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It is well known that periodic windows densely fill the pa-
rameter space a ∈ [0, 4] of the logistic map fa(x) = ax(1−x).
However, in numerical simulations one observes relatively
wide regions with no low-period windows. To explain this
phenomenon, an efficient method to find periodic windows
filling the parameter space up to a desired precision is pro-
posed and a rigorous numerical study of periodic windows
for the logistic map is carried out.

I. INTRODUCTION

The logistic map fa(x) = ax(1 − x) is a classical example
of a single-parameter nonlinear map with complex dynamics1.
The parameter range a ∈ [0, 4] of the logistic map is densely
filled by periodic windows2. Parameter values belonging to
periodic windows are called regular. For regular parameter
values a unique periodic attractor exists and its basin of at-
traction has the full measure. Parameter values for which the
logistic map supports an absolutely continuous invariant prob-
ability measure are called stochastic. For stochastic parameter
values trajectories of the logistic map are chaotic and almost
all trajectories are asymptotically distributed according to this
measure. The measure of the set of stochastic parameters is
positive and together with the set of regular parameters has the
full measure in the parameter space2–4.

For a < 3 all trajectories of fa converge to a fixed point. In
this work we consider parameter range a ∈ [3, 4]. It is esti-
mated5 that the measure of the set of regular and stochastic pa-
rameter values is W∗ ≈ 0.613960301 and S ∗ ≈ 0.386039699,
respectively. A lower bound on the measure of the set of reg-
ular parameters W∗ > 0.613942108 is established in Ref. 6.
An improved lower bound W∗ > 0.613960137 is obtained in
Ref. 5. The first non-trivial estimate on the measure of the
set of stochastic parameter values S ∗ > 0.98 × 10−5000 was
obtained in Ref. 7.

a)Electronic mail: galias@agh.edu.pl.

In this work, a numerical study of the density of periodic
windows for the logistic map is performed. The classical
method to find periodic windows is based on the construction
of bifurcation diagrams. In this approach, equidistant param-
eter values are selected and for each parameter value a suf-
ficiently long trajectory is computed with the hope to find a
periodic attractor. Once a periodic attractor is found the con-
tinuation method may be used to find endpoints of the corre-
sponding periodic window8. This approach is not feasible for
periodic attractors with long periods because long periodic at-
tractors usually correspond to narrow periodic windows. In
consequence, locating such periodic windows requires very
dense sampling of the parameter space. Moreover, periodic
attractors with long periods usually require very long trajecto-
ries to observe convergence9–11.

An alternative approach is based on symbolic dynamics.
In this approach symbolic representations of trajectories are
used to find unstable periodic orbits, which are then continued
to locate bifurcation points where stability of periodic orbits
changes and periodic attractors are created. This idea is used
in Ref. 12 to find periodic windows for the Rössler system
close to the classical case. For the logistic map symbolic dy-
namics is defined in a natural way by the position of the single
maximum13–15. Moreover, one may introduce the ordering of
periodic symbol sequences which is equivalent to the ordering
of periodic windows in the parameter space (see Ref. 16 for a
detailed description).

In this work, we use ordering of periodic symbol sequences
to locate low-period windows close to a given point in the pa-
rameter space. The existence of periodic windows is proved
and rigorous bounds for endpoints of periodic windows are
calculated by applying the interval Newton operator17 to a
map designed in such a way that its zeros correspond to bi-
furcations of periodic orbits. The proposed method is applied
to find periodic windows extremely close to selected points in
the parameter space and to construct sets of periodic windows
filling the whole parameter space with the goal to minimize
the maximum gap between periodic windows.

Computations are carried out using algorithms written in
the C++ programming language and compiled using the g++
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compiler, version 9.3.0. The CAPD library18 is used for in-
terval arithmetic based computations, and the GNU MPFR li-
brary19 is used for multiprecision support. Computation times
are reported for a single-core 3.1 GHz processor. Parallel
computations are utilized to reduce the wall-clock time to ob-
tain the results presented in this work.

For the sake of brevity we use a short notation to de-
note intervals. For example 3.8415

284 denotes the interval
[3.8284, 3.8415]. We will also skip commas when writing
symbol sequences and use powers to shorten expressions, for
example s = (031) and s = (0001) both denote the symbol
sequence s = (0, 0, 0, 1).

The layout of the paper is as follows. The definition of
the logistic map is recalled in Section II. Its basic properties
are described and the notations used in the manuscript are de-
fined. Methods to study the existence of periodic windows
for the logistic map are presented in Section III. Numerical
study of the density of periodic orbits in the parameter space
is carried out in Section IV. The set of periodic windows is
found with the property that the maximum distance between
periodic windows is smaller than 4 × 10−9. Several parameter
values in the interval a ∈ [3.5, 4) are considered, and periodic
windows extremely close to these values are found.

II. LOGISTIC MAP

The logistic map is a one-parameter map of the interval I =

[0, 1] into itself defined by

fa(x) = ax(1 − x), (1)

where a ∈ [0, 4].
Let us define several notions which will be used in this work

and recall some basic properties of the logistic map. All of
the material presented in this section is standard and an excel-
lent book on this subject is Ref. 16. Other classical books on
analysis of dynamical properties of the logistic map include
Refs. 20 and 21. The notions of primary and period-tupling
sequences as introduced in Ref. 22 will be used.

The trajectory (the orbit) of fa based at x0 is an infinite
sequence of points (xk)∞k=0 such that xk+1 = fa(xk) = f k+1

a (x0)
for all k ≥ 0. We say that x0 is a fixed point of fa if fa(x0) =

x0. We say that (xk)p−1
k=0 is a periodic trajectory of fa with the

period p if f p
a (x0) = x0 and xk = f k

a (x0) , x0 for all k such that
0 < k < p. Fixed point is a periodic trajectory with the period
p = 1. We say that a period-p orbit (xk)p−1

k=0 is asymptotically
stable (is a sink) if it locally attracts trajectories. Stability of
(xk)p−1

k=0 can be studied by computing the derivative

(
f p
a
)′(x0) =

p−1∏
k=0

f ′a(xk) = ap
p−1∏
k=0

(1 − 2xk). (2)

If |( f p
a )′(x0)| < 1 then the orbit is asymptotically stable. If

|( f p
a )′(x0)| > 1 then the orbit is unstable. We say that a is a

regular parameter if the map fa supports a periodic attractor.
A bifurcation of the periodic orbit (xk)p−1

k=0 of fa takes place
at values of a at which |( f p

a )′(x0)| = 1. At a bifurcation point

a periodic orbit is born or its stability changes. For the logis-
tic map periodic orbits emerge in a saddle-node or a period-
doubling bifurcations when the parameter a is increased. At
a saddle node bifurcation the condition ( f p

a )′(x0) = 1 is sat-
isfied and a pair of periodic orbits (one stable and one unsta-
ble) is born. At a period-doubling bifurcation the condition
( f p

a )′(x0) = −1 holds, and a period-p orbit becomes unstable
and a stable periodic orbit with the period 2p is born. Each
saddle node bifurcation creating a stable period-p orbit is fol-
lowed be an infinite sequence of period-doubling bifurcations
in which periodic orbits with periods 2k p for k = 1, 2, . . .
emerge. This structure is called a period-doubling cascade.

We say that the interval (al, ar) is a periodic window with
the period p (or a period-p window) if for each a ∈ (al, ar)
there exist a period-p orbit (xk)p−1

k=0 of fa satisfying the stability
condition |( f p

a )′(x0)| < 1 and (al, ar) is a maximal interval with
this property. Within a periodic window almost all trajectories
are attracted to the attractor which is a period-p sink2.

For a ∈ [0, 1] the map fa has a single fixed point x = 0,
which is a global attractor (all trajectories converge to this
fixed point). At a = 1 the fixed point x = 0 loses stability
( f ′a(0) = a) and the second fixed point x∗ = 1 − 1/a is born.
For a ∈ (1, 3) the condition | f ′a(x∗)| = |a(1−2x∗)| = |−a+2| < 1
holds, and hence x∗ is asymptotically stable. For a ∈ {1, 3} the
derivative f ′a(x∗) is either 1 or −1. It follows that the inter-
val (1, 3) is a period-1 window. One may also show that for
a ∈ (1, 3) the fixed point x∗ attracts all trajectories apart from
the ones starting at x = 0 or x = 1. In this work, we consider
parameter values a ∈ [3, 4].

Each period-2 point satisfies the equation fa( fa(x))− x = 0,
which can be rewritten as q(x) = −a3 x4 + 2 a3 x3 − a3 x2 −

a2 x2 +a2 x−x = 0. Dividing q(x) by the polynomial x(ax−a+

1) whose zeros are fixed points of fa leads to the polynomial
−a2 x2 + a2 x + a x − a − 1 whose zeros are period–2 points
x0,1 =

(
a + 1 ±

√
(a − 3)(a + 1)

)
/(2a). These solutions exist

and are different for a > 3. It follows that for a > 3 there exist
period-2 orbit (x0, x1). The derivative of f 2

a at period-2 points
is ( f 2

a )′(x0,1) = −a2 + 2a + 4. From the stability condition
−1 < ( f p

a )′(x0) < 1 we obtain a ∈ (al, ar) = (3, 1 +
√

6) ≈
(3, 3.44949). This is the only period-2 window—the widest
periodic window in the considered parameter range a ∈ [3, 4].

In this work, we use symbolic representations of trajecto-
ries and ordering of symbol sequences presented in Ref. 16
(compare also the notion of U-sequences introduced in
Ref. 13). With a trajectory (xk)n−1

k=0 we associate a symbol se-
quence (sk)n−1

k=0 in such a way that sk = 0 if xk < 0.5 and
sk = 1 otherwise. With a periodic orbit (xk)p−1

k=0 we associate
a periodic symbol sequence (sk)p−1

k=0 . In the set of infinitely
long symbol sequences we introduce the ordering ’≺’ defined
in the following way: s ≺ t if sk < tk and

∑k−1
j=0 sk is even or

sk > tk and
∑k−1

j=0 sk is odd, where k is the smallest index such
that sk , tk. For example we have (0011 . . .) ≺ (0010 . . .) ≺
(010 . . .) ≺ (111 . . .) ≺ (101 . . . ) ≺ (100 . . . ).

Periodic symbol sequences (also with different periods) are
compared using the ordering ’≺’ after expansion to infinitely
long sequences. We say that the periodic sequence (sk)p−1

k=0 is
minimal if it is not larger that any of its cyclic permutations ac-
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cording to the ordering ’≺’. For example (01101) is minimal
since (01101) ≺ (01011) ≺ (11010) ≺ (10101) ≺ (10110).
We say that (sk)p−1

k=0 is odd-parity (even-parity) if it contains
an odd (even) number of nonzero symbols. Each minimal
odd-parity symbol sequence corresponds to a single periodic
window. An important property of the ordering ’≺’ is the rela-
tion between ordering of two minimal odd-parity symbol se-
quences and the position of corresponding periodic windows
in the parameter space. Let ŝ and s̃ be two minimal odd-
parity symbol sequences corresponding to periodic windows
â = (âl, âr) and ã = (ãl, ãr). If ŝ ≺ s̃ then â > ã. For example
for ŝ = (01101) and s̃ = (001) we have ŝ ≺ s̃ and the corre-
sponding periodic windows are â ≈ 3.8415

284 and ã ≈ 3.7411
382.

Let (sk)p−1
k=0 be a minimal odd-parity symbol sequence with

the period p. Its even-parity partner is the sequence obtained
from s by flipping its second to last symbol. We say that s is
a saddle-node sequence, if the period of its odd-parity partner
is p. Otherwise, the sequence s is called a period-doubling se-
quence. Saddle-node and periodic-doubling sequences corre-
spond to saddle-node and periodic-doubling windows16. Each
saddle-node window is followed by an infinite sequence of
period-doubling windows creating a period-doubling cascade.
In this work, the sequence s = (01) will also be called the
saddle-node sequence since it starts the first period-doubling
cascade in the interval a ∈ [3, 4].

For example, let us consider two minimal odd-parity
period-4 sequences (0001), and (0111). Other symbol se-
quences of the length 4 are either even-parity, or not minimal,
or their minimal period is smaller than 4. The even-parity
partner of (0001) is (0011). It has period 4, which means that
(0001) is a saddle-node sequence. It corresponds to a period-4
saddle-node window a ≈ 3.96077

010. The period of the even par-
ity partner (0101) of (0111) is 2, which means that (0111) is
a period-doubling sequence. It corresponds to a period-4 win-
dow a ≈ 3.5541

4495 starting at the endpoint of the period-2 window
a ≈ 3.4495

0000 with the symbol sequence (01).
Let s be a minimal odd-parity sequence, and s′ its even-

parity partner. The sequence which is a concatenation (in ar-
bitrary order) of k1 > 0 copies of s and k2 = k − k1 > 0
copies of s′, where k1 is odd is called a period-k-tupling se-
quence10,23,24 generated from s. The assumption that k1 is odd
ensures that the resulting sequence is odd-parity. A minimal
odd-parity sequence which is not period-tupling is called pri-
mary. Period-doubling sequences are the period-2-tupling se-
quences with k1 = 1 and k2 = 1. We will use the follow-
ing notation to denote period-tupling sequences. Let t be an
odd-parity sequence of the length m. The period-tupling se-
quence generated from s by the sequence t is denoted by st

and is defined as st = (κ(s, s′, t0), κ(s, s′, t1), . . . , κ(s, s′, tm−1))
where κ(s, s′, 1) = s and κ(s, s′, 0) = s′. As an example
let us consider s = (001) and its odd-parity partner s′ =

(011). s(10) = (ss′) = (001 011) is the period-doubling se-
quence generated from s, s(100) = (ss′s′) = (001 011 011)
is the only period-tripling sequence generated from s, while
s(1000) = (ss′s′s′) = (001 011 011 011) and s(1011) = (ss′ss) =

(001 011 001 001) are the two period-quadrupling sequences
generated from s. Period-tupling sequences are important be-
cause the corresponding windows have usually larger widths

than periodic windows corresponding to primary sequences
with the same period5.

Let us assume the s is a saddle-node sequence. The
sequence s corresponds to a saddle-node periodic window
followed by an infinite sequence of period-doubling win-
dows. The corresponding periodic sequences will be de-
noted by δ(s, k) (k = 0, 1, 2, . . .) in a recursive way.
More precisely, we define δ(s, 0) = s and δ(s, k + 1) =

δ(s, k)(10). For example for s = (01) we have δ(s, 1) =

(01)10 = (01 11), δ(s, 2) = (0111)10 = (0111 0101), and
δ(s, 3) = (01110101)10 = (01110101 01110111). For
s = (001) we have δ(s, 1) = (001)10 = (001 011),
δ(s, 2) = (001011)10 = (001011 001001), and δ(s, 3) =

(001011001001)10 = (001011001001 001011001011).

III. METHODS TO FIND PERIODIC WINDOWS IN A GIVEN
REGION OF THE PARAMETER SPACE

In this section, we first recall the method introduced in
Ref. 5 to find endpoints of the periodic window corresponding
to a given minimal symbol sequence. Then, we present a pro-
cedure to find the minimal symbol sequence with the smallest
period lying between two minimal symbol sequences accord-
ing to the ordering ’≺’. Based on these procedures we pro-
pose methods to construct periodic windows filling the whole
parameter space to reduce the maximum gap between peri-
odic windows to a given value gmax, and to find a sequence
of periodic windows arbitrarily close to a given point in the
parameter space.

A. Finding the periodic orbit of fa with a given symbol
sequence

Let s = (sk)p−1
k=0 be an odd-parity minimal symbol sequence.

Let a be a parameter value such that the periodic orbit (xk)p−1
k=0

of fa with the symbol sequence s exists and is unstable. Here,
we present a method to find an accurate approximation of the
position of the periodic orbit (xk)p−1

k=0 .
First, we construct a sequence of intervals x−k for k =

0, 1, 2, . . . with decreasing widths each containing a point be-
longing to the orbit (xk)p−1

k=0 . More precisely, we require that
the condition x(−k) mod p ∈ x−k is satisfied for each k ≥ 0.

The initial interval interval is selected as x0 = [0, fa(0.5)].
In the kth step we consider the interval x−k. Its preimage un-
der fa is the union of two intervals. As x−(k+1) we select the
interval for which the symbol is s(−k−1) mod p. Widths of inter-
vals x−k decrease because the periodic orbit (xk)p−1

k=0 is unsta-
ble. This process is continued until the width of x−mp for some
m > 0 is smaller then a predefined small value ε (in compu-
tations ε = 10−16 is used). The middle of the interval x−mp is
selected as an approximation of x0. To obtain the whole or-
bit we compute p− 1 preimages of this point selecting in each
step from the two preimages of the current iterate the one with
the correct symbol sequence.
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B. Finding rigorous bounds of periodic windows endpoints

Let s = (sk)p−1
k=0 be an odd-parity minimal symbol sequence.

Let us briefly recall the method to find endpoints of the pe-
riodic windows corresponding to s (for a detailed description
see Ref. 5). Endpoints of periodic windows are studied using
the map Hλ0 : Rp+1 7→ Rp+1 defined by

Hλ


x0
x1
...

xp−1
a


=


x1 − fa(x0)
x2 − fa(x1)

...
x0 − fa(xp−1)
( f p

a )′(x0) − λ


(3)

where λ = ±1. Zeros of Hλ=−1 and Hλ=+1 correspond to
saddle-node and period-doubling bifurcations of the map fa.
To prove the existence of bifurcations and to obtain rigorous
bounds for endpoints of periodic windows one applies the in-
terval Newton operator17 to the map Hλ. Techniques for effi-
cient evaluations of the standard (real valued) Newton method
and the interval Newton method using forward and backward
shooting are presented in Refs. 5 and 25.

To find the right endpoint we select a lying to the right of
the periodic window of interest. One may always select a = 4,
however if a better upper bound is known, then it should be
used to improve the convergence of the Newton method. Next,
using the method presented in Sec.III A, we find an approxi-
mate position of the periodic orbit (xk)p−1

k=0 of fa with the sym-
bol sequence s. Then using the backward shooting version of
the Newton method applied to the map Hλ=−1 an approximate
position of the periodic window’s right endpoint ar and the
corresponding periodic orbit are found. Next, we prove the
existence of a zero of Hλ=−1 by applying the interval Newton
operator to the map Hλ=−1. In this way we obtain rigorous
bounds for the position of the right endpoint of the periodic
window.

The method to find the left endpoint al depends on the type
of the symbol sequence s. If s is a saddle-node symbol se-
quence, then we use the forward shooting version of the New-
ton method applied to the map Hλ=1 to find an approximate
position of the periodic window’s left endpoint and the corre-
sponding periodic orbit. The initial condition for the Newton
method is an approximate position of the periodic window’s
right endpoint ar and the corresponding periodic orbit. The
existence of a zero of the map Hλ=1 is proved and rigorous
bounds for the position of the left endpoint are found using
the interval Newton operator applied to the map Hλ=1. When
s is a period-doubling sequence then its left endpoint is the
same as the right endpoint of its parent window and can be
found using the method to find the right endpoint described
before.

C. Bisection in the set of periodic symbols sequences

In this section, we propose a procedure to find the minimal
odd-parity symbol sequence with the smallest period lying be-
tween two minimal odd-parity symbol sequences.

Let us first describe a procedure to increment a finite length
sequence s = (s0, s1, . . . , sk−1). If s is even-parity then incre-
menting s is equivalent to flipping the last symbol. For ex-
ample incrementing (110000) yields (110001) and increment-
ing (110011) yields (110010). To increment an odd-parity
sequence we need to find the last nonzero symbol and flip
the previous one. For example incrementing (101100) yields
(100100). If the last nonzero symbol is the first element of the
sequence s (for example s = (100000)) then this is already the
largest sequence of a given length and it cannot be increased.

Let us now consider two minimal odd-parity symbol se-
quences s and s with periods n and n such that s ≺ s. To find s
such that s ≺ s ≺ s we first find the largest m such that s j = s j

for all j < m. The sequence s0s1 · · · sm−1 = s0s1 · · · sm−1 is the
common beginning of sequences s and s.

Next, for l = 1, 2, . . .we search for a minimal odd-parity se-
quence s of the length m + l with the property s ≺ s ≺ s. For a
given l > 0 we start with the sequence s such that s j = s j mod n
for all 0 ≤ j < m+ l. In each step, we verify whether s is mini-
mal, odd-parity and s ≺ s ≺ s. If all these conditions hold then
the search process is stopped—the sequence has been found.
Otherwise we increase the sequence s and repeat the compu-
tations. Computations for a given l are also stopped when we
reach a sequence s such that s ≺ s.

This procedure works properly when sequences s and
s are of a similar length. For example, for s =

(01301010130130101) and s = (0130101013013) of the length
20 and 16 finding the sequence s = (0130101013013013013)
of the length 24 such that s ≺ s ≺ s requires consider-
ing 38 test sequences. Sometimes however it is necessary to
consider sequences of completely different length for which
the proposed approach becomes infeasible. For example, for
s = (001) and s = ((011)901) we need to consider 272696402
symbols sequences to find the sequence s = ((011)101) satis-
fying all the conditions. The computations last approximately
one minute.

One possible improvement is to skip non-smallest se-
quences once such a sequence s is detected. The idea is to
find the smallest position of the sequence s such that the se-
quence starting at this position is smaller than s and replace
this sequence by the beginning of the sequence s. Introducing
this modification reduces the number of test sequences in the
considered example to 479. Another possibility is to record
the last acceptable sequence for a given l and use it as a start-
ing point for the next step with l + 1. Using this modification
reduces the number of test sequences to 124. It is even bet-
ter to use both improvements simultaneously. In this case the
number of test sequences is reduced to 118.

Note that without these two improvements we would not be
able to obtain results presented in this work where the length
of some sequences exceeds 20000.

D. Finding periodic windows very close to a selected point
in the parameter space

Let us select a parameter value a∗ (for example a∗ = 3.9).
We would like to verify whether this point is regular (belongs
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to a periodic window) or not. If a∗ is regular then we may be
able to prove it by finding a periodic window containing a∗.
Otherwise, since periodic windows are dense in the parameter
space, we should be able to find periodic windows arbitrar-
ily close to a∗. In this section we present a method to either
prove that a selected value a∗ is regular or to find a sequence
of periodic windows with positions converging to a∗.

The procedure starts with two symbol sequences ŝ and s̃
and corresponding periodic windows â and ã lying on the
opposite side of a∗, i.e. â < a∗ < ã. As a lower bound
we may always select the periodic window â = (3, 1 +

√
6)

with the symbol sequence ŝ = (01). As an upper bound we
may select a periodic window with the sequence s̃ = (0k1)
with a sufficiently large k. Positions of these periodic win-
dows converge to a = 4 when k goes to infinity. For exam-
ple, for the sequences s = (051) and s = (0101) the corre-
sponding periodic windows are a = (al, ar) ≈ 3.99758490

252 and
a = (al, ar) ≈ 3.9999976468908

885, respectively.
In the kth step of the search procedure, we find the minimal

odd-parity symbol sequence s with the smallest length such
that s̃ ≺ s ≺ ŝ and the corresponding periodic window a. If
the selected parameter value a∗ belongs to a then the com-
putations are stopped—it has been shown that a∗ is a regular
parameter and that fa supports a sink. In the opposite case
we verify the condition a < a∗. If this condition holds then
we assign ŝ = s and â = a. Otherwise, we assign s̃ = s and
ã = a. In the following section we show several examples that
this procedure may be applied to prove that a given parame-
ter is regular (belongs to a periodic window) or find periodic
windows extremely close to this point.

E. Filling the parameter space by periodic windows

Methods presented above may be used to find periodic
windows filling the parameter space in such a way that the
maximum gap between periodic windows is minimized. The
following procedure is proposed. First, we select two peri-
odic windows which define bounds of the region in which
we search for periodic windows and compute the gap be-
tween these two windows. In order to fill the parameter range
a ∈ [3, 4] one may select as a lower bound the periodic win-
dow (3, 1 +

√
6) with the symbol sequence (01) and as an

upper bound a periodic window with the sequence (0k1) for
some large k. In this study, the symbol sequence (0391) is se-
lected. The corresponding periodic window lies closer than
10−20 from the point a = 4. During the procedure we store
the list of gaps and for each gap periodic windows between
which this gap exists along with the corresponding symbol
sequences. The list is sorted according to decreasing gap. In
each step of the algorithm we pop the first element in the list
(the largest gap) and find a periodic window with the smallest
period enclosed in this gap. Adding this new periodic window
creates two gaps (if the periodic window is of a saddle-node
type) or a single gap (if the periodic window is of a period-
doubling type). Created gaps are added to the list of gaps un-
less the gap is smaller than some predefined value gmax. The
procedure is continued until the list of gaps is not empty. The

procedure is designed in such a way that first low-period win-
dows are found. Therefore, the proposed procedure may be
used to compute the minimum value of pmax such that it is
impossible to reduce the maximum gap to gmax without con-
sidering periodic windows with the period pmax. Examples are
given in the next section.

IV. NUMERICAL RESULTS

In this section, methods presented in Section III are used to
carry out a numerical study of the density of periodic windows
in the parameter space. The parameter space is a ∈ [0, 4]. As
mentioned before for a ≤ 1 all trajectories converge x = 0,
while for a ∈ (1, 3) all trajectories converge to the fixed point
x∗ = 1−1/a apart from trajectories starting at x = 0 and x = 1.
In the following, we consider the parameter range a ∈ [3, 4]
and periodic windows with periods p ≥ 2. It is estimated that
the total width or periodic windows in the interval a ∈ [3, 4]
is W∗ ≈ 0.613960301 (see Ref. 5).

A. Low-period windows

Let us first consider the problem what maximum gap is
obtained by finding all periodic windows with short periods.
To analyze this problem all periodic windows with periods
smaller than 24 are found. The results are presented in Ta-
ble I. For pmax = 2, 3, . . . , 24, we report the number of pe-
riodic windows with periods p ∈ {2, 3, . . . , pmax}, their total
width W, the minimum width wmin and the the maximum gap
gmax between them. In the last row we show results obtained
by considering all periodic windows (with infinitely large pe-
riods). The number of all periodic windows is infinite, their
minimum width goes to zero and the maximum gap between
them also goes to zero. This is the consequence of density of
periodic windows in the whole parameter range2. The num-
ber of periodic windows grows exponentially with pmax ap-
proximately as fast as p−1

max2pmax . From the results presented
in Table I it follows that the minimum width decreases faster
than 10−pmax . On the other hand the convergence of the total
width and the maximum gap is slow. For pmax = 24 there are
732699 periodic windows and the maximum gap is slightly
below 0.005. Also note that in several cases increasing pmax
does not result in decreasing gmax (there is no change in gmax
when pmax is increased from 20 to 23.. It follows that finding
all short periodic windows is not an effective way to densely
cover the parameter space by periodic windows. In the fol-
lowing section, we show that it is sufficient to consider much
fewer periodic windows to obtain the required dense cover-
ing. For example, only 134 periodic windows are sufficient to
obtain the maximum gap gmax < 0.0048.

From the results presented in Table I it follows that there
are relatively wide regions in the parameter space free from
low-period windows. This phenomenon is discussed in the
following sections.
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TABLE I. Periodic window with periods p ∈ {2, 3, . . . , pmax} for
pmax ≤ 24, n is the number of periodic windows, W is their total
width, wmin is the minimum width, gmax is the maximum gap between
periodic windows.

pmax n W wmin gmax

2 1 0.4494897 0.4495 0.550510257
3 2 0.4625616 0.01307 0.378937382
4 4 0.5578290 0.000667 0.284336765
5 7 0.5613518 3.89 × 10−5 0.194082016
6 12 0.5714054 2.38 × 10−6 0.107783675
7 21 0.5723755 1.47 × 10−7 0.082462802
8 37 0.5935746 9.20 × 10−9 0.062145896
9 65 0.5940991 5.75 × 10−10 0.062145896
10 116 0.5968048 3.59 × 10−11 0.040800801
11 209 0.5969264 2.24 × 10−12 0.040800801
12 379 0.6011035 1.40 × 10−13 0.022396287
13 694 0.6011476 8.77 × 10−15 0.022396287
14 1279 0.6018930 5.48 × 10−16 0.017615735
15 2370 0.6020317 3.42 × 10−17 0.017615735
16 4418 0.6068763 2.14 × 10−18 0.013263582
17 8273 0.6068860 1.34 × 10−19 0.013263582
18 15553 0.6073453 8.36 × 10−21 0.013263582
19 29350 0.6073500 5.22 × 10−22 0.013263582
20 55564 0.6084532 3.27 × 10−23 0.008752822
21 105493 0.6084891 2.04 × 10−24 0.008752822
22 200818 0.6085821 1.28 × 10−25 0.008752822
23 383179 0.6085834 7.97 × 10−27 0.008752822
24 732699 0.6099670 4.98 × 10−28 0.004809769
∞ ∞ 0.6139603 0 0

B. Density of periodic windows

Search for periodic windows to minimize gaps between
them is carried out using the procedure presented in Sec-
tion III E. Results obtained for various values of the maximum
gap gmax are presented in Table II. For each case, we report the
number n, the total width W, and the maximum period pmax of
periodic windows needed to reduce the maximum gap to gmax.
The total width of periodic windows in the interval a ∈ [3, 4]
is W∗ ≈ 0.613960301 (see Ref. 5). It follows that one needs at
least (1−W∗)/gmax periodic windows to obtain the maximum
gap gmax. Note that the number of periodic windows needed
to obtain gmax = 4× 10−9 is n = 147690838, which is approx-
imately 50% more than (1 −W∗)/4 × 10−9 ≈ 9.65 × 107. The
maximum period of periodic windows found is pmax = 19216.

The total computation time to find 147690838 periodic win-
dows is 1.416 × 107 seconds. The average time to find a peri-
odic window is approximately 0.096 s.

Periods of the set of 60445 periodic windows with the max-
imum gap gmax < 10−5 versus their positions in the parame-
ter space are plotted in Fig. 1. One may see several regions
containing periodic windows with high periods. This phe-
nomenon is explained in detail in Section IV C.

Fig. 2(a) shows the number of periodic windows needed to

TABLE II. The number n of periodic window needed to reduce the
maximum gap to gmax, W is the total width of periodic windows, pmax

is the maximum period of periodic windows.

gmax n W pmax

10−1 8 0.56566265371 7
10−2 65 0.60371032367 20
10−3 647 0.61068053942 56
10−4 6180 0.61269502716 160
10−5 60445 0.61351094397 448
10−6 598317 0.61379154345 1280
10−7 5952254 0.61389617774 3842
10−8 59202328 0.61393593857 12154

4 × 10−9 147690838 0.61394355010 19216

FIG. 1. Periods of periodic windows needed to reduce the maximum
gap to gmax = 10−5 versus their positions in the parameter space.

obtain a given maximum gap gmax. The plot is almost linear
in the logarithmic scale for small gaps. From this plot one
may estimate that approximately 6 × 108 and 6 × 109 periodic
windows are needed to obtain gmax = 10−9 and gmax = 10−10,
respectively.

The procedure proposed in Section III E gives preferences
to periodic windows with low periods. It follows that the re-
sults obtained during computations may be used to find what
periods are are needed to reduce the maximum gap to a given
value. The results are plotted in Fig. 2(b). They are in agree-
ment with the results presented in Table I. For example, some
periodic windows with periods 20 and 24 have to be included
to reduce the maximum gap to 0.0088 and 0.0048, respec-
tively. The existence of horizontal segments in Fig. 2(b) indi-
cates that including certain additional periodic windows with
a given period reduces the maximum gap size. The existence
of jumps in pmax larger than one confirms that for some p in-
cluding all period-p windows does not reduce the maximum
gap.

The difference W∗ − W between the total width W∗ ≈
0.613960301 of all periodic windows and the total width W
of periodic window found in the process of reducing the max-
imum gap to gmax is plotted in Fig. 3. From this plot and
Fig. 2 one may estimate what is the number of periodic win-
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FIG. 2. The number n of periodic windows (a) and the maximum
period pmax of periodic windows (b) needed to reduce the maximum
gap to gmax.

dows which has to be found using the proposed approach to
achieve a given accuracy in finding a lower bound for W∗.
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FIG. 3. The difference W∗ −W between the total width W∗ of peri-
odic windows and the total width W of periodic window found when
reducing the maximum gap to gmax.

The maximum gap between periodic windows found is
smaller than gmax = 4 × 10−9. It follows that all periodic win-
dows wider than 4×10−9 are found. There are 13962 such pe-

riodic windows. Their total width is W ≈ 0.61388120. Out of
these periodic windows the maximum period pmax = 8192 =

213 is observed for the periodic window with the symbol se-
quence δ((01), 12) belonging to the first period-doubling cas-
cade. Results regarding periodic windows wider than 4×10−9

are collected in the first row of Table III.

TABLE III. Properties of wide periodic windows, n is the number of
periodic windows wider than wmax, W is their total width, pmax is the
maximum period, the results for wmax = 4 × 10−9 are rigorous.

wmax n W pmax

4 × 10−9 13962 0.61388120 8192
10−9 31484 0.61391590 8192
10−10 121144 0.61394327 32768
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FIG. 4. The maximum width of all periodic windows (blue, up-
per plot), saddle node periodic windows (red, middle plot), and
primary windows (magenta, lower plot) found for gaps gmax ∈

(10−0.01b, 10−0.01(b−1)], b ∈ {0, 1, 2, . . . , 840}.

The width of a periodic window found by the procedure
between two periodic windows is usually only a small frac-
tion of the gap between these windows. Analyzing widths
of periodic windows returned by the procedure in subsequent
steps one may estimate what is the maximum width of re-
maining periodic windows. Fig. 4 shows how the maxi-
mum width changes during computations when the maxi-
mum gap is decreased. The gap range is divided into bins
gmax ∈ (10−0.01b, 10−0.01(b−1)], for b = 1, 2, . . . , 840 and for
each bin the maximum width of a periodic window obtained
when processing this bin is computed. The results are plotted
in Fig. 4 in blue. Similar results for saddle-node windows
and primary windows are plotted in Fig. 4 in red and ma-
genta. One can see that for large b the maximum widths of pri-
mary windows are approximately 1000 times smaller than the
maximum widths of saddle-node windows, and that the max-
imum widths of saddle-node windows are more than 10 times
smaller than the maximum widths of all periodic windows.
It follows that period-doubling windows are in general wider
than saddle-node windows, and that period-tupling windows
are wider than primary windows. For large b all three plots de-
crease in a linear fashion in the logarithmic scale. For the last
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bin the bounds are wmax < 1.025 × 10−9 for period-doubling
windows, wmax < 8.186 × 10−11 for saddle-node windows,
and wmax < 8.975 × 10−14 for primary windows (saddle-node
windows which are not period-tupling). These results sug-
gest that in the process of reducing the gap below 4 × 10−9

the majority of periodic windows wider than 10−9 are found.
Indeed, only a single period-doubling window with the width
w ≈ 1.02754 × 10−9 is missing. It is found when searching
for period-doubling descendants of wide periodic windows
(see the next paragraph for more information). Including this
window we obtain 31484 periodic windows with the width
above 10−9. Their total width is approximately 0.6139159.
The results regarding periodic windows wider than 10−9 are
presented in the second row of Table III.

From the results on widths of saddle-node windows we
may claim that all saddle-node windows wider than 10−10 are
found. We may use these results to find all period-doubling
windows wider than 10−10. To this end all windows wider than
10−10 not followed by period-doubling descendants are identi-
fied and period-doubling windows emerging from these win-
dows are computed until the width of a descendant is wider
than 10−10. This way 26257 new period-doubling windows
with widths above 10−10 are found including a single period-
doubling window wider than 10−9. Their total width is ap-
proximately 7.127961 × 10−6. Summarizing, we find 121144
periodic windows wider than 10−10 and we claim that all such
windows have been found. This statement is in the full agree-
ment with the results presented in Ref. 5, where wide peri-
odic windows are found using a different approach. The total
width of 121144 periodic windows wider than 10−10 is above
0.61394327. This lower bound of the total width of periodic
windows is larger than the lower bound 0.6139421 reported
in Ref. 6. The results regarding periodic windows wider than
10−10 are presented in the last row of Table III.

To further improve the lower bound 0.61394327 for the
measure of periodic windows we search for period-doubling
descendants of periodic windows found before. The search is
limited to period-doubling windows wider than 10−13. This
way we find 1998897 new period-doubling windows with
widths w ∈ [10−10, 10−13]. This way we obtain the follow-
ing lower bound for the total width of all periodic windows

W∗ > 0.6139565

which is close to the lower bound 0.6139601 obtained in
Ref. 5, where the search method was optimized to find wide
periodic windows.

The results on widths of primary windows found suggest
that all primary windows with the width above 10−13 are
found. This knowledge may be used to generate all period-
tupling descendants of these windows to obtain all periodic
windows wider than 10−13 and to further improve the lower
bound for the total width of all periodic windows.

C. Regions free from low-period windows in the parameter
space

The results presented in Sections IV A and IV B show that
there are relatively wide regions in the parameter space free
from low-period windows. For example, the number of peri-
odic windows with periods p < 40 is approximately 1.4×1010.
In spite of a huge number of such periodic windows, the max-
imum gap between them is gmax ≈ 0.00284. Further analysis
of these results reveals three major reasons responsible for this
phenomenon. For each case, we provide examples of periodic
windows with periods above p = 16000, which have to be
included to reduce the maximum gap size below 10−9.

The first one is the existence of wide period-doubling win-
dows. An example plotted in Fig. 1 is the period-256 win-
dow a ≈ 3.5699432

340 with the symbol sequence s = δ((01), 7).
Table IV presents widths of periodic windows belonging to
period doubling cascades starting at the two widest windows
a2 ≈ 3.4495

0000 and a3 ≈ 3.8415
284 with the symbol sequences (01)

and (001), respectively. The periodic window with the symbol
sequence δ((01), 13) belonging to the period-doubling cascade
starting at a2 ≈ 3.4495

0000 has the period p = 16384 and the width
w ≈ 8.8375 × 10−10. The total width of this periodic window
and its period-doubling descendants is above 1.12×10−9. It is
clear that without considering periodic windows with periods
above 16000 one cannot reduce the gap after the first period-
doubling cascade below 1.1 × 10−9. Results for the second
widest period-doubling cascade are given in the second part
of Table IV. These periodic windows are narrower, and hence
one needs shorted periods to reduce the gap after this period-
doubling cascade below gmax = 10−9.

TABLE IV. Periods and widths of periodic windows belonging to
period-doubling cascades of period-2 and period-3 windows.

s p w
δ((01), 10) 2048 8.9962 × 10−8

δ((01), 11) 4096 1.9267 × 10−8

δ((01), 12) 8192 4.1264 × 10−9

δ((01), 13) 16384 8.8375 × 10−10

δ((01), 14) 32768 1.8927 × 10−10

δ((001), 9) 1536 3.0271 × 10−8

δ((001), 10) 3072 6.4831 × 10−9

δ((001), 11) 6144 1.3885 × 10−9

δ((001), 11) 12288 2.9737 × 10−10

The second reason is involved with narrow periodic win-
dows located in the parameter space before low-period saddle-
node windows. Examples in Fig. 1 include peaks located
just before saddle node windows with symbol sequences s =

(011111), s = (01101), and s = (001). The corresponding pe-
riodic windows are a6 ≈ 3.6304

266, a5 ≈ 3.7411
382, and a3 ≈ 3.8415

284.
Periods of preceding windows plotted in Fig. 1 are 382, 271,
and 358, respectively. Let us first consider the period-3 win-
dow a3 ≈ 3.8415

284 with the symbol sequence (001). One can
show that for each k ≥ 1 there are no periodic windows with
the period p ≤ 3k + 1 between the periodic window with the
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symbol sequence ((011)k1) and a3 ≈ 3.8415
284. Properties of pe-

riodic windows with symbol sequences ((011)k1) are collected
in Table V. For selected values of k we present the period
p = 3k + 1, the window’s width w and the distance from the
periodic window a3 ≈ 3.8415

284. From these results it follows
that one has to consider periodic windows with periods above
33000 to reduce the gap before a3 below 1.1 × 10−9.

TABLE V. Properties of periodic windows with sequences (011)k1,
p is the period, w is the window’s width, g is the distance from the
periodic window with the sequence (001).

s p w g
(011)201 61 2.878 × 10−9 3.473 × 10−4

(011)2001 601 2.536 × 10−12 3.546 × 10−6

(011)20001 6001 2.546 × 10−15 3.559 × 10−8

(011)40001 12001 3.184 × 10−16 8.900 × 10−9

(011)80001 24001 3.980 × 10−17 2.225 × 10−9

(011)100001 30001 2.038 × 10−17 1.424 × 10−9

(011)110001 33001 1.531 × 10−17 1.177 × 10−9

(011)120001 36001 1.179 × 10−17 9.890 × 10−10

A a second example let us consider the periodic window
a6 ≈ 3.6304

266 with the symbol sequence (011111). In this
case, one can show that the shortest periodic symbol sequence
between sequences between (011111) and ((011101)k01)
is ((011101)k0111), i.e (011111) ≺ ((011101)k0111) ≺
((011101)k01). If follows that there are no periodic windows
with periods p ≤ 6k + 2 between a6 and the periodic window
with the sequence ((011101)k01). Properties of periodic win-
dows corresponding to symbol sequences ((011101)k01) are
collected in Table VI. From the result obtained for k = 6000,
it follows that one has to consider periodic windows with pe-
riods p > 36000 to reduce the gap before a6 below 1.1× 10−9.

TABLE VI. Properties of periodic windows with sequences
(011101)k01, p is the period, w is the window’s width, g is the dis-
tance from the periodic window with the sequence (011111).

s p w g
(011101)1001 62 1.360 × 10−8 3.836 × 10−3

(011101)10001 602 8.483 × 10−12 4.056 × 10−6

(011101)100001 6002 8.558 × 10−15 4.099 × 10−8

(011101)200001 12002 8.558 × 10−15 4.099 × 10−8

(011101)400001 24002 1.339 × 10−16 2.564 × 10−9

(011101)500001 30002 6.856 × 10−17 1.641 × 10−9

(011101)600001 36002 3.968 × 10−17 1.140 × 10−9

The third type of periodic windows with large periods
needed to reduce the maximum gap are period-tupling de-
scendants of periodic windows from the first period-doubling
cascade. An example from Fig. 1 is the period-448 win-
dow with the symbol sequence δ((01), 5)(0111101) being a pe-
riod tupling descendant of δ((01), 5) with the period 64. One
can show that each periodic sequence lying between two pe-
riodic sequences being period-tupling descendants of a sin-
gle sequence must be a period-tupling descendant of this se-

quence. In consequence, filling a given interval in the pa-
rameter space bounded by periodic windows corresponding
to such sequences requires much higher periods. As an exam-
ple, let us consider two period-tupling sequences generated
from the sequence s = δ((01), 7) with the period 256. The
sequence s(10110) with the period 256 · 5 = 1280 corresponds
to the periodic window a ≈ 3.5699464163

018, and the sequence
s(100) with the period 256 · 3 = 768 corresponds to the peri-
odic window a ≈ 3.5699461394

8375. The distance between these
two windows is d ≈ 4.213 × 10−7. When we search for peri-
odic windows between these two periodic windows to reduce
the maximum gap below 10−9 we find 659 periodic windows
with periods divisible by 256. Periods of these periodic win-
dows belong to the set 256 · {7, 8, . . . , 86}. The maximum pe-
riod is pmax = 86 · 256 = 22016. It follows that filling the
interval between two period-tupling descendants of periodic
windows from the first period-doubling cascade requires rel-
atively large periods of periodic windows. This observation
is also true for period-tupling descendants of other symbol
sequences. However, period-tupling descendants of period-
doubling windows from the first period-doubling cascade are
further away than period-tupling descendants of other symbol
sequences and hence more periodic windows are needed to
reduce the gap between them to the required value gmax.

D. Search for periodic windows close to a given point in
the parameter space

The procedure presented in Section III D may be used to
find periodic windows close to a given parameter value a∗ and
to study the problem whether a∗ is regular.

Let us first consider 500 equidistant parameter values ak
in the interval a ∈ [3.5, 3.999], ak = 3.5 + 0.001k for
k ∈ {0, 1, . . . , 499}. The method described in Section III D
is applied to find periodic windows close to these parameter
values. In each case the search is continued until a periodic
orbit is found or the period p of a periodic window found is
above p = 500. Periodic windows are found in 114 cases
presented in Table VII. For each case we report the period
p of the periodic window, the number n of parameter values
ak contained in this periodic window, the endpoints [al, ar]
and the width w of this periodic window. For period doubling
windows, we also report the period pSN of its saddle-node an-
cestor. Saddle-node windows do not have ancestors, which
is denoted by a hyphen. As one could expect in most cases
periodic window found are either saddle node periodic win-
dows with low periods (p ≤ 20) or are period-doubling de-
scendants of such periodic windows. Two exceptional cases
are observed for a = 3.602 and a = 3.633 which belong to
period-88 and period-72 windows, respectively. Their widths
are below 10−6.

The percentage q = 114/500 = 0.228 of cases for which
periodic windows in the interval a ∈ [3.5, 4.0] are found can
be used to estimate the total width of periodic windows in
a ∈ [3.0, 4.0] using the formula W = 0.5+0.5·q = 0.614. This
estimate is very close to the true value W∗ ≈ 0.61396. One
can expect that testing more parameter values in the interval
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TABLE VII. Periodic windows of the logistic map fa(x) = ax(1 − x)
containing points ak = 3.5 + 0.001k for k ∈ {0, 1, . . . , 499}, p is the
period, a is the value of the parameter for which the existence of
a sink exists (middle of the periodic window), w is the width of a
periodic window.

ak n p pSN [al, ar] w
3.500-3.544 45 4 2 3.5441

4495 9.46 × 10−2

3.545-3.564 20 8 2 3.5644
441 2.03 × 10−2

3.565-3.568 4 16 2 3.56876
441 4.35 × 10−3

3.569 1 32 2 3.56969
876 9.32 × 10−4

3.583 1 24 12 3.58318
281 3.69 × 10−4

3.602 1 88 22 3.6020001
19997 4.09 × 10−7

3.606 1 20 10 3.60627
592 3.49 × 10−4

3.627-3.630 4 6 – 3.63039
2655 3.84 × 10−3

3.631-3.632 2 12 6 3.632186
0389 1.80 × 10−3

3.633 1 72 36 3.633004
2995 8.22 × 10−6

3.634 1 18 – 3.634007
3939 6.72 × 10−5

3.656 1 18 – 3.65600064
599985 7.92 × 10−7

3.673 1 10 – 3.6730351
29993 3.58 × 10−5

3.702 1 7 – 3.70215
164 5.14 × 10−4

3.739-3.741 3 5 – 3.74112
3817 2.95 × 10−3

3.742 1 10 5 3.74257
112 1.45 × 10−3

3.743 1 80 5 3.743001
2985 1.60 × 10−5

3.829-3.841 13 3 – 3.8415
284 1.31 × 10−2

3.842-3.847 6 6 3 3.84761
150 6.11 × 10−3

3.848-3.849 2 12 3 3.84904
761 1.43 × 10−3

3.855 1 30 15 3.8550035
49986 5.00 × 10−6

3.856 1 12 – 3.8560043
59901 1.42 × 10−5

3.906 1 5 – 3.90611
557 5.36 × 10−4

3.961 1 8 – 3.96110
077 3.20 × 10−4

a ∈ [3.5, 4.0] should improve this estimate.
Let us now consider examples of parameter values ak for

which periodic windows are not found. To observe how the
results change with the parameter a we consider four equidis-
tant values of a not belonging to periodic windows found:
a∗ ∈ {3.6.3.7, 3.8, 3.9}.

For each case, we start with symbol sequences (01) �
(0001) corresponding to periodic windows a2 ≈ 3.4495

0000 and
a4 ≈ 3.960769

102. The search for periodic windows close to a∗ is
continued until the period of the orbit is below 500. The cal-
culations are carried out using multiple precision arithmetic
with 1024 bits of precision, which is required to handle very
narrow periodic windows with widths below 10−200. As an
example let us consider a∗ = 3.9. After 388 and 389 iterations
we obtain period–498 and period–499 windows lying on the
opposite sides of a = 3.9, with the distances from a = 3.9
smaller than 10−105. Widths of these periodic windows are
approximately 8.094 × 10−213 and 9.308 × 10−212.

Fig. 5 shows periods of windows found versus the iteration
number. Note that in all cases periods grow faster than the
iteration number, which means that sometimes the period has
to be increased by more than one to find the proper symbol
sequence. One may see that for a = 3.6 we need approxi-
mately n = 160 iterations to reach p = 500, while for a = 3.9

the number of iterations needed is n ≈ 390. This difference
is related to the fact that for larger a more symbol sequences
are admissible and in consequence shorter periodic sequences
may satisfy the required conditions. In the limit case when
a = 4 all symbol sequences are admissible and the period
grows with the same speed as the iteration number (symbol
sequences (0k1) correspond to periodic windows with posi-
tions converging to a = 4 as k goes to infinity).
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FIG. 5. Search for periodic windows close to a∗ ∈ {3.6.3.7, 3.8, 3.9}.
Periods p of periodic windows found versus the iteration number n.

Fig. 6(a) and 6(b) show the gap (the distance between two
closest periodic windows lying on the opposite size of the con-
sidered parameter value) versus the current period and the it-
eration number, respectively. One may see that the gap de-
creases almost linearly in the logarithmic scale. Reduction
versus period is faster for larger a, while the reduction versus
the iteration number is almost the same for all cases. This is
a consequence of using the bisection method. In the optimal
case the bisection method in each step splits the region in half,
and after n steps the distance should be reduced by the factor
2−n. For n = 300 we have 2−300 ≈ 4.9 × 10−91 which is close
to what can be seen in Fig. 6(b).

Fig. 7 shows the distance between the periodic window
found and a∗ versus the period. This plot is similar to the
plot shown in Fig. 6(a). The difference is the existence of
outliers—points in the plot lying below the line created by
other points. For some iterations the procedure comes closer
to a∗ than expected for this iteration number.

Fig. 8(a) shows widths of periodic windows found versus
the period. One may see that widths decrease much faster
than gaps (compare Fig. 6(a)). This is further illustrated in
Fig. 8(b) where the ratio r = w/g of the width and the gap is
plotted versus the period. The ratio decreases very fast with
the period. For p = 100 the ratio is below 4 × 10−10 for all
cases. For p = 500 the ratio is below 10−40 for a = 3.6 and
below 10−100 for a = 3.9. It means that if a selected point does
not belong to a periodic window with a small period then it
is very unlikely that it belongs to any periodic window. Thus,
with a high level of confidence we may state that all parameter
values ak = 3.5 + 0.001k with k ∈ {0, 1, . . . , 499} for which
periodic windows with periods p ≤ 500 have not been found
are not regular, i.e., the map fak is chaotic.
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FIG. 6. Search for periodic windows close to a∗ ∈ {3.6.3.7, 3.8, 3.9};
(a) the gap versus the current period and (b) the gap versus the itera-
tion number.
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FIG. 7. Search for periodic windows close to a∗ ∈ {3.6.3.7, 3.8, 3.9}.
The distance from periodic windows found and the point a∗ versus
the period.

V. CONCLUSIONS

An efficient method to find periodic windows for the lo-
gistic map close to a selected point in the parameter space
was proposed. The method was used to find periodic win-
dows densely filling the parameter space and to find periodic
windows extremely close to selected points in the parame-
ter space. The maximum distance between periodic windows
found in this study is smaller than 4 × 10−9. It follows that all
periodic windows with the width above 4 × 10−9 were found.
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FIG. 8. Search for periodic windows close to a∗ ∈ {3.6.3.7, 3.8, 3.9};
(a) widths of periodic windows versus the period, (b) the ratio r =

w/g of periodic window width and the gap versus the period.

Period-doubling windows were calculated to find all periodic
windows wider than 10−10. The reasons for the existence of
relatively wide parameter ranges free from low-period orbits
were given.

Proposed methods may be applied to study the problem
of existence of periodic windows for other one-dimensional
maps with a single extremum.
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