
windows found for the period p/2. This means that all period-doubling bifurcations are correctly detected.

Let us note that for periods for which period-tupling windows exist (Wp,PR < Wp) those PWs have a
significant impact on the total window width wp. As an example let us consider the case p = 14 where the
number of primary windows is W14,PR = 22 and the total number of windows is W14 = 23. The only period-
tupling window has the width w14,max ≈ 5.952 · 10−4 while the total width of period–14 primary windows is
almost twenty times smaller w14,PR ≈ 3.002 · 10−5. For p = 16 the width of the only period-tupling window
w16,max ≈ 1.737 · 10−4 is more than 10 times larger than the total width of all 64 period–16 primary windows
w16,PR ≈ 1.467 · 10−5. Similar results are observed for larger periods. It follows that period-tupling windows
have dominant influence on the total width of period–p windows for large p. Let us also note that primary
windows with periods p ∈ {25, 26, 27} have widths below 3 · 10−8. Thus, one may expect that there are very
few (if any) primary windows with periods p ≥ 28 and widths above 3 · 10−8.

In order to improve the lower bound w≤27 ≈ 3.064 · 10−3 of the total width of PWs we look for wide period-
tupling windows with periods p ≥ 28. First, period-tupling sequences generated from the shortest primary
sequence s = (0010101) are constructed and corresponding period-tupling windows are found. This procedure
leads to 81 period-tupling windows with periods 28 ≤ p ≤ 210 and the total width of 2.112 · 10−4. Similar
computations are carried out for other primary windows with periods p ≤ 27. In this way 843 period-tupling
windows with periods 28 ≤ p ≤ 224 and the total width of 3.91 ·10−4 are found. The three widest period-tupling
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windows correspond to symbol sequences: (0010101)(1011), (00101111)(1011), (0010101)(10111010) with periods 28,
32, and 56. Their widths are 1.404 · 10−4, 4.1 · 10−5, and 3.084 · 10−5, respectively.
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Figure 6: Periodic windows with the width above 10−10 found in the region a ∈ [5.6, 5.8], b = 0.2. Primary and
period-tupling windows are plotted in blue and red, respectively.

Periodic windows found are plotted in Fig. 6. Results regarding primary and period-tupling windows are
plotted in blue and red, respectively. The total width of PWs found is 3.455 ·10−3 which is approximately 1.73%
of the width of the interval a ∈ [5.6, 5.8]. The closest periodic window to the classical case a = 5.7 is the period–
27 window with the width w ≈ 4.22 · 10−13. This periodic window contains the point a = 5.699999143892.
Its distance from a = 5.7 is less than 8.57 · 10−7. The maximum distance between periodic windows found is
smaller than 1.4 · 10−3, which indicates that PWs densely fill the interval a ∈ [5.6, 5.8] (compare also Fig. 6).

4.2 Periodic windows for a = 5.7, b ∈ [0.175, 0.215]

Let us now consider the interval (a, b) ∈ {5.7} × [0.175, 0.215]. The results concerning the number of periodic
orbits with periods p ≤ 27 found for a = 5.7 and b ∈ {0.175, 0.2, 0.215} are reported in Table 3. There are
P≤27 = 28732 and P≤27 = 221219 UPOs found for b = 0.175 and b = 0.215, respectively.

A systematic symbolic dynamics based procedure is applied to find PWs with periods p ≤ 27. The results
regarding the number of periodic windows and their widths are given in Table 4. W≤27 = 96280 periodic
windows are found. Their total width is w≤27 ≈ 1.036 · 10−2. The widest window has period p = 3 and the
width w ≈ 5.894 · 10−3. The narrowest window has period p = 27 and the width below 2 · 10−20.

Additionally, we find 3567 period-tupling windows with periods 28 ≤ p ≤ 160 and the total width 1.674·10−4.
Thus, the lower bound on the width of periodic windows in the interval b ∈ [0.175, 0.215] can be estimated as
1.053 · 10−2 which is approximately 26% of the width of the interval [0.175, 0.215]. The much larger coverage
of the bifurcation region by periodic windows when compared to the case considered in Section 4.1 is caused
by the presence of the wide period-3 window with the symbol sequence s = (001) and its period-tupling
descendants. The three widest period-tupling windows with periods above 28 correspond to symbol sequences:
(001)(1011101010111011), (001)(101111101110), (001)(1011010111) with periods 48, 36, and 30. Their widths are 3.359 ·
10−5, 1.45 · 10−5, and 1.122 · 10−5, respectively.

Periodic windows are plotted in Fig. 7. The closest periodic window to the classical case is period–27
window with the width 1.69 · 10−14 containing the point b = 0.19999996572539. Its distance from b = 0.2 is
less than 3.5 · 10−8. The second closest one is period–25 window with the width 1.14 · 10−13. It contains the
point b = 0.2000000949446 with the distance from b = 0.2 less than 9.5 · 10−8. Periodic attractors existing for
b = 0.19999996572539 and b = 0.2000000949446 are plotted in Fig. 8. Periodic windows densely fill the region
b ∈ [0.175, 0.215]—the maximum distance between periodic windows found is smaller than 7 · 10−4 (compare
Fig. 7).
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Figure 7: Periodic windows with the width above 10−10 found in the region a = 5.7, b ∈ [0.175, 0.215]. Primary
and period-tupling windows are plotted in blue and red, respectively.
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Figure 8: Periodic attractors of the Rössler system close to the classical case; (a) a = 5.7, b = 0.2000000949446,
period p = 25, (b) a = 5.7, b = 0.19999996572539, period p = 27.
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Table 3: The numbers Pp of unstable period–p orbits found, (a, b) ∈ {5.7} × {0.175, 0.2, 0.215}.
a = 5.7, b = 0.175 a = 5.7, b = 0.2 a = 5.7, b = 0.215

p Pp Qp Hp Pp Qp Hp Pp Qp Hp

1 1 1 0.00000 1 1 0.00000 1 1 0.00000
2 1 3 0.54931 1 3 0.54931 1 3 0.54931
3 0 1 0.00000 2 7 0.64864 2 7 0.64864
4 1 7 0.48648 1 7 0.48648 1 7 0.48648
5 2 11 0.47958 2 11 0.47958 2 11 0.47958
6 2 15 0.45134 3 27 0.54931 3 27 0.54931
7 4 29 0.48104 4 29 0.48104 6 43 0.53731
8 3 31 0.42925 7 63 0.51789 9 79 0.54618
9 8 73 0.47672 10 97 0.50830 14 133 0.54337
10 7 83 0.44188 15 163 0.50938 21 223 0.54072
11 16 177 0.47056 24 265 0.50725 36 397 0.54399
12 19 247 0.45912 36 463 0.51148 54 679 0.54339
13 32 417 0.46408 58 755 0.50975 90 1171 0.54351
14 44 647 0.46231 88 1263 0.51009 141 2019 0.54360
15 68 1031 0.46255 138 2087 0.50957 230 3467 0.54340
16 102 1663 0.46352 216 3519 0.51037 369 5983 0.54354
17 152 2585 0.46220 340 5781 0.50955 606 10303 0.54354
18 228 4191 0.46337 531 9675 0.50985 977 17739 0.54353
19 344 6537 0.46238 848 16113 0.50986 1608 30553 0.54354
20 522 10527 0.46308 1330 26767 0.50975 2619 52607 0.54353
21 788 16577 0.46266 2120 44555 0.50974 4312 90601 0.54353
22 1196 26491 0.46293 3364 74275 0.50980 7074 156027 0.54354
23 1824 41953 0.46280 5368 123465 0.50973 11682 268687 0.54353
24 2768 66703 0.46283 8551 205743 0.50977 19248 462703 0.54354
25 4240 106011 0.46285 13698 342461 0.50976 31872 796811 0.54353
26 6454 168223 0.46281 21899 570131 0.50975 52729 1372127 0.54353
27 9906 267535 0.46285 35154 949255 0.50976 87512 2362957 0.54353

≤ 27 28732 720485 0.46285 93809 2374821 0.50976 221219 5632249 0.54353

5 Conclusions

An efficient systematic method to locate and prove the existence of periodic windows was introduced. The
method is based on the symbolic dynamics based approach to locate unstable periodic orbits (UPOs) and the
continuation method to find periodic windows. Symbolic dynamics representation of trajectories is used to find
initial guesses for positions of periodic orbits. It is also used to exclude certain symbol sequences to speed up
the search process in finding periodic orbits and to select symbol sequences which may lead to periodic windows
in the region of interest. The classical method of finding periodic windows which is based on the construction of
bifurcation diagrams is not capable of finding narrow periodic windows due to the necessity of very fine sampling
of the parameter space and long convergence times to observe periodic attractors existing for narrow periodic
windows. The proposed method was applied to study the existence of periodic windows for the Rössler system
in a region of the parameter space close to the classical parameter values. Several thousands of periodic windows
have been identified, their existence was proved using rigorous computational methods and lower bounds on the
measure of the set of regular parameters was computed. Periodic attractors existing for parameter values very
close to the classical case (a, b) = (5.7, 0.2) were found. More precisely, it was proved that there exist periodic
attractors for (a, b) = (5.699999143892, 0.2) and (a, b) = (5.7, 0.2000000949446).
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