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An efficient method to find positions of periodic windows for the quadratic map f(x) = ax(1 — x) and a heuristic algo-
rithm to locate the majority of wide periodic windows are proposed. Accurate rigofous bounds of positions of all peri-
odic windows with periods below 37 and the majority of wide periodic windowg‘with longer periods are found. Based
on these results we prove that the measure of the set of regular parameters in_the intetval [3, 4] is above 0.613960137.
Properties of periodic windows are studied numerically. Results of the analysis are used to estimate that the true value
of the measure of the set of regular parameters is close to 0.6139603.
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The quadratic map is a classical example of a one-
dimensional map displaying complex behavior. One of the
open problems regarding this map is what are the mea-
sures of sets of regular and stochastic parameters. To
compute an accurate rigorous lower bound for the mea-
sure of the set of regular parameters it is necessary to find.
many (billions) of periodic windows, some of them with
very long periods (several hundred thousands of iterations
and more). In this paper, we propose a very efficientalgo-
rithm to locate periodic windows with specific symbol Se:
quences and use it to compute an accurate lower bound for
the measure of the set of regular parameterss thus provid-
ing an upper bound for the measure of the setiofistochastic
parameters.

. INTRODUCTION

The quadratic map f,(x) =tax(1 # x), where x € [0, 1] and
a € Q = [0,4] is a classigal example of a simple nonlinear
map with complex dynandicsl. It is kadwn that for any a € Q
the map f, has at most-one attragtor’. The set Q~ of regular
parameters contains parameter values for which there exists a
periodic attractor. By & & Q we denote the set of stochastic
parameters for which the map f, admits an ergodic invariant
probability meastge Which is ‘absolutely continuous with re-
spect to the LLebesgueumedsure. It is known that measures of
these two séts are pagitive® and that their union has the full
measure?.

In this work, wesnumerically study the set Q. In particular
we areinterested in computing a rigorous lower bound for its
measure (Q )“and estimating its true value. In Ref. 7, the
authors«prove that u(Q~ N [3,4]) > 0.6139421. They also
report, the unpublished non-rigorous estimate by C. Simo that
the meagure of the set Q™ N [3, 4] is close to 0.6155 (compare
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also Ref. 8). InfRef. 5, it is shown that the measure of the set
Q:-is aboye 1072990, As the authors state, this bound is not in
any way ‘optimal’ or ’sharp’. Continuing effort is undertaken
todmproveythis bound” 0.

The get €2 is a union of intervals, which are called periodic
windows. Therefore, to obtain a good lower bound of u(Q™)
we need to find many wide periodic windows. In Ref. 7, the
authors propose a method to find periodic windows scanning
the parameter space. In this method, test points q; € Q are
selected using the bisection technique, the Newton method is
applied to find points d; close to a; where superstable peri-
odic orbits exist and various interval arithmetic tools are used
to prove the existence of stable periodic orbits in intervals con-
taining points &;. The resulting intervals are subsets of peri-
odic windows. By construction, the method finds only lower
bounds of periodic windows’ widths. In Ref. 11, a method
to find very accurate enclosures of endpoints of periodic win-
dows is presented. In this method, the interval Newton oper-
ator is applied to prove the existence of bifurcation points for
periodic orbits with specific symbol sequences. All periodic
windows with periods p < 32 have been found. The results
were used to find very accurate lower and upper bounds of
measures x(€,,) for p < 32, where Q,, denotes the set of pa-
rameters belonging to periodic windows with period p.

In this work, we extend the method presented in Ref. 11
to work for large periods. We find all periodic windows with
periods p < 36. To find wide periodic windows with longer
periods we consider three types of periodic windows: primary,
period-doubling, and period-tupling windows (to be defined in
Sec. ITI). We propose a heuristic method to find wide primary
windows and use it to find the majority of primary windows
with widths above wyi, = 107", Next, we generate wide
period-tupling and period-doubling windows. The results ob-
tained are used to compute a rigorous lower bound for the
measure of the set Q™ and to estimate its true value.

The layout of the paper is as follows. In Sec. II, several
properties of periodic windows for the quadratic map are re-
called. In Sec. III, the search method is described in detail
and in Sec. IV, results of applying this method to analyse
wide periodic windows for the quadratic map are presented.
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‘ s lT ghout the paper, we use bold face to denote intervals,

Jnterval vectors and matrices and math italic to denote “real”
PUb“ ﬁﬂ@ .. The interval with endpoints x < X is defined as
X = |, x]. The diameter and the middle point of x are denoted

as diam(x) = x — x and mid(x) = 0.5(x + X), respectively.

Il. PRELIMINARIES

The quadratic map is a one-parameter map of the interval
I = [0, 1] into itself defined by

Ja(x) = ax(1 = x), (D

where a € Q = [0,4].

We use the notation f0(x) = x and f*'(x) = f.(f*x))
for k > 0. The trajectory of f, with the initial point xy is
(X(), X1, X2, .. .), where Xk = f(f(xo).

We say that xq is a period—p point of f, if fI'(xo) = xo,
and f¥(xg) # xo for 1 < k < p. The corresponding trajectory
xr = fP(x), k = 0 is called a period-p orbit. We say that
the periodic orbit (xo, X1, ..., Xp—1) is stable if |1,(a, xo)| < 1
where the multiplier A,(a, xo) of the periodic orbit is defined
as the derivative of f at xo, i.e.

—

=

p—1
@ x0) = () (xo) = | | f1x0) =
k=0

=~
Il

0
Let us recall some well known results on periodic M\Q
for the quadratic map. For details the readex is refemed to

r
introductory books on deterministic chaos!>13.
erod-p.win-

We say that an interval (dief, dright) C

is
dow for the family {f,: a € Q} if for all {&ﬂkﬂsaright)

there exists a period-p orbit of f;, and (die, drighe), 1S a max-

imal interval with this property. Eddpoiats of periodic win-
dows are bifurcation points of  Cerresponding periodic or-
bits. Periodic windows for which at the left endpoint there

is a saddle-node/period-doubling bifircation are referred to as
saddle-node windows and perio oublj/zg windows, respec-
tively. For the quadratic map«there 1 eriod-doubling bifur-
cation at the right endpoi tp;fiQQh(periodic window, and at
this point another pefiodic window (of period-doubling type)
starts. Thus, eachfsaddle-hode window generates an infinite

s with common endpoints. Such
oubling cascade.

equence s(x) = s = (89, 51,...) in
= 0if x; < 0.5and s; = 1if x;, > 0.5, where
trajectory of f, with the initial point xy =
-p point then s is also periodic. In this case,
=080, 515+, Sp-1)-
\ta?introduce an ordering on the set of symbol sequences
50,51,---): 8¢ € {0,1}}. We say that s < § if
0 si =0 (mod 2)or sy > § and Y0 s = 1
(mod 2), where k is the smallest non-negative integer such
that s; # 8. This ordering is closely related to the order-
ing of RL patterns introduced in Ref. 14. We say that a peri-
odic sequence s of length p is minimal if its period is p and

a(l = 2xp)1 &

it is equal to its smallest cyclic permutation according to the
ordering ”<”. For example, the order of cyclic permutations
of (001) is (001) < (010) < (100) and hence the sequence
(001) is minimal. Points along a periodic orbit have symbol
sequences being cyclic permutations of each other. It follows
that there is a one-to-one relation between periodic orbits and
minimal sequences.

The total number of symbol sequences of length p is 27.
The number P(p) of minimal period-p sequences can be com-
puted by subtracting ff‘? the number of symbol sequences
having periods being properdivisors of p and dividing the re-

sult by p
p-1
k P(k)). 3)
k=1,p mod k=0

To set up ‘ar€lation.between minimal sequences and pe-
riodic fwindows us define specific types of minimal se-
quences. We that a minimal sequence is an odd-parity
sequenceNgven-parity sequence) if it has odd (even) number

bols. Let s be an odd-parity sequence with
period p. The sequence 5" = (So, S1,...,Sp-3, 1 = §p-2, Sp_1)
taingd by flipping the second to last symbol of s is called the
evensparity partner of s. We say that an odd-parity sequence
with period p is a saddle-node sequence if its even-parity

er has period p. Otherwise, we call it a period-doubling
equence.

Let us denote by W(p) the number of odd-parity period-p
sequences. There is one odd-parity period-2 sequence: (01)
and hence W(2) = 1. For odd p > 3, each odd-parity se-
quence has an even-parity partner. For example there are two
period-3 minimal sequences: (001) and (011). The sequence
(011) is the even-parity partner of (001). It follows that for
odd p half of the minimal period-p sequences are of odd-
parity, i.e. W(p) = P(p)/2. For even p > 4, there are W(p/2)
odd-parity sequences for which there is no corresponding odd-
parity sequence with period p. For example there are three
period-4 minimal sequences (0001), (0011), (0111). The se-
quence (0011) is the even-parity partner of (0001). The se-
quence (0111) is a period-doubling sequence because flipping
the second to last symbol gives the sequence (0101) with pe-
riod 2. Hence, in this case the number of odd-parity sequences
is (P(p) + W(p/2)) /2 out of which there are W(p/2) period-
doubling sequences. Summarizing, the formula for the num-
ber W(p) of odd-parity period-p sequences reads

| ifp=2,

0.5 x P(p) if pisodd,p >3,

0.5 x (P(p) + W(0.5x p)) if piseven,p > 4.
4)

Let us now discuss the relation between minimal sequences,
periodic orbits and periodic windows. Each minimal period-
p symbol sequence corresponds to a single period-p orbit of
f10. All of them are unstable. Let us denote by x(s,a) =
(xx (s, a)),f;(; the position of the periodic orbit of f, with the
symbol sequence s, if it exists. Let s be an odd-parity
sequence. The multiplier of the periodic orbit x(s,4.0) is

W(p) =
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,x(4.0)) = =27,
x(s,.a) of the periodic orbit changes until at the point aoen; We
PUb“&hUhg( zrighfxo(arigh[)) = —1. z%Nhen ais furtﬁer decrgeased
we reach the point ajere where 4,(a, xo(a)) = 1. The interval
(Qeft Aright) 1 the periodic window corresponding to the odd-
parity sequence s. There exist a point amigale € (@ieft» Gright)
where A,(amiddie, X0(@midaie)) = 0. At this point the second
to last symbol in s flips. In Fig. 1 we show examples how
the multipliers 1, change with a. Curves corresponding to
saddle-node sequences (with 4,(a) < 0) and their even-parity
partners (with 4,(a) > 0) are plotted in blue and cyan, re-
spectively. For a = 4.0, we have 4, = —2* for odd-parity
sequences and 1, = +2” for even-parity sequences. When a
is decreased, A, decreases in absolute value until 1, = +1 is
reached, which corresponds to a periodic window endpoint.

A,(@)

When a is decreased, the position

60 |

40

20 H

3.7
FIG. 1. Multipliers of perigdie,orbits associated with minimal se-
quences of length 3 and 6-versus patameter a. Periodic orbits with
even-parity, saddle-nodé, and period-doubling sequences are plotted
in cyan, blue, and red, respectively.

If 5 is a sadd
bifurcation point.at

de sequence then ap.f is a saddle-node
ich/the stable periodic orbit and the un-
ith the sequence being the even-parity
partner oj_‘s If s is a period-doubling sequence
of length p = 2k;*then a, is a period-doubling bifurcation
point where a period-2k orbit is born from a period-k orbit.
Eor example, the period-doubling window with the sequence
starts at a point where the periodic window with the
e (301) ends (compare Fig. 1).
the discussion presented above, it follows that there
is a one-to-one correspondence between periodic windows
and odd-parity sequences and that saddle-node and period-
doubling sequences correspond to saddle-node and period-
doubling windows, respectively.

Let us recall the notion of primary sequences and period-
tupling sequences (compare Refs. 11, 15, and 16). Let s be an
odd-parity sequence with period k > 2 and s’ its even-parity
partner. A period-I-tupling sequence is obtained by concate-
nating /; > O copies of s and [ — [} > 0 copies of 5" where
l; is odd to preserve the odd-parity of the final sequence.
For example (s, s’) is a period-doubling sequence, (s, s’, s")
is a period-tripling sequence, while (s, s’, s, s”) and (s, s, s, 5”)
are period-quadrupling sequences generated from s. The se-
quence s = (01) is als:((risidered a period-tupling sequence.
An odd-parity sequeriee ich is not a period-tupling se-
quence is called a p ) sequience. Periodic windows corre-
sponding to primaty, and/period-tupling sequences are called
primary windows,_and period-tupling windows, respectively.

. SYST QSQR H FOR PERIODIC WINDOWS

—~
In this section, we present methods to find rigorous bounds
of endpoints of jperiodic windows. Since we are also going
handle periedic windows with periods above 10° the im-

p entaﬂ?ns need to be very efficient. Let us start with a
escrip@ of a method to find approximations of periodic

3 { ows’ endpoints for a selected odd-parity sequence.

A. Finding accurate approximations of periodic windows’
endpoints

Endpoints of periodic windows are saddle-node and period-
doubling bifurcation points of corresponding periodic orbits.
Let us consider the map H,,: R**! 5 7z > Hy (z) € RP*!
defined by

Xo x1 —axo(1l — xg)
X1 xy —axi(l = xp)
Hy| + | = 4)
Xp-1 xp — axp-1(1 = xp-1)

a Clp(l —2xp_1)--~(1 —2)(1)(] —2)(3()) —/?.0

where z = (X, X1,...,%p—1,a)" and Ay = 1. Zeros of Hy,
correspond to bifurcations of period-p orbits. To study period-
doubling and saddle-node bifurcation points we use 1o = —1
and Ay = 1, respectively. Zeros of H,, can be found using the
Newton method. Let us assume that z© is the initial point for
the Newton method. The formula for the Newton iteration is
%D = 20 — h where h = (ho, h1, ..., h,)" is the solution of
the equation

H', (z¥)h = Hy,(zY), (6)
where
—Co 1 0 0 —b()
0 —C] 1 0 —bl
H:l(] (Z(k)) = : : . ’ . ’ : : 9

0 0 0 . 1 —by,

1 0 O _Cp—] _bp—l

—2ady —2ad, —2ad, ... -1

—2ad,_; pea
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IEP")) = (20,815--->8p-1-¢ — A", b = xx(1 = xp), ¢ =

a(l —2x1), di, = P__l. Ciy 8k = X, m —axi(1 —xz), and
Publigh I]n[gw ke = [lizg juk Ci> 8k = X(er1) mod p — aXi(1 = xi)
b — C

From (6) it follows that A,y = vy + wiho + ugh, for k =
0.1,....p—2where wy = [T ci» e = X5 b; [1L 4, ¢i» and

vi = 2508 [1ij,, ¢i- Eliminating hy, hy, ..., b,y from (6)

yields
q0 qp ho _ r
(e -1 ”P—l)(hp) - (_Vp—l)’ @

where gy = 2a(d0 +Zl'.:ll d,-wi,l), gy, =2a Zl’.;l diui_1 —pea”",
andr = Ay—e—2a Zip:_ll dvi_,. Hence, the Newton correction
h can be computed as

Fip-1 + Vp_1qp
qoup-1 + (1 —e)g,’
hisr = vie + wiho + uehy, fork = 0,1,

—qovp-1 + (1 —e)r
= g )
gotp-1 + (1 —e)gq,
L p—2. ©)]
The above formulas can be implemented to have a linear com-

plexity versus p both in time and memory'!.
The algorithm implements a forward shooting version to

hy =

a > argn; these calculations, when carried out in infinite pre-
cision, converge to the position of the periodic orbit with the
symbol sequence s. In practice, we use finite-precision calcu-
lations and the algorithm is stopped when a predefined preci-
sion is reached. Middle points of intervals x; are selected as
approximations X(s, a).

If a is not sufficiently close to darign, to speed up compu-
tations we may use a bisection step. Let as assume that we
have a lower and an upper bounds ag and a; for agp, i.e.
ap < Grigw < ap. %e bisection step, we try to com-
pute an approximate posi of the orbit for the test point
a = 0.5(ag + ay)./ Hecomputations fail we conclude that

Ba. Otherwise we set a; = a. For

select a; = 4 and ay = a,., where
osition of the accumulation point
indows belonging to the first period-

ode windows an approximation of the right
usually a good starting point for the Newton
ethod applied to the map H,,-; to find the left endpoint.

endpoint i

ight endpoint of the parent window.

compute h. It is also possible to implement the backwa\ eriod-doubling windows the left endpoint is found as the
r

shooting version'”!® to solve (6), where instead of compuﬂnK

Hf:o ¢; one computes the product of inverses. This yersion

should be selected when the product I—[f:ol ¢; is large.
Let s be a period-p minimal sequence, and af

right endpoint of the corresponding periodic windo 1&

cuss the problem how to select an initial point for the Newton
method to obtain a fast convergence to z = (x(s, \hg?s )T.
Zeros of H,, with 49 = <1 define bifurcation points*ef all
period-p orbits. Since the number of such %’f&ggws ex-
ponentially with p, it is clear that we have to chiegse the ini-
tial point z® for the Newton meth carefully to obtain
the convergence to a periodic orbi i%ciﬁc symbol se-
quence. One possibility is todise 7%= (¥(s,4.0),4.0)" as
an initial point. The positiof x(s,4.0) ofsthe periodic orbit
for a = 4.0 can be founciz{mg t topo}égical conjugacy be-
tween fy o and the tent m + 10, 1] = [0, 1] which is defined
asT(y) =1—-1[2y—1|. Thi \llbs&&x\jvas used in Ref. 11 to find
all periodic window w?tﬁ)eriods < 32. It was shown that
the method works fast eriodic windows with low periods.
However, it will‘be shown i Section IV that for larger peri-
ods this selection method 1gmy lead to very slow convergence
ewton method.
(aright» 4.0) we may use z@ =
n initial point for the Newton method, where
tmation of the position x(s,a) of the pe-
. To approximate x(s,a) we compute back-
5 of the interval [0, 1] under the map f,. The map
not reversible. However, since the symbol sequence is
Wwe may easily select the correct branch when comput-
ing backward iterates. The numerical procedure is initialized
with xo = [0, 1], k = 0. In each step we carry out the follow-
ing computations: if kK = 0, define x, = X, and set k = p,
calculate y = fa‘l(xk) and assign x,_; = yN[0,0.5]if s4-; =0
and x;_; =y N [0.5, 1] if s;—; = 1. Under the assumption that

Interval Newton method to find rigorous bounds for
bifurcation points

Once we have an approximate position Z of the bifurca-
tion point we may find rigorous bounds for its position. This
is achieved by constructing an interval vector z containing 2
and applying the interval Newton method'® to prove the ex-
istence of a single zero of H,, in z. In this method, we have
to verify that N(z,2) C z where N(z,2) = 2 — H (2)"' Hj,(2)
is the interval Newton operator for the map H,, and Z € z.
Let z = (xg,Xq,... ,X,,_],a)T be an interval vector and Z =
(%o, X1, ... ,fcp,l,&)T € z. The following algorithm provides
an efficient method to compute the interval vector h contain-
ing solutions of H;O(z)h =H, () forzez.

To evaluate h the following computations are carried out in
interval arithmetic:

p-1
C = a(l - 2Xk), bk = Xk(l - Xk), dk = C;,
i=0,i#k
p-1
8k = Xy mod p — AXp(1 = Ki), €= [ |a(l —2%),
i=0
k k k k k
wei= )by [ fa ve= g | e we=] Je
j=0  i=j+l j=0  i=j+l i=0
p-l p-l
: PWp-1
qo = 2a d() + d,W,_l N P 232(1,‘11,‘_] - ,
" a
i=1 i=1
p-1

- ru,_; +Vy_14qp
i=1 qoup-1 + (1 - Wp—l)qp
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Wy + (1 =w,_1)q,

_1+Wk_1h()+llk_1hp, k=1,2,...,p—1.

Due to properties of interval arithmetic, the inclusions be-
tween the right-hand side expressions and the evaluated in-
tervals ¢, by, gk, di, €, w, Vi, Wi, qo, qp, T, and hy are au-
tomatically satisfied and the interval Newton operator can be
evaluated as N(z, 2) C Z — h. For more details see Ref. 11.

C. Locating all periodic windows for a given period

To find all period-p windows, we have to consider all even-
parity sequences with period p. Period-doubling sequences
are handled in a different way, which will be described later.
Here, we consider saddle-node sequences.

For each saddle-node sequence s we select an initial point
a larger than the right endpoint gy of the periodic win-
dow, compute an approximate position X(s,a) = (X(s, a))z;é
of the periodic orbit of f, with the sequence s and use the
Newton method applied to the map H_; with the initial point
79 = (&(s,a),a)T to find an approximate position Aright Of

of periodic orbit for dyjen;. Next, we construct an interval

Let us assume that we want to find primary periodic win-
dows with width larger than wy,;, (we will use wyin, = 10-1%).
This is done recursively for increasing periods. Below, we
present a heuristic procedure to find wide primary periodic
windows with period p + 1 based on wide primary periodic
windows with period p. First, we select primary period-p
sequences corresponding to periodic windows with widths
above wpin. Next for each sequence, we generate a number
of sequences of length g 1. Sequences are generated in two
ways. In the first version, insert symbol O at a given po-
sition. In the seco ion, we replace symbol 0 at a given
position by a subsequencg (sos1) = (11). Both versions ensure

ponding minimal sequence. We
sequences with period smaller than
mg.sequences. Finally, we sort the set of
everse order and apply the procedure pre-

windows with period p + 1.
or lar‘gﬁr p we use a different method. First, in the set of
rimarx_w ndows found so far, we locate families of wide pri-

ber of nonzero symbols in sequences u and v is even and odd,

. . . .. - 2 : k
the right endpoint aye and approximate position (s, arigha\r:spé windows with symbol sequences (#*v), where the num-

a bifurcation point within z, which provides rigor

la, eht? Qyighe] for the position of the right endpoint.

Newton method for the map H,; with the initi nt

(X(s, Qright), Grigh) to find an approximate position‘geqQf the
left endpoint ajes; and X(s, @jer). Finally, we S%Nb.ginterval

Newton operator for the map H.,| to prove the existence of a

bifurcation point in a neighborhood of 2= (¥(s, diet), d1efr) and
obtain rigorous lower and upper b nd%ﬁ]eﬂ] for the po-

sition of the left endpoint. Bou width of the periodic
window can be computed as [, o Qlefts Qright — Qg ]-

Computation time de(;;?/ds onythe sprection of the initial
point a satisfying the cofidition a {right-  Since all orbits
exist for a = 4.0, we al s select a = 4.0. A faster
option is to sort all gaddlesnode sequences according to the
ordering ’<” definéd in«Section II and process them from the
last one to the first cgle. ”<” preserves posi-

e ordering <
tions of window e sense that if s < § then the periodic
window corfespending, tofs exists for smaller a than the one
corresponding to §. 'Sljer fore, as an initial guess for the posi-

t endpoint we may use the position of the left
1ously found window. For the first win-
selectb = 4.0. It will be shown that this approach
significa reduces computation times especially in case of

lo ?PS} yences.

D. Finding wide primary windows

From (3) and (4) it follows that the number of sequences
grows approximately as 2°~!/p. Therefore, finding all period-

ctively. It will be shown that most wide primary win-

periodic windows with symbol sequences of the form (#*v) for
increasing k until periodic window’s width drops below wyy,.

tor z containing Z = (X(S, digh), dright) and apply the interva - !
Newton Operator for the map H*l to prove the exist%&ows belong to SuCh famllleS. Then, fOr eaCh famlly, we ﬁnd

E. Finding wide period-tupling windows

As it has been mentioned before, period-tupling sequences
are concatenations of primary sequences and their even-parity
partners. Each period-tupling descendant of a primary se-
quence s has the form ¢ = 5", with r being an arbitrary odd-
parity sequence. For a primary sequence s, the notation s”
denotes the sequence created by concatenating m copies of
s and its even-parity partner s’, where m is the length of r.
The kth element is s if r, = 1 and §" if r, = 0. For ex-
ample, for s = (001), r = (0111) we have s’ = (011) and
s" = (s'sss) = (011001001 001).

Let Sprw denote the set of wide primary sequences. Find-
ing their wide period-tupling descendants is carried out re-
cursively based on wide periodic windows located so far. In
the kth step we find all wide period-tupling windows with se-
quences of the form s", where s € S and r € Ry. Period-
tupling sequences corresponding to wide windows found in
the kth step form the set Ry, for the next step. The process
is initiated with Ry = Sy \ {(01)} and it is stopped when Ry
is empty. The sequence (01) is excluded to avoid considering
period-doubling sequences, which are handled separately, as
described in the following section.

To reduce the number of period-tupling sequences which
are considered in a given step we predict widths of sequences
s" for all s € Syw based on results obtained for a single se-
quence. The prediction is based on the fact that for a fixed
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‘ s I;Pwi' th of the periodic window with the sequence s” is

roportional to the width of s. In practice, we first find all pe-

PU b|l§ohim gi 1dows with the sequences §" for r € Ry for a fixed §,

tor example § = (001). Then, for a given sequence s € S prw,
s # § we skip sequences s”, r € Ry for which the predicted
width is below the threshold wp,.

F. Finding wide period-doubling windows

To find wide period-doubling windows, we consider all
saddle-node windows found in previous steps. For each saddle
node window, we find its period-doubling descendants with
widths above the threshold wy,,. This is the final step of the
procedure to locate wide periodic windows.

For each period-doubling window in a period-doubling cas-
cade as bounds for the left endpoint we use bounds for the
right endpoint of its parent. To find bounds for the right end-
point we use the same method as for saddle-node windows.
However, this time the selection of the initial guess a > arjgns
is easy, because widths of windows in a period-doubling cas-
cade decrease almost in the same way in each cascade and in
the limit the ratio of widths of subsequent windows is defined
by the Feigenbaum constant®.

IV. NUMERICAL RESULTS

In this section, we present results of numerical‘study of
periodic windows for the quadratic map using methods pre-
sented in previous sections. Computations are carried out in
multiple precision using the MPFR libra§®\, Intervalsarith-
metic support is provided by the CAPD library’.

First, we compare different versions of selecting the initial
point for the Newton method to find all*short periodic orbits.
We consider a test problem to findall saddle-node periodic
windows with periods 3 < p £ 20. T _the/first version pe-
riodic windows are found independéntly with the initial con-
dition @ = (x(s,4.0),4.0)7. TInithis odse the computation
time to find all 55447 periodic windows is 160.25 seconds us-
ing a single core 3.1 GHz processor. In the second version
sequences are reverse sort@d according to the ordering “<”
and results obtainéd fora‘given sequence are used to select
the initial point for the,Newten method for the next sequence.
In this version thestotal computation time is 144.86 seconds,
which meanS§ that thessecond version is approximately 10%
faster for the consideted test problem.

To assess the performance of these two versions for longer
sequences let us consider a family of primary sequences
((011)M11), k& 2, where the notation (011) means that
the subsequence (001) is repeated k times. When we apply
thexfirstyversion to find periodic windows for 50 < k£ < 150
the cemputation time is 55.77 seconds. For the second ver-
sion theicomputation time is reduced by 87% to 7.29 seconds.
For all sequences in the family, we have ((01 DF111) < (001).
Hence, the left endpoint ajs; = 3.828427125 of the periodic
window with the sequence (001) can be used as an initial
point to find periodic windows in this family. Applying the

procedure to compute the periodic window for the sequence
((011)29°111) with a = 4.0 takes 2 seconds. When we also
use the bisection method the computation time is reduced to
1.28 seconds. Using a = 3.828427125 reduces computation
time to 0.16seconds. For the sequence ((011)°°111) with
the initial point @ = 3.828427125 the computation time is
0.42 seconds. To find the periodic window starting at a = 4.0
we should use the combination of the Newton method and the
bisection method; otherwise the method fails. In this case the
computation time is 3.74'seconds.

The examples presented ‘above show that the selection of
the initial point a 2 argy is eSsential for the fast operation
of the algorithm to*find periodic windows. When a is suffi-
ciently close to gy, theJNewton method converges very fast
and using thebisection method is not necessary. The bisection
method engtres convergence and helps to reduce the compu-
tation time if\g is Tardrom ayen;. When many sequences are
considéredtogether, we should first reverse sort them accord-
ing to'the relation “<” and use results obtained for a given
sequencesto caleulate the initial point for the next sequence.
This is.especially important for long sequences.

A. All periodic windows with period p < 36

The algorithm to find bifurcation points presented in Sec-
tion III C is applied to find all 1 966 957 258 periodic windows
with periods 2 < p < 36. Computations are carried out using
multiple precision interval arithmetic with 256 bits which al-
lows us to find very accurate rigorous bounds of periodic win-
dows’ endpoints and widths. Widths of all windows are found
with the precision better than 10770

Fig. 2 shows widths of periodic windows with periods
p < 8 versus their positions in the parameter space. The
widest window corresponds to the sequence (01). The next
two windows are its period-doubling descendants with se-
quences (0111) and (01110101). The next widest window is
a period-3 window with the sequence (001). It has a common
border with its period-doubling descendant with the sequence
(001011).

The measure of the set )%, Q, is above 0.611834003131.
In Ref. 7, the authors found 677242 periodic windows with
periods 2 < p < 36 with the total width approximately equal
to 0.6118328475, which is smaller by 1.1556 x 1079 than the
true measure of U?f:z Q. Although the results presented in
Ref. 7 are based on a very small fraction of the total number
of periodic windows, the difference in width is small. This
means that the approach used in Ref. 7 is successful in locat-
ing wide windows and finding a good lower bound of u(Q"7).

In Fig. 3, we plot the total widths u,, of period-p windows
and the total width of primary period-p windows. These two
plots coincide for periods being primary numbers. The total
width of primary windows is 0.019185827531, which is ap-
proximately 3% of the width of all windows. Let us note that
there are only 31 970 period-tupling windows in this set, yet
they are responsible for most of the width.
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FIG. 2. Widths of periodic windows with periods p < 8 versus their
positions in the parameter space.
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FIG. 3. The total widths p, = u(€2,) €f period-p, windows (the “¥”
symbol) and the total width of periéd-p primary windows (the “O”

Of?r primary windows we limit our-
nly. We refer to windows with the
as wide windows. To estimate the
ow windows let us consider the cases
ich we know the true results. There are
49 period-35 primary windows with the total width
équal to 7.14584 x 1078, Among them, there

the total width of all period-35 primary windows.
6 there are 152 556 wide periodic windows with the
total width of 3.00236 x 1078, which is more than 99.5% of
the total width of 3.01529 x 1078 of all 954 422 197 period-36
primary windows. It follows that by skipping narrow primary

windows we lose only a small fraction of the total width.

To assess the performance of the heuristic procedure for
finding wide primary windows presented in Sec. III D we run
it for p = 35. Starting with 158 388 wide period-35 pri-
mary windows we generate 2713 967 test sequences and find
151 854 wide period-36 primary windows with the total width
of 3.001943 x 10~%, which is more than 99.98% of the to-
tal width of wide period-36 primary windows. This example
shows that the procedure is successful in finding wide primary
periodic windows. Apz&ng this procedure to find wide pri-
mary windows with periods 37 < p < 501 gives 1460 124

ith thewotal width of 5.1635 x 1077,
Sc‘émceming wide primary windows one
rimary windows belong to families
of the form (u*v). " For example ((011)'?1), ((01111)701),
1101) are, symbol sequences of the three
-37 windows and ((011)'201), ((01111)"111),
((00104)™001) “ate symbol sequences of the three widest
period=38 pri 'y indows. We identify such families and
iodic windows belonging to them. In this way,
ide primary windows with periods above 501

tal width of 1.6650 x 10~ and 13107 new wide
windows with periods p < 501 with the total width

10 10, The longest prlmary sequence correspond—

may notice tha

up,PR
* *

L ]
10° } ]
10} 1

-15
10 ‘ p
10" 10° 10° 10*

FIG. 4. Total widths u, pr of primary period-p windows found.

Fig. 4 shows the total width u,, pr of period-p primary win-
dows found versus p. Results for p < 10 are plotted using
the star symbol. One can see that for p > 40 the measure
Hppr decreases with p in a periodic fashion. This is due to
the existence of wide families of primary windows which are
responsible for most of the width for large p. Since a fam-
ily (u*v) has a non-zero contribution only at periods differing
by the length of the sequence u one observes oscillations with
the period being the least common multiple of lengths of se-
quences u defining wide families. For widest families we have
u=(011),u = (01111), or u = (00101) and hence the oscilla-
tions have period 15, which is visible in the middle part of the
plot.
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FIG. 5. Relative widths of period-tupling descen\s;(ﬁ for the
sequence s = (001), (b) for the sequence s.= (00101).

Summarizing, we have found 1990)9 primary win-

dows with periods 3 < p < 4 0 4vith the'total width above
0.01918634753 includinzj?a 202761 primary windows with

periods p > 37 with the fotal'width 5.2:x 107, Here, we also
report narrow windows. 5

C. Wide perio Iiﬁg windows
—~ y.

study-tructures of period-tupling descendants
e method to find wide period-tupling windows

ative width w; versus its position. The relative width w is cal-
culated as the ratio of the width of the periodic window with
the sequence s” and the width of the primary window with the
sequence s. Results obtained for the sequence s = (00101)
are plotted in Fig. 5(b). One can see that these two plots are

very similar both in relative positions of period-tupling win-
dows and their relative widths. Similar pictures are observed
for other primary sequences. We conclude that it is possible
to predict positions and widths of period-tupling windows for
all primary sequences based on positions of period-tupling de-
scendants of a single primary sequence. Also note that both
plots are similar to the plot of widths of periodic windows
with periods p < 8 (compare Fig. 2). This shows that the
structure of periodic windows is self-similar. Period-tupling
descendants of any prizzy window are a reduced copy of the
whole structure of periodic'windows.

The method desgti in ion IIIE is applied to find
period-tupling descendants of wide primary windows found in
previous steps. startayith Ry = S \{(01)}. In the kth step
for s = (01),and s*= (001 we find period-tupling windows
with sequences st wherew € Ry. Then, we find period-tupling
descendants ther.primary windows. To speed up com-
ider only those period-tupling descendants
for which we predict that their widths are above the threshold
Wit ~15_ Predictions are based on results obtained for the
ﬁience s =%001). In this way, we obtain the set Ry, con-
taining néy period-tupling sequences. Computations are con-

inued while R, # 0. In this way, we find 300263 813 period-

al ’ . : ! 1 tupling windows. Here, we do not count period-doubling win-
10 SRR & \liv:;sj The longest period-tupling sequence corresponding to

ide periodic window found has the length 1 572 864.

In the final step, we sort periodic windows found so far ac-
cording to increasing parameter values and using the method
presented in Section III'F, we look for period-doubling win-
dows with widths above the threshold wpy, = 10715, In cer-
tain cases, to reduce computation times the search is limited to
windows with widths above the threshold 10~'4. The longest
sequence corresponding to wide period-doubling windows
is a period-doubling descendant of (01) and has the length
4194304. The width of the corresponding period-doubling
window is approximately 3.9119 x 10~1. There are two wide
period-3145728 windows belonging to a period-doubling cas-
cades of (001) and (O11111).

Summarizing, we have found 444 596 181 period-tupling
windows including 143 621 699 period-doubling windows.

Widths of periodic windows belonging to period-doubling
cascades of saddle-node sequences with periods 3 < p < 7
are plotted in Fig. 6. Results for period-doubling cascades
starting with sequences (001) and (0001) are plotted in blue
and red, respectively. Slopes of plots for large periods are
defined by the Feigenbaum constant § = limy_co Wi/Wit1 =
4.669201609, where w; denotes the width of the kth win-
dow in a period-doubling cascade?®?. It is interesting to
note that for fixed k the ratios wi/wy.; do not vary much
in different cascades and that they change monotonically to-
wards the limit 6. For example for the period-doubling cas-
cades shown in Fig. 6 we have w;/w, € [1.9998,2.1389],
wyo/ws € [4.2337,4.3024], wi/wg € [4.5515,4.5718],
wa/Ws € [4.6458,4.6470], ws/we € [4.6639,4.6649], and
Wi /Wie1 € [4.669201,4.669202] for all £k > 11. It follows
that the convergence is quite fast.

The results regarding the number and the total width of pe-
riodic windows of a given type are collected in Table I. It
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FIG. 6. Widths of periodic windows in period-doubling cascades

follows that the measure of the set of regular parameters sat-
isfies

1(Q7) > 0.613960137,

10°

1
FIG. 7. The Qki'&thg_of period-p windows found (blue) and the
total widthef perioed-p period-tupling windows found (red) versus p.

3

primary windows is small compared to the

sociated
(10) idth asseciated with period-tupling windows only the red

ot is yisible. For periods being primary numbers, there is
riod-tupling windows, and hence in this case only a blue

which is by 1.8028 x 107> larger than the bound 0.6139421 noR
. dot isishown.
reported in Ref. 7.

]

Recall that periodic windows are classified as primagy win-
dows and period-tupling windows (non-primary). W&ﬂye\
wi

for
ave

dows. This is due to carrying out the exhaustive
periodic windows with periods p < 36. These{windo

however very little impact on the total width. \

TABLE I. The number and total width of periodic m a given
type.

found much more primary windows than period-t lj%Z
T

Vo
type number \ \wal width
all 2434724230 046139601370509258
primary 1990428049 0.0191863475318510

:5947737895190748
.0271871221799938

period-tupling

saddle-node
period-doubling 1

621699, 0.5867730148709320
all wide /75341957 0.6139601017921689
primary wide 3613394 0.0191863447312755

0.5947737570608933
0.0271870998291728
0.5867730019629961

that skipping narrow windows causes that the total
ro&by less than 3.6 X 1078, One can see that there are
er wide primary windows than wide period-tupling
windows.

Total widths ), of period-p windows found are plotted in
Fig. 7 in blue. Contribution of period-tupling windows is plot-
ted in red on top of the first plot. Note that when the width

An estimate of the true measure of u(Q")

In the previous section, we have found a lower bound for the
measure ¢(Q7). In this section, we estimate the true value of
this measure and find its upper bound. Calculations reported
in this section are non-rigorous.

b

0 n

2-0.1 n

10°° 10°

10 -10

10 -15

FIG. 8. The total width of periodic windows found with widths be-
longing to the bin [27017, 2701+ yersus the bin position.

Let us first estimate the true value of u(Q~). Let us denote
by b, the total width of periodic windows found with widths
belonging to the bin [27017,27-0.1¢+Dy Fig 8 shows b, versus
bin position. One can see that in the range [107'3, 1078] the
plot is almost linear in the logarithmic scale. This observation
lets us state the hypothesis that the relation log(b,) = cin +
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‘ s kpalg true for narrower windows. The drop in the left-

nd part of the plot is probably related to the fact that not

PUb|l§athxE}g' ws belonging to the corresponding bins have been

round.

The data in the range [107'3,1071°] is fitted with the model
log(b,) = cin + ¢ yielding ¢; = —0.028880, ¢y ~ —4.917367.
This model is plotted in Fig. 8 as a red dashed line. Using
this model we may approximate the total width of periodic
windows as V| b, +3% \ .| exp(cin+co), where the first sum
involves bins for which we know all corresponding periodic
windows. Assuming that all periodic windows with widths
above 107!3 have been found we obtain N = 431 and

1(Q N [3,4]) ~ 0.613960301, (11)

which is slightly above the rigorous lower bound 0.613960137
presented in Table 1.

w
Wil |+ (0110

iy ° ((011)1)
o [ 33 < ((01111)%01)
107 iy, T
107° |
10—12»
-15
10 : :

10" 10°

FIG. 9. Widths of periodic windew: longing to families
((011)%01), ((011)*1), and ((01111)*0

To find a reliable upper bound of 4(Q ") Tet us first study the
problem what is the total width prilyéry windows. Since
we know results for perigdsip < 365wwe need to find an up-
per bound of the widt Mindows with p > 37 not

re. Let us first estimate the width of
Belonging to families (ufv). Widths
ing to the three widest families
((011)*01), ((01 g anc%(Ollll)kOI) are shown in Fig. 9.
One can seg¢' that in l6garithmic scale for large p widths
change linearly with( p. “Let us denote by w), the width of
a period=p window belonging to a given family. Linear re-
gressign models w,) = glog(p) + r for each family are
computed and shown in Fig. 9 as dashed lines. Models
hdve bee mputed based on periodic windows with peri-
odsy3 < p < 4000. For the considered families the pa-
rameters oﬁhe model are g; = —2.999145, r| =~ —6.58848,
g = =2.999877, r, = —7.506251, and g3 =~ —2.999068,
ry =~ —8.5648447, respectively. Using the model, the width
of a period-p window belonging to the family can be approx-
imated as w, = w;p?, where w; = exp(r). For example, the
relative error between the true width of the periodic window

with period 5003 belonging to the first family and its approxi-
mate value is less than 5x 107>, This indicates that the models
are of a good quality. It is interesting to note that parameters
q are almost identical for all three families considered. This
observation also holds for other families. Let n; and n, denote
the lengths of the sequences u and v, respectively. For g < —1,
to estimate the total width of periodic windows in the family
with periods p > po = niky + ny one can use the following
formulas obtained by the integral test:

Wlpq+1
Mn,k)q <—0% 12
Z ni(—q - 1)

For example for«the ily ((01 1)*01) we obtain bounds
[1.8583x10712,1.8 x 10712] for the total width of periodic
windows with pefiods larger than 11150. Similar calculations
are applied to'thé 49" widest families of primary windows. The
Ww primary windows is estimated to belong
42541,1.42543] x 1071, which is several
orders of'magnitude less than the total width of primary win-
(é‘\zzwith periods p > 37. This shows that narrow windows
belenging to families of primary windows have a negligible
ntribution to the total width. Since for large p most of the
s of primary windows is associated with wide families of
ky) it follows that skipping narrow windows for large p

wi(ny + po)?*!
ni(—qg—1)

interval

pe

introduces a negligible error in estimating the total width.
Based on the discussion in this section and in Sec. IVB we
conclude that the total width of primary windows not found
is below 1% of 5.2 x 1077, which is the total width of found
primary windows with periods p > 37.

FIG. 10. Error in the computation of the total width of period-tupling
descendants by considering n widest period tupling windows only.

Now, we study the problem what is the total width of
period-tupling windows. Fig. 10 shows the error e, between
the total width of period-tupling descendants found and the
total width obtained when considering only n widest period-
tupling descendants. The results obtained for the period-3
window, the period-4 primary window, and period-5 primary
windows are plotted in blue, red, and cyan, respectively. In the
computations, only wide windows (w > 107!5) are taken into
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kPnt. One can see that in the logarithmic scale the middle
.part.of eich plot is almost linear. One can expect that this is
I ﬂag( for larger n. Drops in plots shown in Fig. 10 are due
to considering wide windows only.

Let wy be the width of a primary window, and w,, (forn > 1)
the width of its nth widest period-tupling descendant. Let us
denote by v, the ratio of the sum };_, wy and wy. We fit
the model v, = v — cnf to the data presented in Fig. 10
for n € [100,10000]. For larger n the results are not reli-
able, since we consider wide windows only. For example, for
the period-3 window, we obtain parameters vo, = 0.66529,
¢ = 0.097164, g = —0.72609. Approximations wy(ve — cn?)
computed using the obtained models are plotted in Fig. 10 as
black dashed lines. Using this model we obtain an estimate
for the total width of period tupling descendants as wyve. To
obtain an upper bound for the error introduced by consider-
ing only the n widest period-tupling descendants we compute
Voo, €5 4 €n = Voo =W, ! 2ie1 Wi for several low-period primary
windows. The maximum values Vo max = 0.72, cmax = 0.1033,
Gmax = —0.7260 and e, max are used to compute upper bounds
for the width of narrow period-tupling descendants of other
primary windows. To have an accurate estimate based on
the number of n widest period-tupling windows we need to
be sure that no wide windows are missing. We assume th
all windows wider than 107!3 have been correctly identified.
For each primary window, we estimate that the total width

n < 1000 and below wocmaxnn?™> for n > 1000, where w,

computed a lower bound for the measure of the set of regu-
lar parameters better than the existing ones and estimated its
true value. The obtained rigorous lower bound is also a non-
trivial upper bound for the measure of the set of stochastic
parameters. Several properties of primary and period-tupling
windows have been revealed. This includes self-similarities
in structures of period-tupling descendants, scaling of widths
of primary windows belonging to specific families and prop-
erties of period-doubling gascades. Based on these properties
an upper bound of the n?jasure of the set of regular parameters

has been computed. \

SUPPLEMENTARY M RIAL

See sup em%ary material for the data regarding periodic
i a0 0. There are 121 144 such periodic
ig total width is above 0.61394327. For each

sequenceytype of the window (saddle-node, period-doubling,
riod-tupling), very accurate bounds for both endpoints, and

a pro@nate width.
[ -
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Taking into account a contribution from per de-
scendants of primary windows found, a contribut m pri-
mary windows not found and a contributio bm.%gg 10d-
tupling descendants we obtain an upper bound.0. 66 for

width of the primary window considered and 7 is | ber
of its period-tupling descendants wider than 107 '3. ~
upli

0.613960 < pu(Q~

where the lower bound 6i:séfgoro

following bounds for th W

rameters
< 1(Q*) < 0.386040,

e set of stochastic pa-

0.3860

where this time t u{pery)und is rigorous.

—
V. CONCLSS%S

—

A s&ﬁn\lﬁ%method to find wide periodic windows for
vadratic map has been proposed. Classification of pe-

i g\F ows have been carried out. A heuristic method
he majority of wide primary and period-tupling win-
dows haye been proposed. We have found all periodic win-
dows with periods p < 36 and the majority of wide periodic
windows with longer periods. Very accurate rigorous bounds
of their widths have been calculated. Using these results we
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