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1. Introduction

Interval arithmetic approach [1,2] can be used for rigorous integration of ordinary differential equations [3,4].
ontinuous piecewise linear (PWL) systems are an important class of nonlinear systems. For these systems the state
pace contains hyperplanes (referred to in the following as C0-hyperplanes) where the vector field is not smooth. Standard
igorous integration methods work under the assumption that the vector field is smooth and cannot be directly applied to
ompute all types of trajectories existing in PWL systems. When intersections of trajectories with the C0-hyperplanes are
ransversal it is possible to extend methods developed for smooth systems to integrate PWL systems. This can be achieved
y using the C0-hyperplanes as transversal sections. When a trajectory intersects a C0-hyperplane Σ , its intersection
ith Σ is computed and the result is used as a set of initial conditions for further computations. This approach is used

or example to prove the existence of a trapping region for the return map associated with the Chua’s circuit when the
ttractor does not contain trajectories tangent to the C0-hyperplanes [5]. The method fails if the attractor contains tangent
rajectories.

In this work, a general technique to find enclosures of trajectories passing close to C0-hyperplanes is presented. The
echnique is based on the theory of differential inclusions used to obtain estimates for solutions of perturbed continuous
ynamical systems [6,7]. This approach is general. It can be used to cross C0-hyperplanes when trajectories are transversal
nd to compute enclosures of trajectories tangent to C0-hyperplanes. It is shown that in case of transversal trajectories,
he proposed technique provides narrower enclosures than the standard method based on computation of intersection of
rajectories with C0-hyperplanes. The second type of trajectories for which it is difficult to compute rigorous enclosures
re trajectories passing close to an unstable equilibrium. Methods to cope with such trajectories in case of saddle and
addle-focus equilibria are presented.
As an example of a continuous piecewise linear system we consider the Chua’s circuit [8–11]. The Chua’s circuit

upports various types of chaotic attractors [12]. There are several rigorous results regarding the dynamics of the Chua’s
ircuit. The existence of a homoclinic orbit for some unknown parameter values within a certain range is shown in [13].

E-mail address: galias@agh.edu.pl.
ttps://doi.org/10.1016/j.cnsns.2021.106109
007-5704/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
icenses/by/4.0/).

https://doi.org/10.1016/j.cnsns.2021.106109
http://www.elsevier.com/locate/cnsns
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2021.106109&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:galias@agh.edu.pl
https://doi.org/10.1016/j.cnsns.2021.106109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Z. Galias Communications in Nonlinear Science and Numerical Simulation 107 (2022) 106109

u

r
e
s
a
u
t

t

t

t

l

The existence of a nontrivial symbolic dynamics embedded in the double-scroll attractor is proved in [14]. The existence
of a trapping region for the double-scroll attractor is proved in [15]. The existence of a trapping region for the spiral
attractor in the Chua’s circuit is studied in [16]. A trapping region for the spiral attractor is constructed in [5]. The case
of the spiral attractor containing trajectories tangent to C0-hyperplanes is considered in [17]. In [18], the existence of
nstable periodic orbits in the spiral attractor is proved using a functional analytic approach based on Chebyshev series.
Presented methods are applied to the dimensionless form the Chua’s circuit. Three different types of chaotic attractors

eported in [12] are selected: the spiral attractor, the double-scroll attractor [9] and the double-hook attractor [19]. For
ach chaotic attractor the existence of a trapping region enclosing the attractor is proved. The spiral attractor is the
implest one since it does not contain trajectories passing close to C0-hyperplanes or unstable equilibria. The double-scroll
nd the double-hook attractors have more complex structures. These attractors are singular in the sense that they contain
nstable equilibria. For the double-scroll attractor the equilibrium belonging to the attractor is a saddle-focus, while for
he double-hook attractor the equilibrium is a saddle. Both attractors contain trajectories tangent to C0-hyperplanes.

In the following, boldface is used to denote intervals, interval vectors and matrices, and the usual math italics is used
o denote point quantities. For a given interval x = [x, x] its diameter is defined as diam(x) = x − x. The diameter of the
interval vector x = (x1, x2, . . . , xn) is defined as the maximum of diameters diam(xk). Interval computations are carried
out using the CAPD library [4]. For integration of piecewise linear vector fields a specialized package is developed.

The remaining part of this paper is organized as follows. In Section 2, algorithms for rigorous integration of continuous
PWL systems are presented. A procedure to find enclosures of trajectories passing close to C0-hyperplanes and passing
close to unstable equilibria are presented. In Section 3, rigorous analysis of the Chua’s circuit is carried out. The algorithms
to find enclosures of trajectories of PWL systems are compared in terms of the accuracy of enclosures. Three sets of
parameter values are considered for which the spiral, the double-scroll and the double-hook attractors are observed in
simulations. For each case a candidate for a trapping region enclosing the attractor is constructed and it is proved that
the candidate is indeed a trapping region. The last section concludes the study.

2. Rigorous integration of continuous PWL systems

Let us consider an ordinary differential equation

ẋ = f (x), (1)

where f :Rn
↦→ Rn is a continuous piecewise linear (PWL) map. By x(t) = ϕ(t, x̂) we denote the solution of (1) satisfying

he initial condition x(0) = x̂.
We assume that the state space Rn is split into m regions R1, R2, . . . , Rm separated by hyperplanes Σ1, Σ2, . . . , Σp and

that in the region Rk the state equation (1) has the form

ẋ = Akx + bk, (2)

where Ak ∈ Rn×n, and bk ∈ Rn. The regions Rk are referred to as linear regions. The hyperplanes Σk are referred to as
C0-hyperplanes. If Ak is invertible then in the linear region Rk solutions can be computed as

x(t) = ϕk(t, x(0)) = eAkt (x(0) − x⋆
k) + x⋆

k, (3)

where x⋆
k = −(Ak)−1bk.

In this section, we discuss how to find an enclosure of the set ϕ(t, x) = {ϕ(t, x) : t ∈ t, x ∈ x} for a given
interval t = [t, t] with t > 0 and an interval vector x ⊂ Rn.

2.1. Standard approach

First, let us assume that trajectories based at x stay in a single linear region Rk for t ∈ [0, t]. In this case the problem
of finding an enclosure of ϕ(t, x) can be solved by evaluating the formula (3) in interval arithmetic, i.e.

ϕ(t, x) = ϕk(t, x) ⊂ y = eAkt(x − x⋆
k) + x⋆

k. (4)

One may also use a standard rigorous integration method for example the Lohner method [3], which is implemented in
the CAPD library [4]. Simulations show that the if a proper representation of the solution set is used in the Lohner method
then the results obtained are practically the same as using the formula (4).

Let us now assume that trajectories starting at x ⊂ Rk enter another linear region Rl through the hyperplane Σj, and
intersections of trajectories with Σj are transversal. The first step is to find s > 0 such that ϕk([0, s], x) ∈ Rk and s > s such
hat ϕk(s, x) ⊂ Rl. To minimize the width of the interval s = [s, s] one may use the bisection technique. Next, one evaluates
y = ϕk(s, x) and finally, the intersection z = y∩Σj is computed. In case the plane Σj is of the form xr = c , the intersection
can be easily obtained by setting zr = c and zi = yi for i ̸= r . In a general setting, one should select a coordinate system
in Σj to reduce the wrapping effect when computing the intersection (compare [20]). These computations are equivalent
to the evaluation of the return map defined by the plane Σj. To reduce overestimation in the evaluation of the return
map one may use the interval Newton method to obtain an accurate enclosure of the return time (compare [20]). The set
z serves as a set of initial conditions for further computations.

The method presented in this section fails if for some x ∈ x, a trajectory ϕ([0, t], x) is tangent to a hyperplane separating
inear regions. This case is handled in the following section.
2
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2.2. Crossing C0-hyperplanes by integrating a perturbed linear system

In this section, we recall the method to compute enclosures of trajectories intersecting C0-hyperplanes based on
integration of perturbed vector fields [6,7]. Intersections do not have to be transversal. This method has been originally
presented in [17]. The method is based on the following theorem [7,17] to compute enclosures of solutions of perturbed
vector fields:

Theorem 1. Let x(t) and y(t) be solutions of ẋ = f (x) and ẋ = g(x), respectively, where x ∈ Rn, f :Rn
↦→ Rn, g :Rn

↦→ Rn is
1, and x(0) = y(0). Let us assume that x(t), y(t) ∈ D ⊂ Rn for t ∈ [0, h], where the set D is bounded, closed, and convex. Let

us select c ∈ Rn and B ∈ Rn×n such that ci ≥ supx∈D |gi(x(t)) − fi(x(t))|, bij ≥ supx∈D

⏐⏐⏐ ∂gi∂xj
(x)
⏐⏐⏐ for i ̸= j, and bii ≥ supx∈D

∂gi
∂xi

(x).

hen |yi(t) − xi(t)| ≤ ∆i for t ∈ [0, h], where ∆ =
∫ t
0 eB(t−s)cds.

Now, we show how to use Theorem 1 to integrate the PWL system (1) in a neighborhood of a C0-hyperplane. Let us
assume that the interval vector x ⊂ Rk contains a point x̂ such that ϕ([0, τ̂ ), x̂) ⊂ Rk and ϕ(τ̂ , x̂) ∈ Σj, where Σj is the
yperplane separating the linear regions Rk and Rl. The goal is to find τ ≥ τ̂ such that ϕ(τ , x) ∩ Σj = ∅ and to compute
n enclosure of ϕ(τ , x).
The procedure starts by finding τ >0 such that ϕk([0, τ ], x) ⊂ Rk and an enclosure u of ϕk(τ , x) such that u ⊂ Rk. The

set u serves as an initial condition for crossing the plane Σj. To reduce overestimation, τ should be as large as possible.
It can be optimized using the bisection method.

In the second part of the procedure, the PWL system (1) is treated as a perturbed linear system:

ẋ = g(x) = Akx + bk. (5)

We first select τ and find an enclosure v of the solution ϕk([0, τ ],u) of the linear system (5). The set v is then inflated to
orm the interval vector w ⊃ v, which serves as a guess of the set containing the solution ϕ([0, τ ],u) of the PWL system.

Next, one evaluates the vector c = supx∈w |g(x) − f (x)|. The difference between g and f is zero over the region Rk and
for the region Rl can be computed as g(x)− f (x) = (Ak−Al)x+bk−bl. The matrix B defined in Theorem 1 can be computed
as Bij = |(Ak)ij| for i ̸= j and Bii = (Ak)ii. When B is invertible the bound ∆ on the difference in solutions can be computed
as ∆ =

∫ τ

0 eB(τ−s)cds = B−1
(
eBτ − I

)
c.

In the final step the condition v+[−1, 1]∆ ⊂ w is verified. If this condition is satisfied then it follows from Theorem 1
that the solution of the PWL system is enclosed in v+[−1, 1]∆ and that ϕ(τ ,u) ⊂ z = ϕk(τ ,u)+[−1, 1]∆. If z∩Σj = ∅

then the procedure is completed and we may continue the integration in the next linear region starting from the set z.
In the opposite case one may increase τ or increase w and repeat the computations. For the details see [17].

Note that in the second part of the procedure, the PWL system (1) is treated as a perturbed linear system (5). Another
choice is to consider a perturbation of the linear system ẋ = Alx+bl. This may lead to a narrower enclosure of the solution
in the next linear region. One may also compute two enclosures and select the one with a smaller diameter. Or better
yet, one may compute the intersection of the two solutions found provided that τ is the same for both enclosures. The
erformance of these extended versions has not been tested.
In the algorithm presented above it is assumed that trajectories visit at most two linear regions in the time interval

∈ [τ , τ ]. One may easily extend the algorithm to handle trajectories visiting more than two linear regions. The only
difference in the computational procedure is the way how the bounds ci on |gi(x) − fi(x)| are computed. One has to
compute the supremum of |(Ak − Ali )x + bk − bli | for x ∈ w∩Rli for all linear regions Rli involved. For the system considered
n Section 3 such an extension is not necessary since for this system the C0-hyperplanes are parallel.

The algorithm presented in this section can be used to find enclosure of trajectories transversal and tangent to C0-
yperplanes. The classical approach based on the computation of the intersection of trajectories with Σj cannot be used
o handle tangent intersections. It is shown in Section 3 that the algorithm based on integrating a perturbed linear system
utperforms the classical approach also in case of transversal intersections.

.3. Integration of linear vector fields near unstable equilibria

In this section, we present methods to integrate linear vector fields near unstable equilibria. The algorithms presented
n the previous section cannot handle such trajectories because the integration time for a trajectory passing close to
n equilibrium may be arbitrarily large. For simplicity, we assume that the vector field is three-dimensional although the
ethod can be applied to systems with an arbitrary dimension. Without loss of generality we assume that the equilibrium

s located at the origin and the vector field has the diagonal form

ẋ = Dx. (6)

e consider the most important case in which the stable manifold is two-dimensional and the unstable manifold is
ne-dimensional. We will separately consider the case of a saddle (one positive and two negative real eigenvalues) and
saddle-focus (one positive real eigenvalue and a pair of complex conjugate eigenvalues with negative real parts).
3
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2.3.1. Saddle equilibrium
For an equilibrium of a saddle type the matrix D defining the vector field at the equilibrium has one positive and two

negative real eigenvalues. The linear system in a diagonal form can be written as(ẋ1
ẋ2
ẋ3

)
=

(
λ 0 0
0 λ2 0
0 0 λ3

)(x1
x2
x3

)
= Dx (7)

with λ > 0 > λ2 > λ3. The method to handle this case is similar to the method presented in [21], where the problem of
integration of the Lorenz system near the origin has been studied.

The two-dimensional stable manifold of the equilibrium is Ws = {x = (x1, x2, x3) : x1 = 0} and the one-dimensional
unstable manifold is Wu = {x : x2 = x3 = 0}. Trajectories starting in Ws converge to the origin. If x1(0) ̸= 0 then
the trajectory converges to the unstable manifold Wu. The solution of (7) is x1(t) = eλt x1(0), x2(t) = eλ2t x2(0),
x3(t) = eλ3t x3(0).

Let us consider the cuboid C(h̄, h̄2, h̄3) = {x : |x1| ≤ h̄, |x2| ≤ h̄2, |x3| ≤ h̄3} and select x(0) ∈ C(h̄, h̄2, h̄3). If x1(0) = 0
hen the trajectory x(t) converges to the origin. Otherwise, the trajectory x(t) exits the cuboid after the exit time

T = λ−1 log(h̄/|x1(0)|), (8)

nd the exit point is

x1(T ) = sgn(x1(0))h̄, x2(T ) = eλ2T x2(0), x3(T ) = eλ3T x3(0). (9)

Let us now consider an arbitrary entry set E = (x1, x2, x3) = ([x1, x1], [x2, x2], [x3, x3]) ⊂ C(h̄, h̄2, h̄3). First, we assume
hat 0 does not belong to the interior of x1, i.e., x1x1 ≥ 0. Let us denote hmin = min{|x1|, |x1|} and hmax = max{|x1|, |x1|}.
We assume that hmax is positive, i.e., at least one endpoint of x1 is nonzero. From (8) it follows that the exit time for the
entry set considered is the interval

T = [Tmin, Tmax] = λ−1 log(h̄/[hmin, hmax]) = [λ−1 log(h̄/hmax), λ−1 log(h̄/hmin)] (10)

nd the exit set is enclosed in the rectangle

S = (sgn(x1)h̄, eλ2T x2, eλ3T x3). (11)

et us note that if hmin = 0 then the return time may be arbitrary large, i.e., T = [Tmin, ∞).
If the interval x1 contains 0 in the interior then there are two exit sets which can be computed by applying the

rocedure presented above to two entry sets: E1 = ([x1, 0], x2, x3) and E2 = ([0, x1], x2, x3).
An example is shown in Fig. 1. We consider the cuboid C(h̄, h̄2, h̄3) with h̄ = h̄2 = h̄3 = 1. The entry set

x : |x1| ≤ 0.1, −0.2 ≤ x2 ≤ 0.8, x3 = h̄3} plotted in magenta is enclosed in the upper side of the cuboid. Example
rajectories starting in the entry set are plotted in green. One can see that trajectories starting at the stable manifold
x1 = 0) converge to the origin. Other trajectories exit the cuboid through one of the filled cyan regions enclosed in
he cuboid sides {x : |x1| = h̄, |x2| ≤ h̄2, |x3| ≤ h̄3}. Similar behavior can be seen for the entry set {x : |x1| ≤ h̄, |x2| =

h̄2, −0.6 ≤ x3 ≤ −0.3} enclosed in the front side of the cuboid (see Fig. 1).
The formulas (10) and (11) can be used to compute the exit times and exit sets for an arbitrary entry set enclosed

n the cuboid C(h̄, h̄2, h̄3). An alternative version can be applied if we only know bounds on the absolute values of each
oordinate. If the entry set is enclosed in the cuboid C(h, h2, h3) ⊂ C(h̄, h̄2, h̄3) then the exit time belongs to the interval

T = [Tmin, ∞] = [λ−1 log(h̄/h), ∞] (12)

nd the exit is enclosed in the union of two rectangles

S = (±h̄, [− eλ2Tmin h2, eλ2Tmin h2], [− eλ3Tmin h3, eλ3Tmin h3]). (13)

An example is shown in Fig. 1. The border of the entry set which is the cuboid C(h, h̄2, h̄3) ⊂ C(h̄, h̄2, h̄3) with h = 0.1
s plotted in magenta. All trajectories starting in this entry set either converge to the origin (if x1(0) = 0) or exit the
uboid through one of the exit rectangles whose borders are plotted in cyan.

.3.2. Saddle-focus equilibrium
In this case, the matrix D has one positive real eigenvalue (λ > 0), and a pair of complex conjugate eigenvalues with

egative real parts (λ2,3 = α ± iβ , α < 0). The linear system in a diagonal form can be written as(ẋ1
ẋ2
ẋ3

)
=

(
λ 0 0
0 α β

0 −β α

)(x1
x2
x3

)
= Dx (14)

ith λ > 0, α < 0, and β > 0. This case has been considered in [15]. The structure of stable and unstable manifolds is
he same as in the previous case, i.e., Ws = {x : x1 = 0}, Wu = {x : x2 = x3 = 0}. The solution of (14) is x1(t) = eλt x1(0),
(t) = eαt (cos(βt)x (0) + sin(βt)x (0)), x (t) = eαt (− sin(βt)x (0) + cos(βt)x (0)).
2 2 3 3 2 3

4
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Fig. 1. Integration of the system (7) with λ = 0.7, λ2 = −0.3, λ3 = −0.6 near the origin, the cuboid C(h̄, h̄2, h̄3) with h̄ = h̄2 = h̄3 = 1 is plotted in
black, entry sets {x : |x1| ≤ h̄, −0.2 ≤ x2 ≤ 0.8, |x3| = h̄3} and {x : |x1| ≤ h̄, |x2| = −h̄2, −0.6 ≤ x3 ≤ −0.3} are plotted in magenta, for each entry set
the corresponding exit set (plotted in cyan) has two components enclosed in the cuboid bases.

Consider the cylinder C(h̄, r̄) = {x : |x1| ≤ h̄, x22 + x23 ≤ r̄2} and select an initial point x(0) ∈ C(h̄, r̄). For x1(0) = 0 the
trajectory converges to the origin. For x1(0) ̸= 0 the trajectory exits the cylinder through one of its bases after the exit
time T given by (8). The position of the exit point is

x1(τ ) = sgn(x1(0))h̄,

x2(τ ) = eαT (cos(βT )x2(0) + sin(βT )x3(0)), (15)

x3(τ ) = eαT (− sin(βT )x2(0) + cos(βT )x3(0)).

Let us now consider an arbitrary entry set E = (x1, x2, x3) = ([x1, x1], [x2, x2], [x3, x3]) ⊂ C(h̄, r̄). First, we assume that
does not belong to the interior of x1. Let us denote hmin = min{|x1|, |x1|} and hmax = max{|x1|, |x1|}. The exit time for

the entry set considered is the interval T defined in (10). An enclosure of the exit set can be computed as

S = (sgn(x1)h̄, eαT(cos(βT)x2 + sin(βT)x3), eαT(− sin(βT)x2 + cos(βT)x3)). (16)

he formula (16) may lead to overestimation due to the wrapping effect. An alternative version is based on the bound on
he radius of the entry set. Let us assume that the entry set is enclosed in the cylinder E = {x : x ∈ x1, x22 + x23 ≤ r2} ⊂

(h̄, r̄). The exit time is the interval T defined in (10) and the exit set in enclosed in the circle

S = {x : x1 = sgn(x1), x22 + x23 ≤ e2αTmin r2}. (17)

If the interval x1 contains 0 in the interior then there are two exit sets which can be computed by applying the
rocedure presented above to two entry sets: E1 = E ∩ {x : x1 ≤ 0} and E2 = E ∩ {x : x1 ≥ 0}.
An example is shown in Fig. 2. The cylinder C(h̄, r̄) with h̄ = 1 and r̄ = 1 is plotted in black. The entry set

x : |x1| ≤ h̄, x2 = r̄ cos(ϕ), x3 = r̄ sin(ϕ), 0.625π ≤ ϕ ≤ 0.57π} is plotted in magenta. Several trajectories starting in
he entry set are plotted in green. Trajectories starting in the stable manifold (x1 = 0) converge to the origin. Other
rajectories exit the cylinder through the exit sets plotted in cyan. For the entry set {x : |x1| ≤ 0.1, x22 + x23 = r̄2} whose
border is plotted in magenta, the exit set is the union of two disks whose borders are plotted in cyan.

2.3.3. Integration procedure
If the vector field ẋ = Ax + b is not in one of the diagonal forms (7) or (14) the computational procedure to

integrate the linear vector field in a neighborhood of the equilibrium x⋆
= −A−1b is as follows. Let E be the matrix
5
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Fig. 2. Integration of the system (14) with λ = 0.7, α = −0.3, β = 1 near the origin; the cylinder C(h̄, r̄) with h̄ = r̄ = 1 is plotted in black,
the entry set {x : |x1| ≤ h̄, x2 = r̄ cos(ϕ), x3 = r̄ sin(ϕ), 0.5π ≤ ϕ ≤ 0.8π} is plotted in magenta, the exit set plotted in cyan is the union of two
spiral-shaped regions enclosed in the cylinder bases.

transforming A into the diagonal form, i.e. D = E−1AE. The linear transformation converting ẋ = Ax + b to the diagonal
form ẏ = Dy is x = Ey − A−1b (y = E−1x + E−1A−1b). After entering the linear region containing the equilibrium
under study, first the coordinate change y = E−1x + E−1A−1b is applied. Next, the distance between the enclosure
y = (y1, y2, y3) of the trajectory in the new coordinates and the stable manifold is computed. The distance can be
computed as d = miny1∈y1{|y1|}. In the distance is sufficiently large, we may apply a standard integration procedure
to integrate the system within this linear region. Otherwise, we select h̄ which defines the distance of the exit set from
the equilibrium along the unstable manifold. h̄ should be selected as large as possible under the constrain that the exit
set is enclosed in the given linear region. If the trajectory has a nonempty intersection with the stable manifold (d = 0)
then we split the entry set into two parts E1 = y∩{y : y1 ≤ 0}, E2 = y∩{y : y1 ≥ 0}. Otherwise we consider a single entry
set E = y. For each part of the entry set the exit time T is computed using the formula (10). An enclosure of the exit set S
is computed using formulas depending on the stability type of the equilibrium. In case of a saddle we use (11) or (13). In
case of a saddle-focus we use (16) or (17). In the final step, we convert the exit set to the original coordinates and verify
that the exit set is enclosed in the given linear region. This completes the procedure to integrate the vector field near an
unstable equilibrium.

2.4. Evaluation of return maps

Let us consider the return map P defined by the set S being the union of hyperplanes Sk, i.e., S =
⋃

k Sk. S is called the
return set. We assume that intersection of trajectories of interest with the return set S are transversal. The return map
for x ∈ Rn is defined as P(x) = ϕ(τ (x), x), where τ (x) > 0 is the first time at which the trajectory ϕ(t, x) returns to S.

In this section, we discuss how to rigorously evaluate return maps for continuous PWL systems. The problem is to find
an enclosure of the set P(x), where x is an interval vector enclosed in S.

The first option to solve the problem is to use general rigorous integration techniques. This is possible if trajectories
ϕ([0, τ (x)], x) intersect C0-hyperplanes transversally and do not intersect stable manifolds of system’s equilibria. In this
case C0-hyperplanes must be included in the set of hyperplanes defining the return map P . In this approach, first, an
enclosure t = [t1, t2] of the return times {τ (x) : x ∈ x} is computed. Next, an enclosure y of ϕ(t, x) is evaluated and finally
the intersection z of y and the return set S is computed. The intersection z is an enclosure of P(x). For finding t and the
evaluation of ϕ(t, x) one may use either the formula (4) for the solution of a linear system or standard rigorous integration
methods. In both cases, to reduce overestimation the interval Newton method may be used to obtain narrow enclosures
of return times (compare [20]).
6
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The second option is to cross C0-hyperplanes by integrating a perturbed linear system. In this case C0-hyperplanes do
ot have to be included in the set of planes defining the return map. This option may be used for the case of transversal
nd non-transversal intersections with C0-hyperplanes.
Let us now consider trajectories with infinite return times. This case corresponds to the situation in which for some

∈ x trajectories ϕ(t, x) converge to an unstable equilibrium. In this case for rigorous evaluation of P one may use methods
resented in Section 2.3. Trajectories belonging to the stable manifold of the equilibrium converge to this equilibrium.
or other trajectories the return time is unbounded and the image of x under the map P is composed of two components
s shown in Section 2.3.

. Rigorous analysis of the Chua’s circuit

Let us consider the Chua’s circuit [11], a third-order continuous PWL system described by the following set of ordinary
ifferential equations:

C1v̇1 = (v2 − v1)/R − g(v1),

C2v̇2 = (v1 − v2)/R + i, (18)

Li̇ = −v2 − R0v3,

here g(z)=Gbz + 0.5(Ga − Gb)(|z+1| − |z−1|) is a three segment PWL characteristics.
Using the notation x1 = v1, x2 = v2, x3 = Ri, rescaling time t ′ = t/(RC2), and defining parameters α = C2/C1,

β = R2C2/L, γ = RR0C2/L, m0 = RGa, m1 = RGb the circuit equations can be rewritten in the dimensionless form as

ẋ1 = α(x2 − x1 − h(x1)),

ẋ2 = x1 − x2 + x3, (19)
ẋ3 = −βx2 − γ x3,

where h(x) = m1x + 0.5(m0 − m1)(|x + 1| − |x − 1|). Both systems (18) and (19) have three linear regions R1 = {x ∈

R3
: x1 ≤−1}, R2 = {x : |x1|≤1} and R3 = {x : x1 ≥1} separated by planes Σ1 = {x : x1 =−1} and Σ2 = {x : x1 =1}.
For the dynamical system (19) the linear system in the region R1 is defined as

ẋ = A1 + b1 =

(
−α(1 + m1) α 0

1 −1 1
0 −β −γ

)(x1
x2
x3

)
+

(
−α(m0 − m1)

0
0

)
. (20)

n the region R2 the linear system is defined as

ẋ = A2x + b2 =

(
−α(1 + m0) α 0

1 −1 1
0 −β −γ

)(x1
x2
x3

)
+

(0
0
0

)
. (21)

n the region R3 the linear system is ẋ = A3x + b3 with A3 = A1 and b3 = −b1.
Under the assumption (m1 − m0)(β + γ )/(m1γ + m1β + β) > 1 the system has three equilibria: the origin (0, 0, 0)

nd a pair of symmetric equilibria defined by ±x⋆
= ±(m1 − m0)/(m1γ + m1β + β)(β + γ , γ ,−β).

We will consider three sets of parameters for which various types of chaotic attractors are observed [12]:

spiral attractor: α = 6.5792, β = 10.9, γ = −0.0446,m0 = −1.182,m1 = −0.652, (22)

double-scroll attractor: α = 9.3515, β = 14.79, γ = 0,m0 = −1.138,m1 = −0.722, (23)

double-hook attractor: α = −6, β = −4.442, γ = 0,m0 = −2.265,m1 = −0.93. (24)

Example trajectories are shown in Fig. 3.

3.1. Comparison of algorithms

In this section, we compare different methods for the computation of enclosures of trajectories of PWL systems.
Three versions are considered. In the first two versions, when a trajectory intersects a C0-hyperplane an enclosure of
the intersection is computed and this enclosure is used as an initial condition for the integration in the next linear region.
In the first version, integration in the linear region is carried out using formula (4). The intersection time is not optimized
using the interval Newton method. In the second version the CAPD library is used for the integration of the system in a
linear region and the intersection time is optimized using the interval Newton method. In the third version intersections
of trajectories with C0-hyperplanes are not found. Instead, C0-hyperplanes are passed by integrating a perturbed linear
system using the algorithm presented in Section 2.2.

As an example let us consider parameter values (23) and two initial points: x = (1.5, −0.0441, −1.6481), x =

(1.5, 0.2242, −0.6895). Diameters of enclosures of trajectories versus the integration time obtained using the three
7
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Fig. 3. Computer generated trajectories: (a) spiral attractor, (b) double scroll attractor, (c) double-hook attractor, (d) double-hook attractor,
neighborhood of the origin.

versions are shown in Fig. 4. Intersection with C0-hyperplanes are marked as gray vertical dashed lines. In both cases
he third algorithm provides best (most accurate) enclosures. The first version outperforms the second version for narrow
nclosures. For wider enclosures the second version works better than the first one and in consequence the second version
ermits longer integration. One can see that intersections correspond to sudden increases in the size of the result for
he first and the second version. It follows that finding intersections with C0-hyperplanes introduces an overestimation
f the enclosure. In the second example none of the first two versions is capable to cross the 7th intersection with C0-
yperplanes in spite of the fact that the size of enclosures is not large, especially for the second version. The reason is that
he 7th and the 8th intersections are located close to each other which means that intersections are close to tangential.
he third version can handle this trajectory and computes 15 intersections with C0-hyperplanes.
The third version which is based on the integration of a perturbed linear system is the only choice to find enclosures

f trajectories tangent to C0-hyperplanes. Examples presented above show that the third version is the preferred choice
lso in case of transversal intersections.

.2. Trapping regions

To show the usefulness of the proposed algorithms, we prove the existence of trapping regions enclosing the spiral,
he double-scroll and the double-hook attractors. We say that a set Ω is a trapping region for the map P if it is positively
nvariant under the action of this map, i.e. P(x) ∈ Ω for all x ∈ Ω . Each trajectory starting in a trapping region Ω
tays there forever. Proving that a certain set enclosing an attractor is a trapping region requires handling all trajectories
elonging to the attractor. This may be more challenging than other problems regarding nonlinear dynamical system
hich do not necessarily require finding enclosures of ‘‘difficult’’ trajectories. For example, proving the existence of
ontrivial symbolic dynamics and hence positive topological entropy for the double-scroll attractor does not require
andling trajectories tangent to C0-hyperplanes nor trajectories passing close to unstable equilibria [14].

.2.1. The spiral attractor
Let us first consider the parameter values (22) for which the spiral attractor is observed in computer simulations

compare Fig. 3(a)). Let us note that the attractor does not intersect the plane Σ = {x : x = −1}. Trajectories intersect
1 1

8



Z. Galias Communications in Nonlinear Science and Numerical Simulation 107 (2022) 106109

I

t

f
w
g
i

o

t

o

Fig. 4. Comparison of algorithms for finding enclosures of trajectories. The plots present the diameter of enclosures versus the integration time.
nitial conditions: (a) x = (1.5, −0.0441, −1.6481), (b) x = (1.5, 0.2242, −0.6895).

he plane Σ2 = {x : x1 = 1} transversally. This means that the return map associated with the plane Σ2 is continuous
over the attractor.

The intersection of a trajectory with Σ2 is plotted in Fig. 5 in blue. The red star and the magenta segment denote
intersections of the unstable and stable manifold of the origin with the plane Σ2. Since the trajectory is located far away
rom the stable manifold it follows that the origin does not belong to the attractor. The green segment contains points
here the vector field in tangent to Σ2. The trajectory is composed of two separated parts located on different sides of the
reen segment. These two parts correspond to different directions with which trajectories intersect Σ2. From the picture
t follows that intersections of trajectories with the plane Σ2 are transversal over the attractor.

Let us select the return map P defined by the set S2 = {x : x1 = 1.5}. A trajectory of P is shown in Fig. 5(b). The
procedure to find a trapping region for P starts with the construction of a candidate set. A candidate is constructed using
the following two properties. First, it should enclose an observed attractor, so that the dynamics is captured by the set
selected. Second, the image of the border of the candidate set (computed non-rigorously) should be enclosed within this
set.

The set Ω selected as a trapping region candidate is composed of two polygons Q1 and Q2 (see Fig. 5(c)). The definition
f Ω is given in Appendix.
In order to prove that Ω is a trapping region one has to show that P(x) ∈ Ω for each x ∈ Ω . In our case it is sufficient

o prove that the image of the border ∂Ω of Ω is enclosed in Ω . This can be done by covering the set ∂Ω by interval
vectors x(k) (boxes), computing enclosures y(k) of images P(x(k)) and verifying that y(k) ⊂ Ω for each k. For the covering
f ∂Ω a subdividing technique is used. For more details see [14].
During the proof the border ∂Ω is covered by 2214 interval vectors x(k) and the condition P(x(k)) ⊂ Ω is veri-

fied. The computation time is approximately 7 s using a single-core 3.1 GHz computer. Example trajectories starting
at the borders of Q1 and Q2 are plotted in Fig. 5(d) in black and blue, respectively. All trajectories starting at Q1
(with initial conditions x = (1.5, 0.1266747868, −0.9873417722), x = (1.5, 0.2577344702, −1.3429228999), x =

(1.5, 0.3610231425, −0.9321058688)) return to Σ2 staying in a single linear region. For Q2 the situation is different.
The trajectory starting at x = (1.5, −0.13333982947, −1.9547986191) has no intersection with Σ2 before returning to
S2. The initial point x = (1.5, −0.190461322601, −2.19811663062) belongs to a box for which a tangent intersection
with Σ2 is detected. The trajectory starting at x = (1.5, −0.23703148475, −2.35878928756) has two intersections with
Σ2 before returning to S2. Let us note that completing the proof requires handling trajectories which are tangent to Σ2
although the spiral attractor does not contain such trajectories (compare Fig. 3(a)). The reason is that the trapping region
is considerably larger than the attractor (compare Fig. 5(b,c)).

3.2.2. The double-scroll attractor
As a second example, we consider the double scroll attractor existing for parameter values (23). In Fig. 3(b) one can

see that some trajectories are tangent to the C0-hyperplanes, and hence standard rigorous integration methods cannot
be used to handle all trajectories belonging to the attractor. Moreover, the double scroll attractors contains the origin—an
unstable equilibrium. The eigenvalues of A2 are λ1 ≈ 2.240744, λ2,3 ≈ −0.975118±2.750840 i. It follows that the origin is
a saddle-focus equilibrium. The symmetric equilibria are: ±x⋆

≈ ±(1.496403, 0, −1.496403), the eigenvalues of A1 = A3
are λ1 ≈ −3.996046, λ2,3 ≈ 0.198164± 3.095593 i. It follows that the equilibria ±x⋆ have two unstable directions and a
single stable direction.

Intersections x(k) of a trajectory with the C0-hyperplanes Σ1 = {x : x1 = −1} and Σ2 = {x : x1 = 1} are plotted
in Fig. 6(a) using blue, red and black colors. The top and bottom parts correspond to intersections with Σ and Σ ,
1 2
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Fig. 5. The spiral attractor: (a) a trajectory of the return map defined by the plane Σ2 = {x : x1 = 1}, the intersections of the unstable and the stable
manifold of the origin are plotted as a red star and a magenta segment, respectively, at the green segment the vector field is tangent to Σ2 , (b) a
trajectory of the return map P defined by the plane S2 = {x : x1 = 1.5}, (c) the border of a trapping region for P plotted in red and its image plotted
in green, (d) example trajectories starting at the borders of Q1 (in black) and Q2 (in blue).

respectively. Intersections x(k) for which the previous intersection x(k−1) and the next intersection x(k+1) belong to the
same plane Σi are plotted in blue. Intersections x(k) for which the next intersection x(k+1) belongs to a different plane
are plotted in red. Intersections x(k) for which the previous intersection x(k−1) belongs to a different plane are plotted
in black. Images of red points are black points located in the opposite part of the plot. Intersections of the stable and
unstable manifolds of the origin are plotted as the magenta segment and the red star, respectively. One can see that
the trajectory intersects the magenta segments, which means that the origin belongs to the double-scroll attractor. The
trajectory intersects green segments which contain points where the vector field is tangent to C0-hyperplanes. Therefore,
one cannot use C0-hyperplanes to define the return map.

Let us select the return map P defined by the set S = S1 ∪ S2, where S1 = {x : x1 = −1.5} and S2 = {x : x1 = 1.5}.
This is a reasonable choice, since the attractor intersects these planes transversally (compare Fig. 3(b)). A trajectory of
P is shown in Fig. 6(b). The plot consists of four parts. The two top (bottom) parts correspond to intersections with the
plane S1 (S2). Coloring of points is the same as in Fig. 6(a). The red part belonging to S2 (bottom left corner) is mapped to
the black spiral in S1. The blue part in S2 adjacent to the red part is mapped to the blue spiral in S2. The blue and black
spirals in S2 are mapped to the black and red segment in S2. The behavior of points belonging to the upper half of the
plot is symmetric.

The set Ω = Q1 ∪ Q2 ∪ Q3 ∪ Q4 shown in Fig. 6(c) is a trapping region candidate. It has been constructed by drawing
four polygons enclosing the numerically observed trajectory and then adjusting their corners so that P(xi) ∈ Ω , where
xi ∈ ∂Ω are test points. The definition of Ω is given in the appendix. Below, we prove that Ω is indeed a trapping region.

The set Ω has a non-empty intersection with the stable manifold of the origin. It follows that some trajectories starting
in Ω converge to the origin and never come back to S. In consequence P is not defined on the whole set Ω . Therefore, we
cannot prove that Ω is a trapping region in the standard sense. Instead, we prove that for each x ∈ Ω either a trajectory
ϕ(t, x) converges to the origin or P(x) ∈ Ω . From the symmetry of the problem it follows that it is sufficient to consider
polygons Q1 and Q2.

To handle trajectories passing arbitrarily close to the origin the procedure presented in Section 2.3.2 is used. Let E be
−1
the matrix transforming the vector field (21) into the diagonal form (14), i.e. D = E A2E. Let us consider the cylinder

10
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Fig. 6. The double-scroll attractor; (a) intersections of a trajectory with Σ1 and Σ2 , intersections of the unstable and the stable manifold of the
origin with Σ1 and Σ2 are plotted as red stars and magenta segments, respectively, (b) a trajectory of the return map P defined by the planes
S1,2 = {x : x1 = ∓1.5}, (c) the border of a trapping region for the map P plotted in red enclosing a chaotic trajectory plotted in black, (d) example
trajectories starting at the border of Q2 .

C(h̄, r̄) with the height h̄ = 1.1 and the radius r̄ = 0.047 (in the transformed coordinates). In the first part of the proof,
we show that trajectories starting at the cylinder bases return to Ω . From the symmetry of the problem it is sufficient to
consider a single cylinder base only. In the computer assisted proof the border of a selected cylinder base is covered by
100 interval vectors x(k) and it is shown that P(x(k)) ⊂ Q1.

In the second part of the proof the border of Q1 and Q2 is covered by 4300 boxes x(k). For boxes covering ∂Q1 it is shown
that P(x(k)) ⊂ Q2. This part of the proof can be carried out using standard rigorous integration methods. The polygon Q2
is more difficult to handle. 55 boxes covering ∂Q2 are handled using the procedure presented in Section 2.3.2. For a given
box x(k) first we find t > 0 such that ϕ(t, x(k)) is enclosed in the linear region R2. Next, the linear transformation E
is applied to compute the maximum radius and the maximum height of the entry set. The exit time and the radius of
the exit set are computed using (10) and (17). Finally, it is verified that the exit radius is not larger than r̄ = 0.047.
The remaining boxes covering ∂Q2 are handled using the method presented in Section 2.2. For 31 boxes a possibility
of tangent intersections with C0-hyperplanes is detected. These boxes could not be handled using standard rigorous
integration methods. Four example trajectories starting at the border of Q2 are shown in Fig. 3(d). The trajectory with
the initial condition x = (1.5, −0.089087626317, −1.91109526713) do not intersect any C0-hyperplane and returns to
S2. The initial point x = (1.5, −0.138802595715, −2.10871132240) belongs to a box for which tangent intersection with a
C0-hyperplane was detected. For the initial point x = (1.5, −0.185015224558, −2.28978693125) the trajectory intersects
Σ2 two times before returning to S2. The initial point x = (1.5, −0.253849008275, −2.55651050226) belongs to a box
which was handled using the procedure presented in Section 2.3.2. The trajectory passes close to the origin and returns
to S1.

Summarizing, we have proved that each trajectory based at Ω either returns to Ω or converges to the origin. It follows
the set {ϕ(t, x) : x ∈ Ω, t ∈ [0, τ (x))}, where τ (x) is the (possibly infinite) return time for x, is a trapping region for the
double scroll attractor. The total computation time to carry out the proof is approximately 42 s using a single-core 3.1 GHz
computer.
11
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S

±

Fig. 7. The double-hook attractor; (a) intersections of a trajectory with C0-hyperplanes, intersections of the unstable and the stable manifold of the
origin with Σ1 and Σ2 are plotted as red stars and magenta segments, respectively, (b) a trajectory of the return map P defined by the planes
1,2 = {x : x1 = ∓18}, (c) the border of a trapping region for the map P plotted in red enclosing a chaotic trajectory plotted in black, (d) example
trajectories starting at the border of Q2 .

3.2.3. The double-hook attractor
As the last case let us consider the double-hook attractor (see Fig. 3(c)) existing for parameters values defined

in (24). Similarly as for the double stroll attractor the double-hook attractor contains the origin. The eigenvalues of
A2 are λ1 ≈ 1.433590, λ2 ≈ −3.746738, λ3 ≈ −6.276852. It follows that the origin is a saddle equilibrium (recall
that for the double-scroll attractor the origin is a saddle-focus equilibrium). The symmetric equilibria are: ±x⋆

≈

(19.071429, 0, −19.071429), the eigenvalues of A1 and A3 are λ1 ≈ −1.095586, λ2,3 ≈ 0.257793 ± 1.279223 i.
Intersections of a trajectory with the C0-hyperplanes are plotted in Fig. 7(a). The top (bottom) part corresponds to

intersections with the plane Σ1 (Σ2). The intersection of the unstable manifold of the origin and the C0-hyperplanes
are denoted as red stars. One can see that the intersections belong to the attractor. The attractor has also non-empty
intersection with the stable manifold of the origin (denoted as magenta segments). It follows that the origin belongs to
the double-hook attractor. The attractor has non-empty intersection with the green segment denoting regions where the
vector field is tangent to C0-hyperplanes.

Let us consider the return map P defined by the set S = S1 ∪ S2, where S1,2 = {x : x1 = ∓18}. A trajectory of P
is shown in Fig. 7(b). The trapping region candidate Ω = Q1 ∪ Q2 ∪ Q3 ∪ Q4 is shown in Fig. 7(c). Below, the details
of a computer-assisted proof that Ω is a trapping region is presented. The proof is similar to the proof for the case of
the double-scroll attractor. The main difference is the stability type of the origin. In consequence, the set containing the
origin is a cuboid instead of a cylinder. Let E be the matrix transforming the vector field (20) into the diagonal form (7),
i.e. D = E−1A2E. Let us consider the cuboid C(h̄, h̄2, h̄3) with the height h̄ = 4.0 and the base being a square with the side
length 2h̄2 = 2h̄3 = 0.2 (in transformed coordinates). First we show that trajectories starting at the cuboid bases return
to Ω . To carry out the proof the border of a selected cuboid base is covered by 100 interval vectors x(k) and it is shown
that P(x(k)) ⊂ Q1.

During the proof the border of Q1 ∪ Q2 is covered by 5969 boxes x(k). First, for all boxes covering Q1 we prove
that P(x(k)) ⊂ Q2. Next, we consider boxes covering Q2. For 180 boxes a possibility of tangent intersections with C0-
hyperplanes is detected (three examples are shown in Fig. 7(d)). 71 boxes are handled using the procedure presented in
Section 2.3.1. For these boxes it is shown that the corresponding trajectories enter the cuboid C(h̄, h̄ , h̄ ). It follows that
2 3
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these trajectories either converge to the origin or exit the cuboid through one of its bases. For the remaining boxes it
is shown that P(x(k)) ⊂ Ω . The total computation time to carry out the computer-assisted proof is approximately 330 s
sing a single-core 3.1 GHz computer.
Example trajectories starting at the border of Q2 are shown in Fig. 7(d). One can see that there are three types

of tangencies. The green trajectory with the initial point x = (18, 1.5776491929, −14.3838522424) is tangent to Σ2
and returns to S2. The blue trajectory with the initial point x = (18, 2.94585627061, −12.8709274635) first intersects
Σ2, then is tangent to Σ1, and finally intersects Σ1 and returns to S1. The magenta trajectory with the initial point
x = (18, 4.37068649333, −13.6086753779) first intersects Σ2, then intersects Σ1 and finally is tangent to Σ1 before
returning to S1. The black trajectory with the initial point x = (18, 3.99277875698, −14.037466953) passes close to the
origin.

4. Conclusions

Algorithms for rigorous integration of continuous piecewise linear systems have been presented. A method to cross
C0-hyperplanes (planes separating linear regions) using the theory of differential inclusions has been proposed. The
method can be used to find enclosures of trajectories tangent to C0-hyperplanes, which cannot be handled using standard
rigorous integration methods. It has been shown that this method provides better enclosures of trajectories also in
the case of transversal intersections. Methods to find enclosures of trajectories passing arbitrarily close to an unstable
equilibrium of saddle type and saddle-focus type have been presented. The methods have been described for the case of
a three-dimensional system, although they can also be used for systems of higher dimensions.

The proposed method to cross C0-hyperplanes can be used without major modifications for the integration of
continuous piecewise smooth systems, i.e. systems with a continuous vector field, in which the state space can be divided
into regions where the vector field is smooth. The main difference when compared to continuous piecewise linear systems
is that in smooth regions one cannot use formulas for the integration of linear vector fields, Instead, standard techniques
for integration of nonlinear systems have to be employed.

The methods have been used to prove the existence of trapping regions for the Chua’s circuit with three sets of
parameter values for which the spiral, the double-scroll and the double-hook attractors are observed. There are several
unsolved problems regarding the dynamics of the Chua’s circuit. One of them is the existence of a chaotic attractor for
selected parameter values. This problem is difficult to solve (perhaps impossible) because in simulations one usually
finds a periodic window very close in the parameter space to the point for which a chaotic attractor is observed. There
might however exist regions in the parameter space where chaotic attractors are robust—they are not destroyed by small
parameter variations. In this case proving the existence of chaotic attractors may be possible and the methods presented
in this work could be helpful.
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Appendix

Trapping region for the spiral attractor Ω = Q1 ∪ Q2:

Q1 = ((1.5, 0.1266747868, −0.9873417722), (1.5, 0.1963459196, −1.4430379747),
(1.5, 0.2577344702, −1.3429228999), (1.5, 0.3152253350, −1.2324510932),
(1.5, 0.3610231425, −0.9321058688), (1.5, 0.3571254568, −0.7353279632),
(1.5, 0.3200974421, −0.6075949367), (1.5, 0.2426309379, −0.5696202532)),

Q2 = ((1.5, −0.3395858709, −2.6409666283), (1.5, −0.3259439708, −2.6547756041),
(1.5, −0.2652862363, −2.4562715765), (1.5, −0.1257003654, −1.9746835443),
(1.5, −0.1412911084, −1.9332566168)).

Trapping region for the double-scroll attractor Ω = Q1 ∪ Q2 ∪ Q3 ∪ Q4:

Q1 = ((1.5, 0.0297755606, −1.3061861658), (1.5, 0.0607675808, −1.4221167491),
(1.5, 0.1502931026, −1.5063413363), (1.5, 0.2735700000, −1.2157240005),
(1.5, 0.3033363940, −0.9613331383), (1.5, 0.3005216657, −0.8142359957),
13
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(1.5, 0.2939216131, −0.7567497560), (1.5, 0.2826626998, −0.7077173752),
(1.5, 0.2429300000, −0.6294683245), (1.5, 0.2020200000, −0.6576727695)),

Q2 = ((1.5, −0.2862462677, −2.6333695312), (1.5, −0.2801244798, −2.6580950553),
(1.5, −0.1965676544, −2.3350529834), (1.5, −0.0943420953, −1.9345011036),
(1.5, −0.0359591066, −1.6744362539), (1.5, −0.0441512648, −1.6481326762),
(1.5, −0.1182778360, −1.9617386314), (1.5, −0.1922459234, −2.2565448150)),

Q3 = − Q1, Q4 = −Q2.

Trapping region for the double-hook attractor Ω = Q1 ∪ Q2 ∪ Q3 ∪ Q4:

Q1 = ((18, −0.4710254522, −17.2678315833), (18, −0.4305014161, −17.4623980329),
(18, −0.4575174402, −17.7841810072), (18, −0.5130503785, −18.0648056941),
(18, −0.2038669919, −18.3903303309), (18, −0.2147825572, −18.6563521406),
(18, −2.8126870946, −21.4921165694), (18, −5.1704491958, −24.1599738939),
(18, −8.0084961695, −19.8130455261), (18, −7.4408867747, −18.6563521406),
(18, −6.1091878102, −17.4436897204), (18, −3.4567054463, −15.9698384712),
(18, −0.7757061682, −16.6541989345)),

Q2 = ((18, 9.7947908076, −7.8356720833), (18, 10.0676799397, −7.5371705645),
(18, 10.1440888967, −7.0521055964), (18, 9.3909148921, −6.7162913877),
(18, 8.4412607125, −7.1267309761), (18, 7.0291271924, −8.3557616989),
(18, 1.4042435035, −14.5755993606), (18, 0.1983715888, −17.1181650836),
(18, 0.0332736639, −17.9562974819), (18, 0.1308315286, −18.3005304311),
(18, 2.2957974580, −15.8579004017), (18, 3.7366520754, −14.3280801177),
(18, 5.0356043441, −12.8542288685), (18, 7.4370287064, −10.3356223035)),

Q3 = − Q1, Q4 = −Q2.
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