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By performing a systematic study of the H�enon map, we find low-period sinks for parameter values

extremely close to the classical ones. This raises the question whether or not the well-known

H�enon attractor—the attractor of the H�enon map existing for the classical parameter values—is a

strange attractor, or simply a stable periodic orbit. Using results from our study, we conclude that

even if the latter were true, it would be practically impossible to establish this by computing trajec-

tories of the map. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913945]

Numerical studies suggest that the well-known H�enon

attractor A—the attractor of the H�enon map existing for

the classical parameter values—is invariant, trajectories

within A display sensitive dependence on initial condi-

tions, and almost all trajectories within A form a dense

subset of A. Yet, it is important to remember that this is

not a mathematically proven fact. An alternative possibil-

ity is that A is a stable periodic orbit, attracting trajecto-

ries for almost all initial conditions. If this is the case, and

the immediate basin of attraction of A is very small, then

the sink is numerically unstable unless the computations

are carried out with sufficiently high precision. In this pa-

per, we locate periodic windows extremely close to the

classical parameter values. From our analysis, it follows

that even when the computations are done with sufficient

precision, we may need an extremely large number of

iterations to observe a sink starting from random initial

conditions. The conclusion is that most numerical studies

do not display anything but transient behaviour; the true

nature of the long-term dynamics of the H�enon map can-

not be revealed by studying finite portions of trajectories.

I. INTRODUCTION

The H�enon map1 is a two-parameter map of the plane

defined by h(x,y)¼ (1þ y� ax2,bx). In Ref. 1, the map h is

numerically studied with parameter values (a,b)¼ (1.4,0.3),

and it is claimed that in this case, “depending on the initial

point, the sequence of points obtained by iteration of the map-

ping either diverges to infinity or tends to a strange attractor.”

In the following, we will refer to (a?,b?)¼ (1.4,0.3) as the

classical parameter values, and we will call the attractor

existing for classical parameter values the H�enon attractor.
In spite of extensive study, the long-term dynamics of the

H�enon map for the classical parameter values remains

unknown. In this work, via numerical study, we attempt to

answer the question whether the H�enon attractor is strange/

chaotic as H�enon suggested or not.

When b¼ 0, the H�enon map reduces to the quadratic

map f(x)¼ 1� ax2. The set S� of parameter values for which

the unique attracting set is a periodic sink is open and dense.

On the other hand, the set Sþ of parameter values with cha-

otic dynamics is a Cantor set with positive Lebesgue mea-

sure.2 For the quadratic map, these two sets are disjoint, i.e.,

for each a, there exist at most one attractor, and their union

Sþ [ S� has full one-dimensional measure in the parameter

space for a. When b> 0 is sufficiently small, the set of pa-

rameter values a with chaotic dynamics is also a Cantor set

with positive Lebesgue measure.3

Numerical studies indicate that the situation of the quad-

ratic map partially carries over to that of the H�enon map for

macroscopic values of b. The general belief is that the set of

parameter values with chaotic behavior still has positive mea-

sure, and that the set of parameter values with stable periodic

behavior remains open and dense. But, there are also striking

differences: it appears that the two sets S� and Sþ may have

non-empty intersection; there are parameters for which a

strange attractor coexists with one or more sinks. If these

hypotheses are true, it seems very unlikely that we will ever

be able to prove that there exists a chaotic attractor for a spe-

cific point in the parameter space; an arbitrarily small pertur-

bation may change the strange attractor into a sink. On the

other hand, proving the existence of a sink is—in principle—

not hard. Therefore, if the attractor is a sink, we may be able

to establish this fact.

In this work, we propose a systematic method to search

for low-period sinks in a specified region of the parameter

space, and report results of applying this method to the region

Q0 ¼ ½1:3999; 1:4001� � ½0:2999; 0:3001�. The method is

based on finding a carefully selected set of periodic orbits

existing for fixed parameter values, and then using continua-

tion in the parameter space to find a sink. This approach

allows us to find many more periodic windows, and in conse-

quence find sinks for parameter values much closer to the

classical case, than using the monitoring trajectory based

method.4 We will prove that in a neighbourhood of the classi-

cal parameter values, there is an abundance of periodic win-

dows of moderately low periods. As an example, we have the

following result:
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Theorem 1. For the parameters a¼ 1.3999999999

9999999999968839903277301984563091568983, b¼ 0.299

99999999999999999944845519288458244332946957783,

the H�enon map supports a period-115 sink. These parame-
ters satisfy the bound jjða; bÞ � ða?; b?Þjj2 < 6:335 � 10�22.

In our systematic study, we find many (tens of thou-

sands) low-period sinks near (a?,b?). By continuation techni-

ques, we can track the area in the parameter space occupied

by the corresponding periodic windows. This area is a subset

of S�, and by a straight-forward analysis, we obtain an esti-

mate of the relative density of the regular set near (a?,b?).
Estimate 1. Consider the square Q0 ¼ ½1:3999; 1:4001�

�½0:2999; 0:3001�. Under the assumptions outlined in
Sec. IV, the probability that a generic point in Q0 belongs to
the set S� is approximately

l S� \ Q0ð Þ
l Q0ð Þ � 7:09 � 10�4:

Taking into account that the majority of periodic win-

dows with period p� 52 in a small neighborhood of (a?, b?)
has been found, we can estimate the probability that the

H�enon attractor is periodic.

Estimate 2. Under the assumptions outlined in Sec. IV,
the probability that the point (a?, b?) belongs to the set S� is
less than 4.59 � 10�11.

In view of the question formulated in the title of this pa-

per, the answer appears to be yes, most likely. In the sections

to come, we will give a thorough justification of this claim.

A. Previous work

In Ref. 5, a systematic method to find all low-period

cycles for the H�enon map was proposed and applied to find

all periodic orbits with periods p� 28 for the classical case.

In Ref. 6, a rigorous interval arithmetic based method to find

all low-period cycles was presented. A combination of gen-

eralized bisection and interval operators to prove the exis-

tence of periodic orbits was applied to find all cycles with

periods p� 30, and the results from Ref. 5 were confirmed

rigorously.

In Ref. 4, results of a brute force numerical search for

points in the parameter space close to (a?, b?) for which there

exists a sink were presented. A number of points in parame-

ter space supporting a sink were located; for example, it was

shown that for (a, b)¼ (1.4,0.2999999774905), there exists a

period-28 sink.

In Ref. 7, the author proposes a method to find periodic

windows by numerical integration in the parameter space

along curves of a selected stability measure. The integration

is initiated at b¼ 0, where positions of periodic windows are

easy to find. This method can be applied to find all low-

period windows. However, this method does not work well if

the goal is to find sink regions in a small area far from the

case b¼ 0 due to the necessity of considering a huge number

of symbol sequences. Continuation of periodic orbits from

the so-called anti-integrable limit is used to study bifurca-

tions of periodic orbits in Ref. 8. This method is also of little

use when searching for sinks in a small region of the parame-

ter space.

As already mentioned, unlike the case of the quadratic

map, for the H�enon map, there may exist multiple attrac-

tors.9,10 In Ref. 11, the results of a search for parameter val-

ues in the region ða; bÞ 2 ð0; 2Þ � ð0; 0:5Þ for which there

exist at least three attractors were reported. Several such

regions with different types of attractors (three periodic, two

periodic and one “chaotic,” one periodic and two “chaotic”)

have been found. We will study this possibility in a neigh-

borhood of (a?, b?), and we will show that it appears to be

much less likely than the existence of a single attractor.

B. Outline

The layout of the paper is as follows. In Sec. II, we pro-

pose a systematic method to find low-period sinks. Results

of applying this method to study the existence of periodic

windows in Q0 are presented in Sec. III. In Sec. IV, the prob-

ability that the H�enon attractor is periodic is estimated and

sink properties are studied.

II. NUMERICAL METHODS TO STUDY THE EXISTENCE
OF SINKS

A. Definitions

The H�enon map1 is defined as

hðx; yÞ ¼ ð1þ y� ax2; bxÞ; (1)

where (a?, b?)¼ (1.4,0.3) are the classical parameter values.

We say, that z0 is a period-p point if z0 ¼ hpðz0Þ and z0

6¼ hkðz0Þ for 0< k< p. If z0 is a period-p point, then the tra-

jectory ðz0; z1;…; zp�1Þ; zk ¼ hkðz0Þ is called a period-p
orbit. We say, that z0 or the orbit ðz0; z1;…; zp�1Þ is a period-
p sink if z0 is a period-p point and the trajectory (zk) is

asymptotically stable, i.e., for each e > 0, there exists d> 0,

such that if jjz� zljj< d for some l¼ 0, 1, …, p� 1, then

jjhkðzÞ � hkðzlÞjj < � for all k> 0 and limk!1 jjhkðzÞ
�hkðzlÞjj ¼ 0.

Following the convention in the literature on interval

arithmetic, we will denote interval objects: intervals, interval

vectors and interval matrices by bold letters. We will use a

short notation to define intervals. For example, the interval

a ¼ ½1:3999; 1:4001� will be denoted as a ¼ 1:4001
3999.

B. Detecting sinks

In this section, we present a systematic method to locate

low-period sinks in a specified region of the parameter space.

The method is composed of two steps. In the first step, for

selected points in the parameter space, locations of low-

period orbits in the state space are found. Usually, none of

these periodic orbits are stable. In the second step, for each

unstable periodic orbit found, we continue the solution—via

a move in the parameter space—toward a sink.

Let us briefly recall the Biham–Wenzel method5 to

locate all low-period unstable cycles of the H�enon map h.

This method is selected because of its speed and capability

of locating correctly positions of all periodic orbits for
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relatively large periods. Moreover, for this method, certain

improvements based on symbolic representations of periodic

windows are possible, which significantly reduce time neces-

sary to find all periodic orbits of a given period.

The Biham–Wenzel method to find period-p cycles of h
is based on the construction of artificial continuous dynami-

cal systems of order p defined by

dwk

dt
¼ sk �w kþ1ð Þmod p þ a� w2

k þ bw k�1ð Þmod p

� �
; (2)

for 0� k< p, where (w0, w1, …, wp�1) is the state vector and

s¼ (s0,s1,…,sp�1) is a symbol sequence with sk 2 f�1;þ1g.
To shorten the notation, we will use only signs to denote a

particular sequence. For longer sequences, we will use

powers to denote a sequence composed of repeated subse-

quences. For example, we will write (� � � þ þ) or

(�3 þ2) to denote the sequence (�1,�1,�1,þ1,þ1).

Note that if (z0, z1, …, zp�1) is a periodic orbit of h with

zk¼ (xk,yk), then (w0, w1, … wp�1) defined by wk¼ axk satisfies

�wðkþ1Þmod p þ a� w2
k þ bwðk�1Þmod p ¼ 0 for all 0� k< p.

This can be seen by noting that wðkþ1Þmod p ¼ axðkþ1Þmod p

¼ að1� ax2
k þ bxðk�1Þmod pÞ ¼ a�w2

k þ bwðk�1Þmod p: It fol-

lows that there is a one-to-one correspondence between fixed

points of hp and equilibria of (2). In Ref. 5, it is claimed that for

each fixed point of hp, there is exactly one symbol sequence s
for which the corresponding equilibrium of (2) is stable. This

claim is not always true. In fact, in Ref. 12, several examples

where the method fails to find existing orbits are given.

Theoretical foundations for the Biham–Wenzel method and

discussion under what conditions the method is capable of find-

ing all periodic orbits are given in Ref. 13. Symbol sequences

for which periodic orbits exist are called admissible. If the

region of interest in parameter space is small, then usually only

a small fraction of admissible sequences correspond to periodic

windows intersecting this region. In Sec. III, we describe meth-

ods to reduce the number of sequences for which the continua-

tion method is applied. This improvement will be essential for

the successful application of the search procedure.

In what follows, we do not rely on that the method

always works properly, for our purpose it is sufficient that

the method is capable of finding a majority of periodic orbits

with a given period. In order to find fixed points of hp, it is

proposed in Ref. 5 to locate steady state behaviors for all

possible symbol sequences of length p. The system (2) is

integrated until either the right hand side of (2) becomes suf-

ficiently small (it is proposed to use the value e ¼ 10�7) or

the norm of the solution wk becomes sufficiently large. The

first case suggests that a periodic orbit of h has been found;

the second case indicates that the solution escapes to infinity.

If an equilibrium is stable, a trajectory converges to it for ini-

tial conditions which are small with respect to
ffiffiffi
a
p

(in the fol-

lowing we use initial conditions wk¼ 0). Since we are only

interested in steady states, we use a simple integration

method with a relatively large time step; the fourth-order

Runge–Kutta method with step size 1/10.

The procedure described above can be used to locate

periodic orbits of a given period for given parameter values.

Most of these found periodic orbits (usually all) are unstable.

In the next step, for each admissible symbol sequence, we

use the continuation method to find a point in the parameter

space where the periodic orbit becomes stable. The search is

carried out in the direction �ð@r=@a; @r=@bÞ, where r is the

spectral radius of the Jacobian matrix ðhpÞ0 (for details how

to compute the Jacobian matrix, its eigenvalues, derivatives

of eigenvalues with respect to parameters, and how to find

new position of the orbit when moving in the parameter

space see Ref. 4). When at a certain point obtained during

the continuation procedure the spectrum of the Jacobian ma-

trix is within the unit circle, the procedure is stopped—the

periodic window has been found. If the continuation proce-

dure leads outside the region of interest, it is also stopped

with no sink. In the former case, we may continue the sink to

find the region where the sink exists. Such a region in the pa-

rameter space will be called a periodic window. Various ver-

sions of the continuation method for finding periodic

windows are presented in Refs. 11 and 4.

C. Confirming the existence of a sink

Once we have a candidate for a sink, we can prove its

existence using interval arithmetic tools.14,15 This is done to

ensure that the sink found is not a rounding error artifact. To

investigate zeros of F : Rn 7!Rn in the interval vector x, one

evaluates an interval operator, for example, the interval

Newton operator,15 over x

NðxÞ ¼ x̂ � F0ðxÞ�1Fðx̂Þ; (3)

where x̂ 2 x and F0ðxÞ is an interval matrix containing the

Jacobian matrices F0ðxÞ for all x 2 x. The main theorem on

the interval Newton operator states that if NðxÞ � x, then F
has exactly one zero in x.

To study the existence of period-p orbits of h, we con-

struct the map F : Rp 7!Rp defined by

½FðxÞ�k ¼ 1� ax2
k þ bxðk�1Þmod p � xðkþ1Þmod p; (4)

for k¼ 0, 1,…, p� 1. x¼ (x0, x1,…, xp�1) is a zero of F, if

and only if z0¼ (x0,y0)¼ (x0,bxp�1) is a fixed point of hp.

To prove the existence of a periodic orbit in a neighbor-

hood of the computer generated trajectory x¼ (x0, x1, …, xp�1),

we choose the radius r, construct the interval vector x
¼ ðx0; x1;…; xp�1Þ, where xk ¼ ½xk � r; xk þ r�, and verify

whether NðxÞ � x. If the existence condition does not hold, we

may choose a different r and try again.

The stability of the orbit z¼ (z0, z1,…, zp�1) depends on

the eigenvalues k1,2 of the Jacobian matrix

Jpðz0Þ ¼ ðhpÞ0ðz0Þ ¼ h0ðhp�1ðz0ÞÞ � � � h0ðhðz0ÞÞ � h0ðz0Þ; (5)

where z0¼ (x0,y0)¼ (x0,bxp�1). We will assume that the

eigenvalues are ordered in such a way that jk1j 	 jk2j. If both

eigenvalues lie within the unit circle, i.e., jk1j< 1, then the

orbit is asymptotically stable. If at least one eigenvalue lies

outside the unit circle (jk1j> 1), then the orbit is unstable.

Note that the determinant of the Jacobian matrix of

the H�enon map is detðh0ðx; yÞÞ ¼ �b. It follows that k1k2

¼ detðJpðz0ÞÞ ¼ ð�bÞp, so jk2j< 1 for jbj< 1.

033102-3 Z. Galias and W. Tucker Chaos 25, 033102 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

178.37.145.150 On: Thu, 05 Mar 2015 15:47:17



III. SEARCH RESULTS

In this section, we present results from our search for

periodic windows intersecting the square Q0 ¼ 1:4001
3999

�0:3001
2999. We start by finding periodic orbits existing for the

classical parameter values.

A. Periodic orbits for (a?;b?)5(1:4; 0:3)

In order to locate period-p orbits using the

Biham–Wenzel method, we consider symbol sequences of

length p. There are 2p such sequences. Eliminating cyclic

permutations and sequences for which the primary period is

not p reduces the number of sequences to be considered by

at least a factor of p. For example, when p¼ 33, the number

of sequences to be considered is 260300986 � 2:6� 108,

while the total number of sequences of length 33 is 233� 8.6

� 109. The number of sequences can be further decreased by

skipping sequences containing forbidden subsequences

(compare also the idea of pruning16). It has been found that

for (a?, b?) admissible sequences of length p� 33 apart from

the fixed point with symbol sequence s¼ (�) located outside

the numerically observed attractor do not contain subsequen-

ces (� � � �), (� þ þ �), and (� � þ �). This property

has also been confirmed for all four corners of Q0. This sug-

gests that these three subsequences are forbidden and we

can exclude sequences containing them when searching for

periodic orbits within Q0, which greatly reduces the number

of sequences to be considered. For example, for p¼ 33,

the number of sequences is reduced from 2.6� 108 to

9.02� 105. Even further savings in computation time can be

achieved by skipping longer forbidden subsequences. We

have verified that 61977 out of 216¼ 65536 subsequences of

length 16 do not appear in any admissible sequence of period

p� 33. As before, the sequence (–) corresponding to one of

the fixed points was excluded. The set of 61977 forbidden

subsequences of length 16 can be simplified to 28 subse-

quences of various length not larger than 16. Skipping these

forbidden subsequences when searching for period-33 orbits

decreases the number of sequences to be considered to 2.59

� 105. Note that it is difficult to further reduce computation

time by a substantial factor, since the number of admissible

sequences of period-33 is approximately 1.4 � 105 (the exact

number depends on the point in Q0).

In Table I, we report results obtained using the

Biham–Wenzel method for p� 50 for the classical parameter

values. Results for p� 28 have been presented in Ref. 5. We

show the number Pp of period-p orbits, and the estimate

Hp ¼ p�1 log Fp of the topological entropy of the H�enon map

based on the number Fp of fixed points of hp. The results

shown in Table I agree with the rigorous results for p� 30

presented in Ref. 6, which means that the Biham–Wenzel

method works properly for relatively large periods. Let us

note that the estimate Hp of the topological entropy stabilizes

around 0.46493. The five most significant digits are constant

for p	 36. Based on these results, we could—as a

by-product of our search procedure—conjecture that the top-

ological entropy of the H�enon map with classical parameter

values belongs to the interval 0:46494
3.

Similar computations for p� 47 have been performed

for points in the parameter space being corners of the square

Q0. These results will be used in Sec. III B to find periodic

windows having non-empty intersection with the square Q0.

Estimates of the topological entropy based of the number of

short periodic orbits are plotted in Fig. 1. Note that increa-

sing both a and b increases the topological entropy of the

H�enon map. For (a,b)¼ (1.3999,0.2999) and (a,b)

¼ (1.4001,0.3001), the entropy estimates oscillate around

0.46480 and 0.46503, respectively. On the other hand, the

entropy for the other corners of Q0 is close to that of the cen-

ter. Note that the entropy estimates along the interval

between (1.3999, 0.3001) and (1.4001, 0.2999) are not mon-

otonic. At the center (a?, b?) of this interval, the entropy esti-

mate is larger than at the endpoints.

We would like to stress that although the results

obtained using the Biham–Wenzel method agree with the

true results for periods p� 30, we cannot treat this method as

a rigorous one. We have observed that the number of peri-

odic orbits found depends on the parameters of the method.

TABLE I. The number of period-p orbits P p for the H�enon map found using

the Biham–Wenzel method for (a?, b?), the estimate H p of the topological

entropy based on the number of fixed points of hp.

p Pp Hp p Pp Hp

18 233 0.4643313 35 333 558 0.4649406

19 364 0.4653622 36 516 064 0.4649374

20 535 0.4644021 37 799 372 0.4649324

21 834 0.4653556 38 1 238 950 0.4649344

22 1225 0.4639811 39 1 921 864 0.4649326

23 1930 0.4652528 40 2 983 342 0.4649381

24 2902 0.4648152 41 4 633 278 0.4649353

25 4498 0.4652113 42 7 200 563 0.4649381

26 6806 0.4648472 43 11 195 444 0.4649353

27 10 518 0.4650695 44 17 418 122 0.4649374

28 16 031 0.4648548 45 27 110 040 0.4649351

29 24 740 0.4649474 46 42 220 339 0.4649365

30 37 936 0.4648635 47 65 779 244 0.4649354

31 58 656 0.4649495 48 102 536 942 0.4649364

32 90 343 0.4649279 49 159 895 912 0.4649358

33 139 674 0.4649578 50 249 454 412 0.4649364

34 215 597 0.4649386

FIG. 1. Estimates Hp ¼ p�1 log Fp of the topological entropy based on the

number Fp of fixed points of hp for different points (a, b).
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For example, the period-33 sequence s ¼ ð�3þ3 �þ�þ�
þ�2þ3 �þ�þ�þ3�2þ4 �þÞ was found admissible for

a¼ 1.4001, b¼ 0.3001 when e ¼ 10�7 was used, and non-

admissible for e ¼ 10�8. The reason for this behaviour is the

fact that the region of existence of the periodic orbit with the

symbol sequence s starts very close to the point (1.4001,

0.3001).

B. Sink regions intersecting the square
Q051:4001

399930:3001
2999

In this section, we show how to locate sink regions inter-

secting the square Q0 using low-period cycles existing for

certain points in the parameter space.

There are two possible approaches to achieve this goal.

The first one is to continue all periodic orbits found in the

previous step. Continuation is carried out in a direction in

which the spectral radius of the Jacobian matrix computed

along the periodic orbit decreases, until either a point

belonging to the periodic window is found or we leave Q0.

Since the number of period-p orbits grows fast with p, and

the continuation procedure is computationally more expen-

sive than the Biham–Wenzel method, this approach becomes

infeasible for larger p.

In the second approach, we find symbol sequences

which are admissible at some corners of Q0 but not all. Such

sequences will be referred to as missing sequences. For each

missing sequence, we continue from a point where this

sequence is admissible to find the corresponding periodic

window. In a case when the sequence is admissible in more

than one corner, we start the continuation procedure at a cor-

ner where the search direction points inside Q0.

Let us explain why the second approach allows us to

find the majority of periodic windows intersecting Q0. Recall

how periodic orbits emerge in the parameters space. In the

fold bifurcation, a pair of periodic orbits are born. For the

H�enon map, one of them is stable and the other is unstable.

In the period-doubling bifurcation, a periodic orbit looses its

stability and a stable orbit with twice the period is born.

Hence, one can expect that the region where the orbit is sta-

ble is located along the border of the periodic orbit existence

region. Therefore, to find periodic windows, we need to

detect borders of periodic orbit existence regions. Usually, if

the border of existence region intersects Q0, the correspond-

ing symbol sequence is admissible for some but not all cor-

ners of Q0. This happens in most situations because—

locally—the existence regions close to the border look like

half-planes, and Q0 is small. Hence, intersections of borders

and Q0 are usually either empty or are (almost) straight inter-

vals. Situations when the border of an existence region turns

inside Q0 are rare (three such examples are given in Ref. 4),

which means that the proposed method detects the majority

of periodic orbit existence regions intersecting Q0.

The number Mp of missing sequences of length p found

for Q0 versus p is shown in Table II. No missing sequences

with period p< 18 have been found. Since the number of

missing sequences is significantly smaller than the number

of admissible sequences (compare Table I), the second

approach is much faster than the first one.

For all missing sequences with period p� 41, the corre-

sponding periodic orbits have been continued to find peri-

odic windows. The results are shown in Table II. We report

the number Rp of period-p windows found in Q0 and the dis-

tance dp between the closest period-p window and the point

(a?, b?). In each case, the existence of a sink was proved

using the interval Newton method. The total number of

detected sink regions with period p� 41 is 90510, which is

significantly more than 461 periodic windows found using

the monitoring trajectory approach (compare Ref. 4). Note

that the number of missing sequences and the number of

periodic windows grow exponentially with the period, as

expected.

For odd p, periodic orbits are created via the fold bifurca-

tion, and hence, we expect that half of the missing sequences

correspond to periodic windows, i.e., Mp¼ 2Rp. For even p in

a given region, we expect Rp=2 period-p windows created via

period-doubling bifurcations. The remaining orbits are created

via fold bifurcations, and hence, Mp ¼ Rp=2 þ2ðRp � Rp=2Þ
¼ 2Rp � Rp=2. Therefore, one can expect that the following

relation between the number of missing sequences and the

number of periodic windows holds:

Mp ¼
2 � Rp if p is odd;

2 � Rp � Rp=2 if p is even:

(
(6)

Note that the above relation is satisfied by data in Table II for

p< 38. For p¼ 38,39,40,41, the difference between the value

of Mp calculated using (6) and the actual value is 2, 2, 5, and

�2, respectively. This may be caused by the fact that for larger

p, there are more borders of periodic orbit existence regions

passing close to the corners of Q0 which may cause a failure of

the Biham–Wenzel method.

212 periodic windows with periods p� 28 are plotted in

Fig. 2. These periodic windows have been found using a ver-

sion of the continuation method designed for narrow regions

described in detail in Ref. 4. All periodic windows with peri-

ods p� 22 are labeled.

Each minimal distance between a periodic window and

(a?, b?) is shown in Fig. 3. Note that the closest period-28

window passes at an exceptionally small distance of

2.3� 10�8 when compared to periodic windows with similar

TABLE II. The number Mp of missing sequences of length p and the num-

ber Rp of period-p windows in Q0.

p Mp Rp dp p Mp Rp dp

18 2 1 1.125 � 10�5 30 412 206 3.792 � 10�7

19 4 2 7.908 � 10�5 31 624 312 2.153 � 10�8

20 6 3 7.528 � 10�6 32 1014 507 3.155 � 10�7

21 4 2 1.113 � 10�5 33 1654 827 3.704 � 10�7

22 10 5 2.462 � 10�6 34 2580 1290 4.815 � 10�8

23 10 5 3.899 � 10�5 35 4192 2096 1.277 � 10�7

24 24 12 6.259 � 10�6 36 6545 3273 8.628 � 10�8

25 34 17 2.035 � 10�6 37 10 510 5255 1.533 � 10�8

26 60 30 5.185 � 10�6 38 16 582 8293 2.126 � 10�8

27 110 55 6.421 � 10�6 39 26 594 13298 3.878 � 10�9

28 160 80 1.969 � 10�8 40 42 114 21061 2.143 � 10�9

29 248 124 1.465 � 10�6 41 67 514 33756 4.728 � 10�10
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or smaller periods. All other periodic windows with periods

p� 36 are at a larger distance. This periodic window was the

closest one found using the brute force approach.4

The distance dp between the closest period-p window

and (a?, b?) generally decreases when p grows (compare

also Table II). The closest periodic window corresponds

to the period-41 symbol sequence ð�3þ4 �þ3�2þ4�2þ4

�2þ3 �þ�þ9Þ. We have verified that the point a
¼ 1.3999999997706479, b¼ 0.29999999958655875 belongs

to this window. The distance between this point and (a?, b?)
is less than 4.728 � 10�10, which is approximately 60 times

less than for the closest periodic window reported in Ref. 4.

C. Periodic windows intersecting I151:40000001
3999999930:3

With the goal of finding a periodic window as close to

the classical values as possible, we have carried out similar

computations for p	 42 on a much smaller region in the pa-

rameter space. Decreasing the size of the region reduces the

number of missing sequences, and thus shortens the compu-

tation time needed to handle each given p. Missing sequen-

ces are identified for the endpoints of the interval

I1 ¼ 1:40000001
39999999 � 0:3 of length 2 � 10�8. For each missing

sequence, the corresponding periodic orbit is continued from

the point where this sequence is admissible along the interval

I1 toward a sink. The number Rp of periodic windows found

is reported in Table III. We also give an upper bound of the

distance between the closest period-p window and the point

(a?, b?).
A total of 465 periodic windows with periods p� 52

intersecting I1 have been found. No periodic window with

period smaller than 39 was found. The closest periodic

window was found for the period-52 symbol sequence ð�3þ4

�þ3�2þ7 �þ�þ�2þ6 �þ5 �þ�þ3 �þ5 �þÞ. The

point a¼ 1.400000000002152529358126, b¼ 0.300000000

00388157716514978 belongs to this periodic window. The dis-

tance between this point and (a?, b?) is less than 4.439 � 10�12

and is more than 100 times smaller than the closest period-41

window found in the previous search.

Assuming that sink windows intersect the interval I1 at

random positions, one can estimate what period p should be

considered to find a periodic window closer than e from a

given point with a given probability. Based on the data pre-

sented in Table III for 45� p� 52, a linear regression model

for logðRpÞ versus p has been computed. Using this model,

the number of period-p windows intersecting I1 can be

approximated as

Rp � R0qp; (7)

where q¼ 1.6115 and R0 ¼ 3:0062 � 10�9. Note that q is

close to eH� 1.592, where H¼ 0.46493 is an approximation

of the topological entropy of the H�enon map for (a?, b?).
For p> 52, the number of periodic windows with

periods not larger than p intersecting I1 can be approximated

as R�p ¼ R�52 þ R0q53ðqp�53þ1 � 1Þ=ðq� 1Þ, where R�52

¼ 465 is the number of period-p windows found for

39� p� 52. The probability that at least one of N points

selected randomly with uniform distribution from the inter-

val I1 of length l ¼ 2r ¼ 2� 10�8 falls within the selected

interval of length 2e is PðNÞ ¼ 1� ððl� 2eÞ=lÞN ¼ 1

�ð1� e=rÞN . Assuming P (N)	 0.5 and solving for N yields

N 	 Ne ¼ log 0:5=ðlogð1� e=rÞÞ. Solving the inequality

R�p 	 Ne, we obtain

p 	 52þ
log

q� 1ð Þ Ne � R�52ð Þ
R0q53

þ 1

� �
logq

�
log

q� 1ð Þlog 2

qR0

r

e

� �
logq

: (8)

FIG. 2. Periodic windows with periods p� 28.

FIG. 3. Distances between period-p windows intersecting Q0 and (a?, b?).

TABLE III. The number Rp of period p windows intersecting the interval

I1 ¼ 1:40000001
39999999 � 0:3, and the distance dp between the closest period-p win-

dow and the point (a?, b?).

p Rp dp p Rp dp

39 1 3.813 � 10�9 46 9 3.609 � 10�10

40 1 2.143 � 10�9 47 18 1.909 � 10�11

41 3 4.728 � 10�10 48 28 5.832 � 10�11

42 3 1.089 � 10�9 49 50 4.144 � 10�11

43 1 2.581 � 10�9 50 71 1.165 � 10�10

44 4 1.457 � 10�9 51 109 4.700 � 10�11

45 6 3.012 � 10�10 52 161 4.439 � 10�12
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If e is decreased 10 times, then p increases by

logð10Þ= logðqÞ � 4:82. For example, for e ¼ 10�16, we

obtain p	 77. It is infeasible to consider all symbol sequen-

ces for such periods. Already, for p¼ 52, there are more than

1.2 � 109 non-forbidden sequences out of which more than

0.6 � 109 sequences are admissible, i.e., correspond to peri-

odic orbits. Note that only 161 of these sequences give peri-

odic windows intersecting I1 (compare Table III). In Sec.

III D, we propose a method to reduce the number of symbol

sequences to be considered. Using this approach, we find

periodic windows much closer to the point (a?, b?) than the

ones reported above.

D. Periodic windows extremely close to
(a?;b?)5(1:4;0:3)

The procedure used in Secs. III B and III C requires con-

sidering all non-forbidden sequences with a given period,

and for each of them applying the Biham–Wenzel method at

least for two points to find missing sequences. This becomes

infeasible for large p. If the goal is to find periodic windows

as close as possible to a given point in the parameter space,

it might be sufficient to consider only some specific symbol

sequences.

The selection of sequences is based on the observation

that certain subsequences are frequently present in sequences

corresponding to periodic windows found in the previous

steps. For example, the subsequence ðþ�3þ4 �þ�
þ5�2þ6�2þ5Þ of length 32 is present in 85 out of 465

sequences corresponding to periodic windows intersecting

I1. We select this subsequence and other eight subsequences

of lengths from 32 to 36 present frequently in these 465

sequences. Next, we generate all periodic sequences with

periods 52� p� 64, each containing some selected subse-

quence, and apply the search procedure to find periodic win-

dows intersecting I1. The results are shown in Table IV.

The number of period-52 windows found in this search

test is 71, which is 44% of the 161 sinks found when consid-

ering all sequences. However, the number of sequences con-

sidered is reduced from 1 244 342 752 to 73 762, and

proportionally, the computation time is significantly smaller.

This allows us to obtain results for periods up to 64. The

closest periodic window found in this search is the period-62

region with a distance less than 1.646 � 10�13 from the

point (a?, b?). It was verified that the sink exists for

a¼ 1.4000000000000796456198767491, b¼ 0.300000000

00014388174912486658.

The procedure described above can be repeated several

times to improve the results. In each step, several subsequen-

ces frequently appearing in symbol sequences corresponding

to closest periodic windows found so far are selected, and

then the search procedure is used to find periodic windows

with longer periods containing the selected subsequences.

In the last step, two subsequences with lengths 97 and

98 were chosen, and all symbol sequences with periods

98� p� 116 containing these sequences were considered.

As a result, we find a period-115 window with a distance

from the point (a?, b?) less than 6.335� 10�22. We

prove that for the point a¼ 1.3999999999999999999996

8839903277301984563091568983, b¼ 0.299999999999999

99999944845519288458244332946957783, there exist a

sink. Its initial point is close to x¼ 1.2319195938492622

6532131781265934404733808581535128, y¼ 0.014039157

47656180003694910349822656821409905478998. We also

prove that the sink exists for a¼ 1.4, b¼ 0.2999999999

9999999999927578971518934110292052859235.

A total number of 90 740 periodic windows with periods

39� p� 116 intersecting I1 have been found. In Fig. 4, the

number of periodic windows found versus period p is shown.

The estimation of the number of periodic windows based on

the model (7) is shown as a dashed line. For p� 52, all non-

forbidden sequences have been checked and the number of

periodic windows grows exponentially with p. In the range

53� p� 64, the drop is caused by limiting the search to sym-

bol sequences containing nine selected subsequences of

length 32–36. For p> 64, further restrictions for the sequen-

ces considered were imposed by considering sequences con-

taining subsequences of increasing length.

Distances between periodic windows and the point

(a?, b?) are shown in Fig. 5. Up to period 64, the periodic

windows in all parts of I1 are found. Note that for p> 64,

limiting the search for sequences containing selected subse-

quences reduces the maximum distance—all periodic win-

dows are found within small neighborhood of (a?, b?). For

example, for p> 105, all found periodic windows are within

distance 10�16 from the point (a?, b?). Also note that there

are groups of points forming horizontal lines, for example,

an interval at d� 10�9 for 70� p� 80. All periodic windows

TABLE IV. The number Rp of period-p windows intersecting the interval

I1 ¼ 1:40000001
39999999 � 0:3, and the distance dp between the closest period-p win-

dow and the point (a?, b?).

p Rp dp p Rp dp

52 71 4.439 � 10�12 59 2221 4.436 � 10�12

53 140 2.385 � 10�11 60 3147 4.300 � 10�13

54 193 1.703 � 10�12 61 5561 1.844 � 10�12

55 367 1.964 � 10�11 62 8746 1.646 � 10�13

56 532 2.063 � 10�11 63 14 104 7.546 � 10�13

57 905 8.111 � 10�12 64 22 011 3.172 � 10�13

58 1355 2.033 � 10�13

FIG. 4. The number of found period-p windows intersecting I1.
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in such a group are located in a small region not containing

the point (a?, b?). They correspond to non-optimal selections

of subsequences. Generally, the minimum distance decreases

exponentially with the increase of p. 57 periodic windows

within the distance 10�19, and four within the distance 10�20

from (a?, b?) were found. This shows that the selection

method based on choosing subsequences present frequently

in sequences corresponding to closest periodic windows

found so far works well.

The relation between p and e presented in (8) is plotted

in Fig. 5 as a dashed line. It shows what minimum distance e
we can expect by considering symbol sequences of length

not larger than p. Let us note that for p� 62, the distance of

the closest periodic window found oscillates around the

approximation eðpÞ. For larger p, the minimum distances are

larger than eðpÞ, which is perhaps caused by skipping some

non-forbidden sequences. Thus, we can expect that, for

p> 62, there exist periodic windows closer to (1.4, 0.3) than

the ones reported here.

IV. IS THE H�ENON ATTRACTOR CHAOTIC

In Secs. III B and III C, we have shown several examples

of periodic windows very close to the classical parameter val-

ues (a?, b?). We considered all non-forbidden periodic sym-

bol sequences of length p� 52 and selected symbol

sequences of length 53� p� 116. From the results obtained,

it follows that there might exist a sequence for which the cor-

responding periodic window encloses the point (a?, b?). In

this section, we estimate that the probability that the H�enon

attractor (the attractor existing for classical parameter values)

is periodic.

First, let us estimate the area of the periodic windows in

the square Q0 ¼ 1:4001
3999 � 0:3001

2999. Fig. 6 shows widths of the

existence regions intersecting Q0 versus period. Period-

doubling windows are plotted using a different color. The

width of a periodic window is found by continuing the sink

from the point in the parameter space for which the existence

was proved in the directions 6ð@r=@a; @r=@bÞ, where r is

the spectral radius of the Jacobian matrix ðhpÞ0. Continuation

is carried out until both eigenvalues of the Jacobian matrix

are smaller than 1 in magnitude. This procedure gives us two

border points and the window width is their distance.

The two widest windows are period-19 windows with

widths of 7.96� 10�8 and 7.62� 10�8. In the plot, they are

visible as a single point. Observe the period-36, period-38,

and period-40 period-doubling windows have widths a cou-

ple of orders of magnitude larger than other windows with

the same periods. In fact, the widths of period-doubling win-

dows are only slightly smaller than widths of their parents.

The width of a primary window generally decreases expo-

nentially with the period.

Having widths of periodic windows with a period p, we

can estimate the area of intersection of period-p windows

with the square Q0. This estimate is based on the assumption

that the intersections of periodic windows with Q0 are nar-

row stripes, and that the width of the stripe is almost constant

in Q0. In Ref. 4, it was confirmed that both assumptions are

valid for the majority of periodic windows found. The direc-

tion of the periodic window is approximately ð@k1=@b;
�@k1=@aÞ. Having the direction and a point belonging to the

periodic window, we can compute the length of the intersec-

tion of the periodic window and Q0, and then its area.

Fig. 7 shows the total area Sall,p of period-p windows

enclosed in Q0. Note that the results for even periods p	 36

are much larger than for odd periods in the same range. As it

was explained before, this is caused mainly by the existence

of period-doubling windows for these periods. The total area

FIG. 5. Distances between period-p windows intersecting I1 and (a?, b?). FIG. 6. Periodic window width versus period p.

FIG. 7. The total area Sall,p of period-p windows enclosed in Q0 (symbol


), and the total area Spr,p of primary period-p windows enclosed in Q0

(symbol ).
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Spr,p of period-p primary windows in Q0 is plotted using the

symbol. Spr,p fluctuates much less for p	 36 than Sall,p.

The linear regression model of logðSpr;pÞ is shown as a

dashed line. The model Spr;p ¼ S0qp has parameters

S0 ¼ 5:68� 10�11, q¼ 0.745. Based on this model, we can

estimate that the total area of primary periodic windows with

p	 42 is close to Spr;42þ � S0q42=ð1� qÞ � 9:73� 10�16.

Let us further assume that each primary period-p win-

dow generates an infinite cascade of period-doubling win-

dows with periods 2kp, and that the ratios ak ¼ w2k�1p=w2kp

of the widths of subsequent windows are similar for all

cascades. We will estimate the values of ak based on the

analysis of selected sequences of periodic windows in Q0.

The widths of the period-18 window and its descendants

are w18 � 3:207� 10�9, w36 � 1:604� 10�9, w72 � 3:788

�10�10, and w144 � 8:322� 10�11. Each width is calculated

along the line b¼ 0.3. The ratios of the widths of subsequent

windows are: a1 ¼ w36=w18 � 0:50002, a2 ¼ w72=w36

� 0:23620, and a3 ¼ w144=w72 � 0:21972. For one of the

period-19 windows and its descendants, we obtain

w19 � 9:402� 10�8, w38 � 4:733� 10�8, w76 � 1:118

�10�8, and w152 � 2:457� 10�9. In this case, all widths are

calculated along the line a¼ 1.4 (the period-19 window does

not intersect the line b¼ 0.3 within Q0). The ratios of the

widths of the subsequent windows are: a1 ¼ w38=w19

� 0:50335, a2 ¼ w76=w38 � 0:23622, and a3 ¼ w152=w76

� 0:21976. The ratios ak calculated in both cases are very

close. Similar results were obtained for other period-

doubling cascades. Note that a3 is quite close to the inverse

of the Feigenbaum constant d�1� 0.21417. We expect

that—in the limit—the ratio ak converges to d�1. Assuming

that a1 � 0:5; a2 � 0:2362; a3 � 0:2198, and ak � d�1

for k> 3, we can estimate the width of all descendants as

b ¼ a1ð1þ a2ð1þ a3ð1þ d�1=ð1� d�1ÞÞÞÞ ¼ 0:6511 of the

width of a primary window.

Therefore, we can estimate the total area of all periodic

windows in Q0 as

Sall �
X41

p¼18

Sall;p þ
X41

p¼21

bSpr;p þ
b� a1

a1

Spd;p

� �

þ 1þ bð ÞSpr;42þ ¼ 2:835� 10�11:

The first component corresponds to the area of all periodic

windows identified by the search procedure. It is equal to

2.5607 � 10�11 and dominates the other two components.

The second component approximates the area of period-

doubling descendants of periodic windows found. Note that

the sum starts at p¼ 21. The reason is that period-doubling

children of period-18, 19, and 20 periodic windows are al-

ready accounted for in the first component. Also note that

primary windows and period-doubling windows are treated

in a different way. The second component is equal

2.737� 10�12 and is approximately nine times smaller than

the first one. The last component estimates the area of pri-

mary windows with periods p	 42 and their period-

doubling descendants. This component is equal to

1.606� 10�15 and has a negligible influence on the result.

Formally, we should subtract from Sall the area of

intersections of periodic windows. This area is, however, a

couple of magnitudes smaller than the area of S and has

negligible effect on the result.

Dividing Sall by the area of Q0, we obtain the probability

that a randomly selected point in Q0 belongs to a periodic

window

Pper;Q0
� Sall=SQ0

¼ 7:09� 10�4: (9)

Let us assume that all periodic windows with periods

smaller than 42 are found. This assumption may be not true

due to several reasons. Some of the windows may be not

found due to a failure of the Biham–Wenzel method. It is

also expected that there exist periodic windows for which

the intersection with Q0 is a more complex structure than a

narrow stripe, in which case the proposed method may be

not able to detect it. However, we believe that the majority

of periodic windows with periods smaller than 42 have been

found. From the analysis of distances between periodic win-

dows found and the point (a?, b?), we know that period-

doubling descendants of periodic windows with periods

p� 41 do not contain the point (a?, b?). The probability that

the point (a?, b?) belongs to a periodic window not found by

the search procedure then drops to

Pper 42þ;Q0
¼ ð1þ bÞ � Spr;42þ=SQ0

¼ 4:02� 10�8: (10)

Similar computations have been carried out for the inter-

val I0 ¼ 1:4001
3999 � 0:3. The Biham–Wenzel method was used

to find admissible sequences with periods p� 42 for points

(1.3999, 0.3) and (1.4001, 0.3), the missing sequences have

been identified, and the continuation method was used for

periodic orbits corresponding to missing sequences to find

intersections of periodic windows with I0. The total width

Wall,p of intersections is shown in Fig. 8. The total width

Wpr,p of period-p primary windows in I0 is plotted using the

symbol. The linear regression model of logðWpr;pÞ is

shown as a dashed line. The model Wpr;p ¼W0qp has param-

eters W0 ¼ 1:6914� 10�7, q¼ 0.744. Note that the second

parameter of the model is almost equal to the corresponding

parameter for the model of area of periodic windows in Q0.

Based on these results and the model, we can estimate the

FIG. 8. The total width Wall,p of period-p windows intersecting I0 (symbol


), and the total width Wpr,p of primary period-p windows intersecting I0

(symbol ).
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total width Wall � 8:92� 10�9, and the probability that a

randomly selected point from I0 belongs to a periodic win-

dow as Pper;I0
�Wall=WI0

¼ 4:46� 10�5. This probability is

smaller than the probability (9). The main reason is the exis-

tence of two wide period-19 windows which intersect Q0

without intersecting I0 (compare Fig. 2).

Similarly, as for Q0, we can estimate the probability that

the point (a?, b?) belongs to a periodic window not found

by the search procedure Pper 43þ;I0
¼ ð1þ bÞ �Wpr;43þ=WI0

¼ 1:68� 10�8. This result is consistent with (10). A slightly

lower value is the effect of period-19 windows not intersect-

ing I0 and the fact that here the results are based on periodic

windows with periods p� 42 instead of p� 41 for Q0.

The results obtained for the interval I1 concerning peri-

odic windows with periods p� 52 can be used in a similar

way to estimate the probability that the point (a?, b?) belongs

to a period-p window with p	 53

Pper 53þ;I1
¼ ð1þ bÞ �Wpr;53þ=WI0

¼ 4:59� 10�11: (11)

This already very low probability can be further decreased

by considering smaller neighborhoods of (a?, b?) and longer

symbol sequences.

From the results presented above, it follows that the prob-

ability of the H�enon attractor being periodic is extremely low.

Hence, the general belief that the H�enon attractor is chaotic is

perhaps true. However, taking into account that there exist

periodic windows extremely close to the point (a?, b?) (per-

haps arbitrarily close), it seems very unlikely that one could

ever rigorously confirm this hypothesis.

A. Sink properties

To investigate sink properties, we will use the notion of

the immediate basin of attraction and its radius.4 We say,

that a point z belongs to the immediate basin of attraction
BeðAÞ of the attractor A if its trajectory converges to the

attractor and does not escape further than e from it

BeðAÞ ¼ fz : dðhnðzÞ;AÞ � e8n	 0 and lim
n!1

dðhnðzÞ;AÞ ¼ 0g;

where d(z, A) denotes the distance between the point z and

the set A. We will use e to be 1% of the diameter of the

smallest ball enclosing the attractor. The condition z 2 BeðAÞ
can be verified numerically by computing the trajectory of z
in arithmetic of sufficient precision.

The immediate basin radius of the attractor A is

defined as

reðAÞ ¼ supfr : dðz;AÞ � r ) z 2 BeðAÞg: (12)

The border of the immediate basin of attraction of a sta-

ble period-18 point existing for a¼ 1.3999769102, b¼ 0.3 in

a neighborhood of this point is shown in Fig. 9. The periodic

point is plotted using the� symbol. The immediate basin ra-

dius at this point is the radius of the largest circle centered at

the periodic point enclosed in the immediate basin of attrac-

tion (see Fig. 9). Sample trajectories are plotted in blue.

They give an idea what the potentially chaotic set looks like.

Computation of reðAÞ for periodic attractors is straight-

forward. One can use a bisection method to obtain an accu-

rate approximation of the largest r such that the condition

z 2 BeðAÞ is satisfied for test points in balls of radius r cen-

tered at the positions of periodic points constituting the sink.

If the immediate basin radius of a sink is smaller than

the arithmetic precision used, a trajectory will most likely

escape from the sink even if the computations are started at a

stable periodic point; in general we will not be able to

observe the sink in simulations (compare Ref. 17). Provided

that the computations are carried out in a sufficient precision,

a trajectory initiated at a point closer to the sink than its im-

mediate basin radius converges to the sink without leaving

its small neighborhood; in simulations we will see a stable

periodic behavior.

We will show that the immediate basin radius can be

used to estimate the average time needed for a trajectory to

converge to the sink. In certain cases, monitoring the trajec-

tory to observe convergence is not an option; convergence

times can be prohibitively long.

The immediate basin radius versus period p for periodic

windows in Q0 is plotted in Fig. 10. The immediate basin ra-

dius is computed for a point in a periodic window at which

the spectral radius of the Jacobian matrix reaches its mini-

mum. The position of the minimum is found using the con-

tinuation method. One can see that in several cases for

FIG. 9. Immediate basin of attraction of a period-18 sink for

a¼ 1.3999769102, b¼ 0.3.

FIG. 10. The immediate basin radius versus period p for periodic windows

in Q0.
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periods larger than 33, the immediate basin radius is smaller

than the double precision machine epsilon.

Observe that the plot of the immediate basin radius ver-

sus period is very similar to the plot of the periodic window

width versus period (compare Fig. 6 and Fig. 10). This is a

consequence of the equivalence of parameter and space deriv-
atives, which holds for the H�enon map.3 This observation

indicates that two effects which increase the difficulty to find

a sink happen simultaneously. At the same time, as the width

of the existence region decreases (we need finer sampling of

the state space to find a periodic window), the minimum im-

mediate basin size of the corresponding sink becomes smaller

(we need more iterations to detect the sink in simulations).

Even if there exists a single sink for given parameter val-

ues, it may take a very long time to observe any convergence

to this sink. In theory, for any number of iterations n, we may

find a trajectory which converges to the sink only after more

than n iterations. If a trajectory is initiated sufficiently close to

one of the infinitely many unstable periodic orbits, the conver-

gence time can be as large as we wish. It follows that conver-

gence times are not bounded. On the other hand, if a

trajectory is started right at the sink, or within its immediate

basin, we will see no transient behaviour at all. Estimating the

average convergence time is an interesting problem. If it is

large, then we have little chance of finding the sink observing

short trajectories. Let nconvð.Þ denote the average number of

iterations which are required to converge to the sink with

probability . 2 ð0; 1Þ. This number can be approximated in

the following way. First, we compute trajectories for N ran-

dom initial points and record the corresponding convergence

times sk. Next, we sort the convergence times s1 � s2

� � � � � sN and find n such that n=N � .. sn is an approxima-

tion of nconvð.Þ. We have carried out such calculations for

several sinks; the results are collected in Table V. We report

the sink period p, the distance d between the point (a, b) for

which the existence has been proved and the point (a?, b?),

the immediate basin radius re, the width w, and an estimate of

nconv(0.5). The sinks are sorted according to the immediate

basin radius. We also report the minimum floating point preci-

sion required to observe the sink in simulations. This number

is computed as the minimum number of bits of multi-

precision arithmetic used such that the computer generated

trajectory initiated at the sink does not leave a small neighbor-

hood of the sink.

Note that the ratio d/w for the closest periodic window

(period-115) is larger than 1029, which means that this peri-

odic window is very far away from point (a?, b?) when the

distance is measured in window widths. There is practically

no chance to find this window by sampling the parameter

space. For comparison, the ratio d/w for the period-18 win-

dow is approximately 7200, and for the widest period-19

window, it is close to 1000.

The results concerning immediate basin radius are con-

sistent with the minimum precision results. The first six sinks

can be seen when standard double precision arithmetic is

employed (53 bits precision in the mantissa). The immediate

basin radius for these sinks is larger than the double preci-

sion machine epsilon. For the remaining sinks, the double

precision arithmetic is not sufficient. For example, the imme-

diate basin radius of the period-41 sink is re ¼ 3:31� 10�17.

We have verified that this sink appears to be unstable when

the computations are performed in standard double preci-

sion; a trajectory escapes from the sink even if is it started

exactly (up to double precision resolution) at the sink posi-

tion. For the closest period-115 sink, the immediate basin ra-

dius is extremely small. In consequence, the quadruple

precision arithmetic (128 bits) is not sufficient to detect it.

In the last column of Table V, we report the results con-

cerning approximations of nconv(0.5). For the first three

sinks, the results are based on convergence times for 105 ran-

domly selected initial points. For the sinks #4–6 due to lon-

ger convergence times, we use fewer initial points. For the

remaining sinks the calculations have to be carried out in

multiple precision. For the sinks #7 and 8, the results were

obtained using multiple precision GPU software.18 For the

other sinks, we were not able to get any significant statistics

concerning the convergence times.

Let us try to estimate how the convergence time changes

with re. Define the set A to be the invariant part of a big trap-

ping region X enclosing the numerically observed attractor,

i.e., A ¼ \1n¼0hðXÞ. For (a?, b?), the trapping region X can

be chosen as a quadrangle defined by points (�1.33,0.42),

(1.32,0.133), (1.245, �0.14), and (�1.06, �0.5). Such a set

for (a, b) close to (a?, b?) supports horseshoe type dynamics,

contains an infinite number of periodic orbits, and contains a

chaotic set (which may be a repeller). Let us assume that A
is an interval of length L, and that a trajectory visits A ran-

domly with uniform distribution. The probability that at least

one point out of N falls within a ball of radius r from a pe-

riod-p orbit is P ¼ 1� ð1� 2pr=LÞN . Solving P ¼ . yields

N ¼ log 1� .ð Þ

log 1� 2pr

L

� � � L log 1� .ð Þ�1

2pr
: (13)

TABLE V. Parameters of selected sinks.

p d re w Prec. nconv(0.5)

18 1.12 � 10�5 1.68 � 10�9 1.56 � 10�9 28 3.35 � 106

33 5.13 � 10�7 7.71 � 10�13 7.13 � 10�13 41 1.66 � 109

28 2.25 � 10�8 1.16 � 10�13 1.07 � 10�13 43 1.44 � 1010

31 1.08 � 10�6 1.41 � 10�14 1.38 � 10�14 47 3.83 � 1010

31 2.15 � 10�8 1.73 � 10�15 1.60 � 10�15 51 2.35 � 1011

33 3.70 � 10�7 6.34 � 10�16 5.85 � 10�16 53 2.68 � 1011

41 4.73 � 10�10 3.31 � 10�17 3.31 � 10�17 55 4.40 � 1012

47 1.47 � 10�10 1.17 � 10�20 1.17 � 10�20 67 9.07 � 1014

47 1.91 � 10�11 1.34 � 10�22 1.24 � 10�22 74

52 4.44 � 10�12 4.82 � 10�24 4.44 � 10�24 80

58 2.03 � 10�13 1.55 � 10�26 1.46 � 10�26 88

62 1.64 � 10�13 2.60 � 10�29 2.59 � 10�29 97

72 2.55 � 10�15 6.02 � 10�34 5.63 � 10�34 113

80 7.47 � 10�16 4.62 � 10�37 4.28 � 10�37 123

87 4.52 � 10�17 3.06 � 10�40 3.35 � 10�40 133

98 2.71 � 10�18 3.13 � 10�44 3.17 � 10�44 147

103 6.22 � 10�20 2.45 � 10�46 2.26 � 10�46 154

110 1.38 � 10�21 2.43 � 10�49 2.24 � 10�49 163

115 6.34 � 10�22 3.72 � 10�51 5.49 � 10�51 170
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For a fixed probability ., the average number of iterations to

converge to a period-p sink with immediate basin radius re is

inversely proportional to pre.

The assumptions under which the approximation (13) is

derived are not valid for the H�enon map. Locally, the set A
has a structure of a Cartesian product of an interval and a

Cantor set (compare Fig. 9). Moreover, trajectories do not

visit A according to the uniform distribution. One should

also take into account the fact that the immediate basin ra-

dius usually changes along the orbit, which means that the

true average number of iterations can be larger than (13).

In fact, one can see that nconv(0.5) grows slower than ðpreÞ�1

(compare Table V). Nevertheless, decreasing re from 1.68

� 10�9 to 1.17 � 10�20 corresponds to the increase of nconv

(0.5) from 3.35 � 106 to 9.07 � 1014. If this trend carries

over to smaller re, we have practically no chance of detecting

sinks corresponding to periodic orbits with periods larger

than say, p ¼ 100 by monitoring trajectories. For these sinks,

re is below 10�45 and the expected number of iterations to

converge to a sink is well above 1030.

V. CONCLUSION

The results obtained provide numerical support for the

belief that the set of parameter values with a periodic sink is

dense in a neighborhood of (a?, b?)¼ (1.4,0.3). By analogy

with the quadratic map, it is also expected that in a neighbor-

hood of (a?, b?) the set of parameter values with chaotic

behaviour is a Cantor set with positive Lebesgue measure. It

has been confirmed that in a neighborhood of (a?, b?),

periodic windows are very narrow, the transient times to cor-

responding sinks can be extremely long, and that it is practi-

cally impossible to observe such sinks in simulations.
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