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An efficient method to find positions of periodic windows for the quadratic map f xð Þ ¼ ax 1� xð Þ
and a heuristic algorithm to locate the majority of wide periodic windows are proposed. Accurate

rigorous bounds of positions of all periodic windows with periods below 37 and the majority of

wide periodic windows with longer periods are found. Based on these results, we prove that the

measure of the set of regular parameters in the interval 3; 4½ � is above 0.613960137. The properties

of periodic windows are studied numerically. The results of the analysis are used to estimate that

the true value of the measure of the set of regular parameters is close to 0.6139603. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4983172]

The quadratic map is a classical example of a one-

dimensional map displaying complex behavior. One of

the open problems regarding this map is what are the

measures of sets of regular and stochastic parameters. To

compute an accurate rigorous lower bound for the mea-

sure of the set of regular parameters, it is necessary to

find many (billions) of periodic windows, some of them

with very long periods (several hundred thousands of

iterations and more). In this paper, we propose a very

efficient algorithm to locate periodic windows with spe-

cific symbol sequences and use it to compute an accurate

lower bound for the measure of the set of regular param-

eters, thus providing an upper bound for the measure of

the set of stochastic parameters.

I. INTRODUCTION

The quadratic map fa xð Þ ¼ ax 1� xð Þ, where x 2 0; 1½ �
and a 2 X ¼ 0; 4½ �, is a classical example of a simple nonlin-

ear map with complex dynamics.1 It is known that for any

a 2 X, the map fa has at most one attractor.2 The set X� of
regular parameters contains parameter values for which

there exists a periodic attractor. By Xþ � X, we denote the

set of stochastic parameters for which the map fa admits an

ergodic invariant probability measure which is absolutely

continuous with respect to the Lebesgue measure. It is

known that measures of these two sets are positive3–6 and

that their union has the full measure.2

In this work, we numerically study the set X�. In partic-

ular, we are interested in computing a rigorous lower bound

for its measure l X�ð Þ and estimating its true value. In

Ref. 7, the authors prove that l X� \ 3; 4½ �ð Þ > 0:6139421.

They also report the unpublished non-rigorous estimate by

Simo that the measure of the set X� \ 3; 4½ � is close to

0.6155 (compare also Ref. 8). In Ref. 5, it is shown that the

measure of the set Xþ is above 10�5000. As the authors

state, this bound is not in any way “optimal” or “sharp.”

Continuing effort is undertaken to improve this bound.9,10

The set X� is a union of intervals, which are called peri-

odic windows. Therefore, to obtain a good lower bound of

l X�ð Þ we need to find many wide periodic windows. In Ref.

7, the authors propose a method to find periodic windows

scanning the parameter space. In this method, test points

ak 2 X are selected using the bisection technique; the

Newton method is applied to find points ~ak close to ak where

superstable periodic orbits exist and various interval arith-

metic tools are used to prove the existence of stable periodic

orbits in intervals containing points ~ak. The resulting inter-

vals are subsets of periodic windows. By construction, the

method finds only lower bounds of periodic windows’

widths. In Ref. 11, a method to find very accurate enclosures

of endpoints of periodic windows is presented. In this

method, the interval Newton operator is applied to prove the

existence of bifurcation points for periodic orbits with spe-

cific symbol sequences. All periodic windows with periods

p � 32 have been found. The results were used to find very

accurate lower and upper bounds of measures l X�p
� �

for

p � 32, where X�p denotes the set of parameters belonging to

periodic windows with period p.

In this work, we extend the method presented in Ref. 11

to work for large periods. We find all periodic windows with

periods p � 36. To find wide periodic windows with longer

periods, we consider three types of periodic windows: pri-

mary, period-doubling, and period-tupling windows (to be

defined in Sec. II). We propose a heuristic method to find

wide primary windows and use it to find the majority of pri-

mary windows with widths above wmin ¼ 10�15. Next, we

generate wide period-tupling and period-doubling windows.

The results obtained are used to compute a rigorous lower

bound for the measure of the set X� and to estimate its true

value.

The layout of the paper is as follows. In Sec. II, several

properties of periodic windows for the quadratic map are

recalled. In Sec. III, the search method is described in detail,

and in Sec. IV, the results of applying this method to analysea)Electronic mail: galias@agh.edu.pl.
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wide periodic windows for the quadratic map are presented.

Throughout the paper, we use bold face to denote intervals,

interval vectors, and matrices and math italic to denote “real”

quantities. The interval with endpoints
�
x � �x is defined as

x ¼ ½
�
x; �x�. The diameter and the middle point of x are denoted

as diam xð Þ ¼ �x �
�
x and mid xð Þ ¼ 0:5ð

�
xþ �xÞ, respectively.

II. PRELIMINARIES

The quadratic map is a one-parameter map of the inter-

val I ¼ 0; 1½ � into itself defined by

fa xð Þ ¼ ax 1� xð Þ; (1)

where a 2 X ¼ 0; 4½ �.
We use the notation f 0

a xð Þ ¼ x and f kþ1
a xð Þ ¼ fa f k

a xð Þ
� �

for k � 0. The trajectory of fa with the initial point x0 is

x0; x1; x2;…ð Þ, where xk ¼ f k
a x0ð Þ.

We say that x0 is a period–p point of fa if f p
a x0ð Þ ¼ x0,

and f k
a x0ð Þ 6¼ x0 for 1 � k < p. The corresponding trajectory

xk ¼ f p
a xð Þ; k � 0 is called a period-p orbit. We say that the

periodic orbit x0; x1;…; xp�1ð Þ is stable if jkp a; x0ð Þj < 1

where the multiplier kp a; x0ð Þ of the periodic orbit is defined

as the derivative of f p
a at x0, i.e.

kp a; x0ð Þ ¼ f p
a

� �0
x0ð Þ ¼

Yp�1

k¼0

fa
0 xkð Þ ¼

Yp�1

k¼0

a 1� 2xkð Þ: (2)

Let us recall some well known results on periodic win-

dows for the quadratic map. For details, the reader is referred

to introductory books on deterministic chaos.12,13

We say that an interval aleft; arightð Þ � X is a period-p
window for the family ffa : a 2 Xg if for all a 2 aleft; arightð Þ
there exists a stable period-p orbit of fa, and aleft; arightð Þ is a

maximal interval with this property. Endpoints of periodic

windows are bifurcation points of corresponding periodic

orbits. Periodic windows for which at the left endpoint

there is a saddle-node/period-doubling bifurcation are

referred to as saddle-node windows and period-doubling
windows, respectively. For the quadratic map, there is a

period-doubling bifurcation at the right endpoint of each peri-

odic window, and at this point another periodic window (of

period-doubling type) starts. Thus, each saddle-node window

generates an infinite sequence of periodic windows with com-

mon endpoints. Such a sequence is called a period-doubling
cascade.

Let us consider a fixed value of a. With the point

x 2 0; 1½ �, we associate the symbol sequence s xð Þ ¼ s
¼ s0; s1;…ð Þ in such a way that sk¼ 0 if xk < 0:5 and sk¼ 1

if xk � 0:5, where x0; x1; x2;…ð Þ is the trajectory of fa with

the initial point x0 ¼ x. If x is a period-p point, then s is also

periodic. In this case, we write s ¼ s0; s1;…; sp�1ð Þ.
Let us introduce an ordering on the set of symbol

sequences R ¼ fs ¼ s0; s1;…ð Þ : sk 2 f0; 1gg. We say that

s � ŝ if sk < ŝk and
Pk�1

i¼0 si � 0 mod 2ð Þ or sk > ŝk andPk�1
i¼0 si � 1 mod 2ð Þ, where k is the smallest non-negative

integer such that sk 6¼ ŝk. This ordering is closely related to

the ordering of right/left (RL) patterns introduced in Ref. 14.

We say that a periodic sequence s of length p is minimal if its

period is p and it is equal to its smallest cyclic permutation

according to the ordering “�.” For example, the order of

cyclic permutations of (001) is 001ð Þ � 010ð Þ � 100ð Þ and

hence the sequence (001) is minimal. Points along a periodic

orbit have symbol sequences being cyclic permutations of

each other. It follows that there is a one-to-one relation

between periodic orbits and minimal sequences.

The total number of symbol sequences of length p is 2p.

The number P pð Þ of minimal period-p sequences can be

computed by subtracting from 2p the number of symbol

sequences having periods being proper divisors of p and

dividing the result by p

P pð Þ ¼ p�1 2p �
Xp�1

k¼1;p mod k¼0

k 	 P kð Þ

0
@

1
A: (3)

To set up a relation between minimal sequences and

periodic windows, let us define specific types of minimal

sequences. We say that a minimal sequence is an odd-parity
sequence (even-parity sequence) if it has odd (even) number

of nonzero symbols. Let s be an odd-parity sequence with

period p. The sequence s0 ¼ s0; s1;…; sp�3; 1� sp�2; sp�1ð Þ
obtained by flipping the second to last symbol of s is called

the even-parity partner of s. We say that an odd-parity

sequence s with period p is a saddle-node sequence if its

even-parity partner has period p. Otherwise, we call it a

period-doubling sequence.

Let us denote by W pð Þ the number of odd-parity period-

p sequences. There is one odd-parity period-2 sequence:

(01) and hence W 2ð Þ ¼ 1. For odd p � 3, each odd-parity

sequence has an even-parity partner. For example, there are

two period-3 minimal sequences: (001) and (011). The

sequence (011) is the even-parity partner of (001). It follows

that for odd p half of the minimal period-p sequences are

of odd-parity, i.e., W pð Þ ¼ P pð Þ=2. For even p � 4, there

are W p=2ð Þ odd-parity sequences for which there is no

corresponding odd-parity sequence with period p. For exam-

ple, there are three period-4 minimal sequences (0001),

(0011), and (0111). The sequence (0011) is the even-parity

partner of (0001). The sequence (0111) is a period-doubling

sequence because flipping the second to last symbol gives

the sequence (0101) with period 2. Hence, in this case the

number of odd-parity sequences is P pð Þ þW p=2ð Þ
� �

=2 out

of which there are W p=2ð Þ period-doubling sequences.

Summarizing, the formula for the number W pð Þ of odd-

parity period-p sequences reads

W pð Þ ¼
1 if p ¼ 2;

0:5	 P pð Þ if p is odd; p � 3;

0:5	 P pð Þ þW 0:5	 pð Þ
� �

if p is even; p � 4:

8><
>:

(4)

Let us now discuss the relation between minimal

sequences, periodic orbits, and periodic windows. Each min-

imal period-p symbol sequence corresponds to a single

period-p orbit of f4:0. All of them are unstable. Let us denote

by x s; að Þ ¼ xk s; að Þð Þp�1
k¼0 the position of the periodic orbit of
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fa with the symbol sequence s, if it exists. Let s be an odd-

parity sequence. The multiplier of the periodic orbit x s; 4:0ð Þ
is kp 4:0; x0 4:0ð Þ

� �
¼ �2p. When a is decreased, the position

x s; að Þ of the periodic orbit changes until at the point aright

we have kp aright; x0 arightð Þð Þ ¼ �1. When a is further

decreased, we reach the point aleft where kp a; x0 að Þð Þ ¼ 1.

The interval aleft; arightð Þ is the periodic window correspond-

ing to the odd-parity sequence s. There exists a point

amiddle 2 aleft; arightð Þ where kp amiddle; x0 amiddleð Þð Þ ¼ 0. At

this point, the second to last symbol in s flips. In Fig. 1, we

show examples how the multipliers kp change with a. Curves

corresponding to saddle-node sequences (with kp að Þ < 0)

and their even-parity partners (with kp að Þ > 0) are plotted in

blue and cyan, respectively. For a¼ 4.0, we have kp ¼ �2p

for odd-parity sequences and kp ¼ þ2p for even-parity

sequences. When a is decreased, kp decreases in absolute

value until kp ¼ 61 is reached, which corresponds to a peri-

odic window endpoint.

If s is a saddle-node sequence, then aleft is a saddle-

node bifurcation point at which the stable periodic orbit and

the unstable periodic orbit with the sequence being the

even-parity partner of s are born. If s is a period-doubling

sequence of length p ¼ 2k, then aleft is a period-doubling

bifurcation point where a period-2k orbit is born from a

period-k orbit. For example, the period-doubling window

with the sequence (001011) starts at a point where the

periodic window with the sequence (001) ends (compare

Fig. 1).

From the discussion presented above, it follows that

there is a one-to-one correspondence between periodic win-

dows and odd-parity sequences and that saddle-node and

period-doubling sequences correspond to saddle-node and

period-doubling windows, respectively.

Let us recall the notion of primary sequences and period-

tupling sequences (compare Refs. 11, 15, and 16). Let s be

an odd-parity sequence with period k � 2 and s0 its even-

parity partner. A period-l-tupling sequence is obtained by

concatenating l1 > 0 copies of s and l� l1 > 0 copies of

s0 where l1 is odd to preserve the odd-parity of the final

sequence. For example, s; s0ð Þ is a period-doubling sequence,

s; s0; s0ð Þ is a period-tripling sequence, while s; s0; s0; s0ð Þ and

s; s; s; s0ð Þ are period-quadrupling sequences generated from s.
The sequence s ¼ 01ð Þ is also considered a period-tupling

sequence. An odd-parity sequence which is not a period-

tupling sequence is called a primary sequence. Periodic win-

dows corresponding to primary and period-tupling sequences

are called primary windows and period-tupling windows,
respectively.

III. SYSTEMATIC SEARCH FOR PERIODIC WINDOWS

In this section, we present methods to find rigorous

bounds of endpoints of periodic windows. Since we are also

going to handle periodic windows with periods above 106 the

implementations need to be very efficient. Let us start with a

description of a method to find approximations of periodic

windows’ endpoints for a selected odd-parity sequence.

A. Finding accurate approximations of periodic
windows’ endpoints

Endpoints of periodic windows are saddle-node and

period-doubling bifurcation points of corresponding periodic

orbits. Let us consider the map Hk0
: Rpþ1 � z 7!Hk0

zð Þ 2
Rpþ1 defined by

Hk0

x0

x1

..

.

xp�1

a

0
BBBBB@

1
CCCCCA¼

x1�ax0 1�x0ð Þ
x2�ax1 1�x1ð Þ

..

.

x0�axp�1 1�xp�1ð Þ
ap 1�2xp�1ð Þ 
 
 
 1�2x1ð Þ 1�2x0ð Þ�k0

0
BBBBBBBB@

1
CCCCCCCCA
;

(5)

where z ¼ x0; x1;…; xp�1; að Þ> and k0 ¼ 61. Zeros of Hk0

correspond to bifurcations of period-p orbits. To study period-

doubling and saddle-node bifurcation points, we use k0 ¼ �1

and k0 ¼ 1, respectively. Zeros of Hk0
can be found using the

Newton method. Let us assume that z 0ð Þ is the initial point for

the Newton method. The formula for the Newton iteration is

z kþ1ð Þ ¼ z kð Þ � h where h ¼ h0; h1;…; hpð Þ> is the solution of

the equation

H0k0
z kð Þð Þh ¼ Hk0

z kð Þð Þ; (6)

where

H0k0
z kð Þð Þ¼

�c0 1 0 … 0 �b0

0 �c1 1 … 0 �b1

..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 . .
.

1 �bp�2

1 0 0 … �cp�1 �bp�1

�2ad0 �2ad1 �2ad2 … �2adp�1 pea�1

0
BBBBBBBB@

1
CCCCCCCCA
;

FIG. 1. Multipliers of periodic orbits associated with minimal sequences of

length 3 and 6 versus parameter a. Periodic orbits with even-parity, saddle-

node, and period-doubling sequences are plotted in cyan, blue, and red,

respectively.
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Hk0
z kð Þð Þ ¼ ðg0; g1;…; gp�1; e � k0Þ>; bk ¼ xk 1 � xkð Þ; ck

¼ að1 � 2xkÞ, dk¼
Qp�1

i¼0;i 6¼k ci; gk¼ x kþ1ð Þmodp�axk 1�xkð Þ,
and e¼

Qp�1
k¼0 ck.

From (6), it follows that hkþ1 ¼ vk þ wkh0 þ ukhp for

k ¼ 0; 1;…; p� 2 where wk ¼
Qk

i¼0 ci, uk ¼
Pk

j¼0 bjQk
i¼jþ1 ci, and vk ¼

Pk
j¼0 gj

Qk
i¼jþ1 ci. Eliminating h1, h2,…,

hp�1 from (6) yields

q0 qp

e� 1 up�1

� �
h0

hp

� �
¼ r

�vp�1

� �
; (7)

where q0 ¼ 2aðd0 þ
Pp�1

i¼1 diwi�1Þ, qp ¼ 2a
Pp�1

i¼1 diui�1

�pea�1, and r ¼ k0 � e� 2a
Pp�1

i¼1 divi�1. Hence, the

Newton correction h can be computed as

h0 ¼
rup�1 þ vp�1qp

q0up�1 þ 1� eð Þqp
; hp ¼

�q0vp�1 þ 1� eð Þr
q0up�1 þ 1� eð Þqp

; (8)

hkþ1 ¼ vk þ wkh0 þ ukhp for k ¼ 0; 1;…; p� 2: (9)

The above formulas can be implemented to have a linear

complexity versus p both in time and memory.11

The algorithm implements a forward shooting version

to compute h. It is also possible to implement the back-

ward shooting version17,18 to solve (6), where instead of

computing
Qk

i¼0 ci one computes the product of inverses.

This version should be selected when the product
Qp�1

i¼0 ci

is large.

Let s be a period-p minimal sequence, and aright be the

right endpoint of the corresponding periodic window. We dis-

cuss the problem how to select an initial point for the Newton

method to obtain a fast convergence to z¼ x s;arightð Þ;arightð Þ>.

Zeros of Hk0
with k0¼61 define bifurcation points of all

period-p orbits. Since the number of such orbits grows expo-

nentially with p, it is clear that we have to choose the initial

point z 0ð Þ for the Newton method very carefully to obtain

the convergence to a periodic orbit with a specific symbol

sequence. One possibility is to use z 0ð Þ ¼ x s;4:0ð Þ;4:0ð Þ> as an

initial point. The position x s;4:0ð Þ of the periodic orbit for

a¼4.0 can be found using the topological conjugacy between

f4:0 and the tent map T : 0;1½ �7! 0;1½ � which is defined as

T yð Þ¼1�j2y�1j. This version was used in Ref. 11 to find all

periodic windows with periods p�32. It was shown that the

method works fast for periodic windows with low periods.

However, it will be shown in Section IV that for larger periods

this selection method may lead to very slow convergence or

even divergence of the Newton method.

When we know a 2 aright; 4:0ð Þ we may use z 0ð Þ

¼ ~x s; að Þ; a
� �>

as an initial point for the Newton method,

where ~x s; að Þ is an approximation of the position x s; að Þ of

the periodic orbit of fa. To approximate x s; að Þ, we compute

backward iterates of the interval 0; 1½ � under the map fa. The

map fa is not reversible. However, since the symbol sequence

is known, we may easily select the correct branch when com-

puting backward iterates. The numerical procedure is initial-

ized with x0 ¼ 0; 1½ �, k¼ 0. In each step, we carry out the

following computations: if k¼ 0, define xp ¼ x0, and set

k¼ p, calculate y ¼ f�1
a xkð Þ and assign xk�1 ¼ y \ 0; 0:5½ � if

sk�1 ¼ 0 and xk�1 ¼ y \ 0:5; 1½ � if sk�1 ¼ 1. Under the

assumption that a > aright these calculations, when carried

out in infinite precision, converge to the position of the peri-

odic orbit with the symbol sequence s. In practice, we use

finite-precision calculations and the algorithm is stopped

when a predefined precision is reached. Middle points of

intervals xk are selected as approximations ~xk s; að Þ.
If a is not sufficiently close to aright, to speed up compu-

tations we may use a bisection step. Let us assume that we

have a lower bound and an upper bound a0 and a1 for aright,

i.e., a0 < aright < a1. In the bisection step, we try to compute

an approximate position of the orbit for the test point

a ¼ 0:5 a0 þ a1ð Þ. If computations fail, we conclude that a
> aright and set a0 ¼ a. Otherwise, we set a1 ¼ a. For p � 3,

we may always select a1 ¼ 4 and a0 ¼ a�, where a�
� 3:56994567187 is the position of the accumulation point

of positions of periodic windows belonging to the first

period-doubling cascade (there are no saddle-node windows

with period p � 3 before a�). Bisection steps are costly and

should be made only when the convergence speed of the

Newton method is too low.

For saddle-node windows, an approximation of the right

endpoint is usually a good starting point for the Newton

method applied to the map Hk0¼1 to find the left endpoint.

For period-doubling windows, the left endpoint is found as

the right endpoint of the parent window.

B. Interval Newton method to find rigorous bounds for
bifurcation points

Once we have an approximate position ẑ of the bifurca-

tion point, we may find rigorous bounds for its position. This

is achieved by constructing an interval vector z containing

ẑ and applying the interval Newton method19 to prove the

existence of a single zero of Hk0
in z. In this method,

we have to verify that N z; ẑð Þ � z where N z; ẑð Þ ¼ ẑ
�H0k0

zð Þ�1Hk0
ẑð Þ is the interval Newton operator for the map

Hk0
and ẑ 2 z. Let z ¼ x0; x1;…; xp�1; að Þ> be an interval

vector and ẑ ¼ x̂0; x̂1;…; x̂p�1; âð Þ> 2 z. The following

algorithm provides an efficient method to compute the inter-

val vector h containing solutions of H0k0
zð Þh ¼ Hk0

ẑð Þ for

z 2 z.

To evaluate h, the following computations are carried

out in interval arithmetic:

ck :¼ a 1� 2xkð Þ; bk :¼ xk 1� xkð Þ; dk :¼
Yp�1

i¼0;i 6¼k

ci;

gk :¼ x̂ kþ1ð Þmod p� âx̂k 1� x̂kð Þ; e :¼
Yp�1

i¼0

â 1� 2x̂ið Þ;

uk :¼
Xk

j¼0

bj

Yk

i¼jþ1

ci; vk :¼
Xk

j¼0

gj

Yk

i¼jþ1

ci; wk :¼
Yk

i¼0

ci;

q0 :¼ 2a d0þ
Xp�1

i¼1

diwi�1

 !
; qp :¼ 2a

Xp�1

i¼1

diui�1�
pwp�1

a
;

r :¼ k0� e� 2a
Xp�1

i¼1

divi�1; h0 :¼
rup�1þ vp�1qp

q0up�1þ 1�wp�1ð Þqp

;
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hp :¼ �q0vp�1 þ 1� wp�1ð Þr
q0up�1 þ 1� wp�1ð Þqp

hk :¼ vk�1 þ wk�1h0 þ uk�1hp; k ¼ 1; 2;…; p� 1:

Due to properties of interval arithmetic, the inclusions between

the right-hand side expressions and the evaluated intervals

ck; bk; gk; dk, e, uk; vk; wk, q0; qp, r, and hk are automati-

cally satisfied and the interval Newton operator can be evalu-

ated as N z; ẑð Þ � ẑ � h. For more details, see Ref. 11.

C. Locating all periodic windows for a given period

To find all period-p windows, we have to consider all

even-parity sequences with period p. Period-doubling

sequences are handled in a different way, which will be

described later. Here, we consider saddle-node sequences.

For each saddle-node sequence s, we select an initial point

a larger than the right endpoint aright of the periodic window,

compute an approximate position ~x s; að Þ ¼ ~xk s; að Þ
� �p�1

k¼0
of

the periodic orbit of fa with the sequence s, and use the

Newton method applied to the map H�1 with the initial point

z 0ð Þ ¼ ~x s; að Þ; a
� �>

to find an approximate position ~aright of

the right endpoint aright and approximate position ~x s; ~arightð Þ of

periodic orbit for ~aright. Next, we construct an interval vector z

containing ẑ ¼ ~x s; ~arightð Þ; ~arightð Þ and apply the interval

Newton operator for the map H�1 to prove the existence of a

bifurcation point within z, which provides rigorous bounds

aright; �aright½ � for the position of the right endpoint.

To obtain bounds for the left endpoint aleft, we first

apply the Newton method for the map Hþ1 with the initial

point z 0ð Þ ¼ ~x s; ~arightð Þ; ~arightð Þ to find an approximate posi-

tion ~aleft of the left endpoint aleft and ~x s; ~aleftð Þ. Finally, we

apply the interval Newton operator for the map Hþ1 to prove

the existence of a bifurcation point in a neighborhood of ẑ
¼ ~x s; ~aleftð Þ; ~aleftð Þ and obtain rigorous lower and upper

bounds aleft; �aleft½ � for the position of the left endpoint.

Bounds of the width of the periodic window can be com-

puted as w; �w½ � ¼ aright � �aleft; �aright � aleft½ �.
Computation time depends on the selection of the initial

point a satisfying the condition a > aright. Since all orbits

exist for a¼ 4.0, we may always select a¼ 4.0. A faster

option is to sort all saddle-node sequences according to the

ordering “�” defined in Section II and process them from

the last one to the first one. The ordering “�” preserves posi-

tions of windows in the sense that if s � ŝ then the periodic

window corresponding to s exists for smaller a than the one

corresponding to ŝ. Therefore, as an initial guess for the posi-

tion of the right endpoint we may use the position of the left

endpoint of the previously found window. For the first win-

dow, we select a¼ 4.0. It will be shown that this approach

significantly reduces computation times especially in the

case of longer sequences.

D. Finding wide primary windows

From (3) and (4), it follows that the number of sequen-

ces grows approximately as 2p�1=p. Therefore, finding all

period-p windows is feasible only for small p.

Let us assume that we want to find primary periodic win-

dows with width larger than wmin (we will use wmin ¼ 10�15).

This is done recursively for increasing periods. Below, we

present a heuristic procedure to find wide primary periodic

windows with period pþ 1 based on wide primary periodic

windows with period p. First, we select primary period-p
sequences corresponding to periodic windows with widths

above wmin. Next for each sequence, we generate a number

of sequences of length pþ 1. Sequences are generated in two

ways. In the first version, we insert symbol 0 at a given posi-

tion. In the second version, we replace symbol 0 at a given

position by a subsequence s0s1ð Þ ¼ 11ð Þ. Both versions

ensure that the number of nonzero symbols is odd. For each

sequence obtained, we find the corresponding minimal

sequence. We remove duplicate copies, sequences with

period smaller than p and period-tupling sequences. Finally,

we sort the set of sequences in the reverse order and apply

the procedure presented in Sec. III C to find corresponding

periodic windows. It will be shown that this method finds the

majority of wide primary windows with period pþ 1.

For larger p, we use a different method. First, in the set

of primary windows found so far, we locate families of wide

primary windows with symbol sequences ukvð Þ, where the

number of nonzero symbols in sequences u and v is even and

odd, respectively. It will be shown that most wide primary

windows belong to such families. Then, for each family, we

find periodic windows with symbol sequences of the form

ukvð Þ for increasing k until periodic window’s width drops

below wmin.

E. Finding wide period-tupling windows

As it has been mentioned before, period-tupling sequen-

ces are concatenations of primary sequences and their even-

parity partners. Each period-tupling descendant of a primary

sequence s has the form t ¼ sr, with r being an arbitrary

odd-parity sequence. For a primary sequence s, the notation

sr denotes the sequence created by concatenating m copies of

s and its even-parity partner s0, where m is the length of r.

The kth element is s if rk¼ 1 and s0 if rk¼ 0. For example,

for s ¼ 001ð Þ; r ¼ 0111ð Þ we have s0 ¼ 011ð Þ and sr

¼ s0sssð Þ ¼ 011 001 001 001ð Þ.
Let Spr;w denote the set of wide primary sequences.

Finding their wide period-tupling descendants is carried out

recursively based on wide periodic windows located so far.

In the kth step, we find all wide period-tupling windows with

sequences of the form sr, where s 2 Spr;w and r 2 Rk. Period-

tupling sequences corresponding to wide windows found in

the kth step form the set Rkþ1 for the next step. The process

is initiated with R1 ¼ Spr;wnf 01ð Þg and it is stopped when Rk

is empty. The sequence (01) is excluded to avoid considering

period-doubling sequences, which are handled separately, as

described in Sec. III F.

To reduce the number of period-tupling sequences

which are considered in a given step, we predict widths of

sequences sr for all s 2 Spr;w based on the results obtained

for a single sequence. The prediction is based on the fact that

for a fixed r the width of the periodic window with the

sequence sr is proportional to the width of s. In practice,
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we first find all periodic windows with the sequences ŝr for

r 2 Rk for a fixed ŝ, for example ŝ ¼ 001ð Þ. Then, for a given

sequence s 2 Spr;w; s 6¼ ŝ, we skip sequences sr, r 2 Rk for

which the predicted width is below the threshold wmin.

F. Finding wide period-doubling windows

To find wide period-doubling windows, we consider all

saddle-node windows found in previous steps. For each sad-

dle node window, we find its period-doubling descendants

with widths above the threshold wmin. This is the final step of

the procedure to locate wide periodic windows.

For each period-doubling window in a period-doubling

cascade as bounds for the left endpoint, we use bounds for

the right endpoint of its parent. To find bounds for the right

endpoint, we use the same method as for saddle-node win-

dows. However, this time the selection of the initial guess

a > aright is easy, because widths of windows in a period-

doubling cascade decrease almost in the same way in each

cascade and in the limit the ratio of widths of subsequent

windows is defined by the Feigenbaum constant.20

IV. NUMERICAL RESULTS

In this section, we present results of the numerical study

of periodic windows for the quadratic map using methods

presented in Sec. III. Computations are carried out in multi-

ple precision using the MPFR library.21 Interval arithmetic

support is provided by the CAPD library.22

First, we compare different versions of selecting the ini-

tial point for the Newton method to find all short periodic

orbits. We consider a test problem to find all saddle-node

periodic windows with periods 3 � p � 20. In the first ver-

sion, periodic windows are found independently with the

initial condition z 0ð Þ ¼ x s; 4:0ð Þ; 4:0ð Þ>. In this case, the

computation time to find all 55 447 periodic windows is

160:25 s using a single core 3.1 GHz processor. In the sec-

ond version, sequences are reverse sorted according to the

ordering “�” and the results obtained for a given sequence

are used to select the initial point for the Newton method for

the next sequence. In this version, the total computation time

is 144:86 s, which means that the second version is approxi-

mately 10% faster for the considered test problem.

To assess the performance of these two versions for lon-

ger sequences, let us consider a family of primary sequences

ðð011Þk111Þ, k � 2, where the notation 011ð Þk means that

the subsequence (001) is repeated k times. When we apply

the first version to find periodic windows for 50 < k � 150,

the computation time is 55:77 s. For the second version, the

computation time is reduced by 87% to 7:29 s. For all

sequences in the family, we have ðð011Þk111Þ � ð001Þ.
Hence, the left endpoint aleft � 3:828427125 of the periodic

window with the sequence (001) can be used as an initial

point to find periodic windows in this family. Applying the

procedure to compute the periodic window for the sequence

ðð011Þ200
111Þ with a¼ 4.0 takes 2 s. When we also use the

bisection method, the computation time is reduced to 1:28 s.

Using a¼ 3.828427125 reduces computation time to 0:16 s.

For the sequence ðð011Þ500
111Þ with the initial point

a¼ 3.828427125, the computation time is 0:42 s. To find the

periodic window starting at a¼ 4.0, we should use the com-

bination of the Newton method and the bisection method;

otherwise, the method fails. In this case, the computation

time is 3:74 s.

The examples presented above show that the selection

of the initial point a � aright is essential for the fast operation

of the algorithm to find periodic windows. When a is suffi-

ciently close to aright, the Newton method converges very

fast and using the bisection method is not necessary. The

bisection method ensures convergence and helps to reduce

the computation time if a is far from aright. When many

sequences are considered together, we should first reverse

sort them according to the relation “�” and use results

obtained for a given sequence to calculate the initial point

for the next sequence. This is especially important for long

sequences.

A. All periodic windows with period p £ 36

The algorithm to find bifurcation points presented in

Section III C is applied to find all 1 966 957 258 periodic

windows with periods 2 � p � 36. Computations are carried

out using multiple precision interval arithmetic with 256 bits

which allows us to find very accurate rigorous bounds of

periodic windows’ endpoints and widths. Widths of all win-

dows are found with the precision better than 10�70.

Figure 2 shows widths of periodic windows with periods

p � 8 versus their positions in the parameter space. The wid-

est window corresponds to the sequence (01). The next two

windows are its period-doubling descendants with sequences

(0111) and (01110101). The next widest window is a period-

3 window with the sequence (001). It has a common border

with its period-doubling descendant with the sequence

(001011).

The measure of the set
S36

p¼2 X�p is above

0.611834003131. In Ref. 7, the authors found 677 242 peri-

odic windows with periods 2 � p � 36 with the total width

approximately equal to 0.6118328475, which is smaller by

1:1556	 10�6 than the true measure of
S36

p¼2 X�p . Although

the results presented in Ref. 7 are based on a very small frac-

tion of the total number of periodic windows, the difference

FIG. 2. Widths of periodic windows with periods p � 8 versus their posi-

tions in the parameter space.
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in width is small. This means that the approach used in Ref.

7 is successful in locating wide windows and finding a good

lower bound of l X�ð Þ.
In Fig. 3, we plot the total widths lp of period-p win-

dows and the total width of primary period-p windows.

These two plots coincide for periods being primary numbers.

The total width of primary windows is 0.019185827531,

which is approximately 3% of the width of all windows. Let

us note that there are only 31 970 period-tupling windows in

this set, yet they are responsible for most of the width.

B. Wide primary windows with periods p ‡ 37

Finding all primary windows for large periods is not fea-

sible due to exponentially growing number of such windows.

Therefore, in the search for primary windows we limit our-

selves to wide windows only. We refer to windows with the

width above wmin ¼ 10�15 as wide windows. To estimate the

impact of skipping narrow windows, let us consider the cases

p¼ 35 and 36, for which we know the true results. There are

490 853 349 period-35 primary windows with the total

width approximately equal to 7:14584	 10�8. Among them,

there are 158 388 wide period-35 primary windows and their

total width is approximately 7:13328	 10�8, which is more

than 99.8% of the total width of all period-35 primary win-

dows. For p¼ 36, there are 152 556 wide periodic windows

with the total width of 3:00236	 10�8, which is more than

99.5% of the total width of 3:01529	 10�8 of all

954 422 197 period-36 primary windows. It follows that by

skipping narrow primary windows we lose only a small frac-

tion of the total width.

To assess the performance of the heuristic procedure for

finding wide primary windows presented in Sec. III D, we

run it for p¼ 35. Starting with 158 388 wide period-35 pri-

mary windows, we generate 2 713 967 test sequences and

find 151 854 wide period-36 primary windows with the total

width of 3:001943	 10�8, which is more than 99.98% of

the total width of wide period-36 primary windows. This

example shows that the procedure is successful in finding

wide primary periodic windows. Applying this procedure to

find wide primary windows with periods 37 � p � 501 gives

1 460 124 wide primary windows with the total width of

5:1635	 10�7.

Scanning the results concerning wide primary windows,

one may notice that widest primary windows belong to fami-

lies of the form ukvð Þ. For example, ðð011Þ12
1Þ;

ðð01111Þ701Þ, and ðð011Þ11
1101Þ are symbol sequences of

the three widest period-37 windows and ðð011Þ12
01Þ;

ðð01111Þ7111Þ, ðð00101Þ7001Þ are symbol sequences of the

three widest period-38 primary windows. We identify such

families and find wide periodic windows belonging to them.

In this way, we find 27 009 wide primary windows with peri-

ods above 501 with the total width of 1:6650	 10�9 and

13 107 new wide primary windows with periods p � 501

with the total width of 4:9482	 10�10. The longest primary

sequence corresponding to a wide periodic window found is

ðð011Þ3716
01Þ with the period p¼ 11 150.

Figure 4 shows the total width lp;PR of period-p primary

windows found versus p. The results for p � 10 are plotted

using the star symbol. One can see that for p � 40, the mea-

sure lp;PR decreases with p in a periodic fashion. This is due

to the existence of wide families of primary windows which

are responsible for most of the width for large p. Since a

family ukvð Þ has a non-zero contribution only at periods dif-

fering by the length of the sequence u, one observes oscilla-

tions with the period being the least common multiple of

lengths of sequences u defining wide families. For widest

families, we have u ¼ 011ð Þ; u ¼ 01111ð Þ, or u ¼ 00101ð Þ
and hence the oscillations have period 15, which is visible in

the middle part of the plot.

Summarizing, we have found 1 990 128 049 primary

windows with periods 3 � p � 11150 with the total width

above 0.01918634753 including 23 202 761 primary win-

dows with periods p � 37 with the total width of 5:2	 10�7.

Here, we also report narrow windows.

C. Wide period-tupling windows

Let us now study structures of period-tupling descend-

ants to justify that the method to find wide period-tupling

windows proposed in Section III E works properly. Figure

5(a) shows relative widths of period-tupling descendants of

the periodic window with the sequence s ¼ 001ð Þ. We con-

sider period-tupling sequences of the form st for all odd-

parity sequences t with period p � 8. For each period-tupling

window, we plot its relative width wr versus its position. The

FIG. 3. The total widths lp ¼ l X�p
� �

of period-p windows (the “�” symbol)

and the total width of period-p primary windows (the “” symbol). FIG. 4. Total widths lp;PR of primary period-p windows found.
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relative width wr is calculated as the ratio of the width of the

periodic window with the sequence st and the width of the

primary window with the sequence s. The results obtained

for the sequence s ¼ 00101ð Þ are plotted in Fig. 5(b). One

can see that these two plots are very similar both in relative

positions of period-tupling windows and their relative

widths. Similar pictures are observed for other primary

sequences. We conclude that it is possible to predict posi-

tions and widths of period-tupling windows for all primary

sequences based on positions of period-tupling descendants

of a single primary sequence. Also note that both plots are

similar to the plot of widths of periodic windows with peri-

ods p � 8 (compare Fig. 2). This shows that the structure of

periodic windows is self-similar. Period-tupling descendants

of any primary window are a reduced copy of the whole

structure of periodic windows.

The method described in Section III E is applied to find

period-tupling descendants of wide primary windows found

in previous steps. We start with R1 ¼ Spr;wnf 01ð Þg. In the

kth step for s ¼ 01ð Þ and s ¼ 001ð Þ, we find period-tupling

windows with sequences sr where r 2 Rk. Then, we find

period-tupling descendants of other primary windows. To

speed up computation, we consider only those period-tupling

descendants for which we predict that their widths are above

the threshold wmin ¼ 10�15. Predictions are based on results

obtained for the sequence s ¼ 001ð Þ. In this way, we obtain

the set Rkþ1 containing new period-tupling sequences.

Computations are continued while Rk 6¼ Ø. In this way, we

find 300 974 482 period-tupling windows. Here, we do not

count period-doubling windows. The longest period-tupling

sequence corresponding to a wide periodic window found

has the length 1 572 864.

In the final step, we sort periodic windows found so far

according to increasing parameter values and using the method

presented in Section III F, we look for period-doubling win-

dows with widths above the threshold wmin ¼ 10�15. In certain

cases, to reduce computation times the search is limited to win-

dows with widths above the threshold 10�14. The longest

sequence corresponding to wide period-doubling windows is a

period-doubling descendant of (01) and has the length

4 194 304. The width of the corresponding period-doubling

window is approximately 3:9119	 10�15. There are two wide

period-3 145 728 windows belonging to a period-doubling cas-

cades of (001) and (011111).

Summarizing, we have found 444 596 181 period-

tupling windows including 143 621 699 period-doubling

windows.

Widths of periodic windows belonging to period-

doubling cascades of saddle-node sequences with periods 3 �
p � 7 are plotted in Fig. 6. The results for period-doubling

cascades starting with sequences (001) and (0001) are plotted

in blue and red, respectively. Slopes of plots for large periods

are defined by the Feigenbaum constant d ¼ limk!1wk=
wkþ1 � 4:669201609, where wk denotes the width of the kth

window in a period-doubling cascade.20,23 It is interesting to

note that for fixed k the ratios wk=wkþ1 do not vary much in

different cascades and that they change monotonically

towards the limit d. For example, for the period-doubling cas-

cades shown in Fig. 6 we have w1=w2 2 1:9998;2:1389½ �;
w2=w3 2 4:2337;4:3024½ �; w3=w4 2 4:5515;4:5718½ �; w4=w5

2 4:6458; 4:6470½ �; w5=w6 2 4:6639; 4:6649½ �, and wk=wkþ1

2 4:669201;4:669202½ � for all k � 11. It follows that the con-

vergence is quite fast.

The results regarding the number and the total width of

periodic windows of a given type are collected in Table I. It

follows that the measure of the set of regular parameters

satisfies:

l X� \ 3; 4½ �ð Þ > 0:613960137; (10)

FIG. 6. Widths of periodic windows in period-doubling cascades.

FIG. 5. Relative widths of period-tupling descendants; (a) for the sequence

s ¼ 001ð Þ, (b) for the sequence s ¼ 00101ð Þ.
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which is by 1:8028	 10�5 larger than the bound

0.613942108 reported in Ref. 7.

Recall that periodic windows are classified as primary

windows and period-tupling windows (non-primary). We

have found much more primary windows than period-tupling

windows. This is due to carrying out the exhaustive search

for periodic windows with periods p � 36. These windows

have however very little impact on the total width.

The results regarding wide windows (with the width above

wmin ¼ 10�15) are collected in the bottom part of Table I.

Observe that skipping narrow windows causes that the total

width drops by less than 3:6	 10�8. One can see that there are

much fewer wide primary windows than wide period-tupling

windows.

Total widths lp of period-p windows found are plotted in

Fig. 7 in blue. Contribution of period-tupling windows is plotted

in red on top of the first plot. Note that when the width associ-

ated with primary windows is small compared to the width asso-

ciated with period-tupling windows only the red dot is visible.

For periods being primary numbers, there are no period-tupling

windows, and hence in this case, only a blue dot is shown.

D. An estimate of the true measure of l X2ð Þ

Inequality (10) provides a rigorous lower bound for the

measure l X�ð Þ. In this section, we estimate the true value of

this measure and find its upper bound. Calculations reported

in this section are non-rigorous.

Let us first estimate the true value of l X�ð Þ. Let us

denote by bn the total width of periodic windows found with

widths belonging to the bin 2�0:1n; 2�0:1 nþ1ð Þ
� �

. Figure 8 shows

bn versus bin position. One can see that in the range

10�13; 10�8
� �

the plot is almost linear on the logarithmic

scale. This observation lets us state the hypothesis that the

relation log bnð Þ � c1nþ c0 is also true for narrower windows.

The drop in the left-hand part of the plot is probably related to

the fact that not all windows belonging to the corresponding

bins have been found.

The data in the range 10�13; 10�10
� �

are fitted with the

model log bnð Þ ¼ c1nþ c0 yielding c1 � �0:028880; c0

� �4:917367. This model is plotted in Fig. 8 as a red dashed

line. Using this model, we may approximate the total width

of periodic windows as
PN

n¼1 bn þ
P1

n¼Nþ1 exp c1nþ c0ð Þ,
where the first sum involves bins for which we know all cor-

responding periodic windows. Assuming that all periodic

windows with widths above 10�13 have been found we

obtain N¼ 431 and

l X� \ 3; 4½ �ð Þ � 0:613960301; (11)

which is slightly above the rigorous lower bound

0.613960137 presented in Table I.

To find a reliable upper bound of l X�ð Þ, let us first

study the problem what is the total width of primary win-

dows. Since we know results for periods p � 36, we need to

find an upper bound of the width of primary windows with

p � 37 not found by the procedure. Let us first estimate the

width of narrow primary windows belonging to families

ukvð Þ. Widths of periodic windows belonging to the three

widest families ðð011Þk01Þ, ðð011Þk1Þ, and ðð01111Þk01Þ are

shown in Fig. 9. One can see that on the logarithmic scale

for large p widths change linearly with p. Let us denote by

wp the width of a period-p window belonging to a given fam-

ily. Linear regression models log wpð Þ � q log pð Þ þ r for

each family are computed and shown in Fig. 9 as dashed

lines. Models have been computed based on periodic win-

dows with periods 3000 � p � 4000. For the considered

families, the parameters of the models are q1 � �2:999145;
r1 � �6:58848; q2 � �2:999877; r2 � �7:506251, and q3

� �2:999068; r3 � �8:5648447, respectively. Using the

model, the width of a period-p window belonging to the

TABLE I. The number and total width of periodic windows of a given type.

Type Number Total width

All 2 434 724 230 0.6139601370509258

Primary 1 990 128 049 0.0191863475318510

Period-tupling 444 596 181 0.5947737895190748

Saddle-node 2 291 102 531 0.0271871221799938

Period-doubling 143 621 699 0.5867730148709320

All wide 75 341 957 0.6139601017921689

Primary wide 3 513 394 0.0191863447312755

Period-tupling wide 71 828 563 0.5947737570608933

Saddle-node wide 40 967 731 0.0271870998291728

Period-doubling wide 34 374 226 0.5867730019629961

FIG. 7. The total widths of period-p windows found (blue) and the total

width of period-p period-tupling windows found (red) versus p.

FIG. 8. The total width of periodic windows found with widths belonging to

the bin 2�0:1n; 2�0:1 nþ1ð Þ
� �

versus the bin position.
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family can be approximated as wp � w1pq, where w1

¼ exp rð Þ. For example, the relative error between the true

width of the periodic window with period 5003 belonging

to the first family and its approximate value is less than

5	 10�5. This indicates that the models are of a good qual-

ity. It is interesting to note that parameters q are almost iden-

tical for all three families considered. This observation also

holds for other families. Let n1 and n2 denote the lengths of

the sequences u and v, respectively. For q < �1, to estimate

the total width of periodic windows in the family with peri-

ods p > p0 ¼ n1k0 þ n2, one can use the following formulas

obtained by the integral test:

w1 n1 þ p0ð Þqþ1

n1 �q� 1ð Þ <
X1
k¼1

w1 p0 þ n1kð Þq < w1pqþ1
0

n1 �q� 1ð Þ : (12)

For example, for the family ðð011Þk01Þ, we obtain bounds

1:8583	 10�12; 1:8594	 10�12
� �

for the total width of peri-

odic windows with periods larger than 11 150. Similar calcu-

lations are applied to the 49 widest families of primary

windows. The total width of narrow primary windows is esti-

mated to belong to the interval 1:42541; 1:42543½ � 	 10�11,

which is several orders of magnitude less than the total width

of primary windows with periods p � 37. This shows that

narrow windows belonging to families of primary windows

have a negligible contribution to the total width. Since for

large p most of the widths of primary windows is associated

with wide families of type ukvð Þ, it follows that skipping nar-

row windows for large p introduces a negligible error in esti-

mating the total width.

Based on the discussion in this section and in Sec. IV B,

we conclude that the total width of primary windows not

found is below 1% of 5:2	 10�7, which is the total width of

found primary windows with periods p � 37.

Now, we study the problem what is the total width of

period-tupling windows. Figure 10 shows the error en

between the total width of period-tupling descendants found

and the total width obtained when considering only n widest

period-tupling descendants. The results obtained for the

period-3 window, the period-4 primary window, and period-

5 primary windows are plotted in blue, red, and cyan, respec-

tively. In the computations, only wide windows (w � 10�15)

are taken into account. One can see that on the logarithmic

scale, the middle part of each plot is almost linear. One can

expect that this is also valid for larger n. Drops in plots

shown in Fig. 10 are due to considering wide windows only.

Let w0 be the width of a primary window and wn

(for n � 1) the width of its nth widest period-tupling

descendant. Let us denote by vn the ratio of the sum
Pn

k¼1 wk

and w0. We fit the model vn ¼ v1 � cnq to the data presented

in Fig. 10 for n 2 100; 10 000½ �. For larger n, the results

are not reliable, since we consider wide windows only.

For example, for the period-3 window, we obtain parameters

v1 ¼ 0:66529, c¼ 0.097164, and q ¼ �0:72609. Approxi-

mations w0 v1 � cnqð Þ computed using the obtained models

are plotted in Fig. 10 as black dashed lines. Using this model,

we obtain an estimate for the total width of period tupling

descendants as w0v1. To obtain an upper bound for the error

introduced by considering only the n widest period-tupling

descendants, we compute v1, c, q, en ¼ v1 � w�1
0

Pn
k¼1 wk

for several low-period primary windows. The maximum values

v1;max ¼ 0:72; cmax ¼ 0:1033; qmax ¼ �0:7260, and en;max

are used to compute upper bounds for the width of narrow

period-tupling descendants of other primary windows. To have

an accurate estimate based on the number of n widest period-

tupling windows, we need to be sure that no wide windows are

missing. We assume that all windows wider than 10�13 have

been correctly identified. For each primary window, we esti-

mate that the total width of the remaining period-tupling win-

dows is below w0en;max for n � 1000 and below w0cmaxnqmax

for n> 1000, where w0 is the width of the primary window

considered and n is the number of its period-tupling descend-

ants wider than 10�13.

Taking into account a contribution from period-tupling

descendants of primary windows found, a contribution from

primary windows not found, and a contribution from their

period-tupling descendants, we obtain an upper bound

0.613966 for l X�ð Þ. Summarizing, we have the following

bounds for the measure of the set of regular parameters

0:613960 < l X� \ 3; 4½ �ð Þ < 0:613966;

where the lower bound is rigorous. This is equivalent to the

following bounds for the measure of the set of stochastic

parameters

FIG. 9. Widths of periodic windows belonging to families ðð011Þk01Þ;
ðð011Þk1Þ, and ðð01111Þk01Þ.

FIG. 10. Error in the computation of the total width of period-tupling

descendants by considering n widest period tupling windows only.
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0:386034 � l Xþð Þ � 0:386040;

where this time the upper bound is rigorous.

V. CONCLUSIONS

A systematic method to find wide periodic windows

for the quadratic map has been proposed. Classification of

periodic windows has been carried out. A heuristic method

to find the majority of wide primary and period-tupling

windows has been proposed. We have found all periodic

windows with periods p � 36 and the majority of wide

periodic windows with longer periods. Very accurate rigor-

ous bounds of their widths have been calculated. Using

these results, we computed a lower bound for the measure

of the set of regular parameters better than the existing

ones and estimated its true value. The obtained rigorous

lower bound is also a non-trivial upper bound for the mea-

sure of the set of stochastic parameters. Several properties

of primary and period-tupling windows have been

revealed. This includes self-similarities in structures of

period-tupling descendants, scaling of widths of primary

windows belonging to specific families, and properties of

period-doubling cascades. Based on these properties, an

upper bound of the measure of the set of regular parame-

ters has been computed.

SUPPLEMENTARY MATERIAL

See supplementary material for the data regarding peri-

odic windows wider than 10�10. There are 121 144 such peri-

odic windows and their total width is above 0.61394327. For

each periodic window, the following data are provided: the

symbol sequence, type of the window (saddle-node, period-

doubling, period-tupling), very accurate bounds for both end-

points, and an approximate width.
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