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The dangers of rounding errors for simulations
and analysis of nonlinear circuits and systems —

and how to avoid them
Zbigniew Galias, Member, IEEE,

Abstract—Due to rounding errors results obtained by nu-
merical simulations of nonlinear systems may be unreliable.
It is however possible to carry out the computations in such a
way that the results obtained are rigorous. In this paper sev-
eral tools based on interval analysis are presented. Methods
for computing trajectories, techniques for finding accurate
enclosures of attractors, interval operators for proving the
existence of fixed points and periodic orbits, and methods
for proving the existence of nontrivial symbolic dynamics,
are described. Computational techniques are illustrated by
performing validated numerical analysis of the Hénon map
and the Chua’s circuit.

Index Terms—nonlinear system, chaos, interval analysis,
Chua’s circuit, Hénon map.

I. INTRODUCTION

Numerical simulations play a fundamental role in study-
ing dynamics of nonlinear systems. Due to inherent prop-
erties of digital computers results found by numerical
simulations are almost never exact. The limitation comes
from finite representations of real numbers. Even if the
input data are machine representable numbers, the result of
a simple mathematical operation may be not representable.
Instead of a true result its approximation is returned by
a computer. Small rounding errors accumulate and are
propagated in further computations. For more complex
problems this may result in totally wrong answers. The
problem of error propagation is especially important for
chaotic systems since errors introduced in each computa-
tion step grow exponentially (on average) due to sensitivity
to initial conditions (positive Lyapunov exponent). Apart
from rounding, there are other sources of computation
errors when analysing nonlinear systems. For example,
errors are introduced during integration of continuous
time systems by using numerical methods, which are
constructed by skipping higher-order terms in the Taylor
expansion of the solution. This error is sometimes called
the truncation error. Nevertheless, computer generated
solutions are often accepted as true solutions.

To see how rounding errors may influence the results,
let us compute a trajectory of the Hénon map h(x, y) =
(1 + y − ax2, bx), with a = 1.4, b = 0.3. We want to
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compute (xk, yk) = h(xk−1, yk−1) for k = 1, 2, . . . , 200
for the initial point (x0, y0) = (0, 0). During computa-
tions, the IEEE 754 double precision format to represent
real numbers is used. The results obtained are compared
with the accurate solution found using multiple precision
interval computations (this technique will be described
in detail in Section IV-A). The distance ek between the
double precision solution and the true solution versus the
iteration number k is shown in Fig. 1. One can see that
the error ek, which is initially at the level of machine
error grows exponentially fast and after approximately 80
iterations gets close to 1. From then on, the error does
not increase any more because both trajectories remain in
the same region of the state space (the Hénon attractor is
bounded).
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Fig. 1. Propagation of rounding errors during computations of the
trajectory of the initial point (0, 0) for the Hénon map; the Euclidean
distance ek between the double precision solution and the true solution

This example shows that indeed, even for very simple
systems propagation of rounding errors may lead to com-
pletely wrong results. The trajectory found using double
precision computations after a certain number of iterations
(k = 80 in this particular example) becomes uncorrelated
with the true trajectory.

In this context, it is worth to mention the shadow-
ing lemma which says that under certain assumptions a
pseudo-trajectory (for example a trajectory with rounding
errors at every iteration) is shadowed by a true one, i.e.
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stays close to it. The statement is valid also for trajectories
of infinite length. For a precise formulation see [1]. It fol-
lows that for certain systems computer generated trajecto-
ries may serve as good approximations of true trajectories.
However, the statement is valid only for trajectories near
to an invariant hyperbolic set, the existence of which might
be difficult or impossible to prove, as is the case for the
Hénon map. Also, this approach is useless when the goal
is to compute an enclosure of the trajectory based at a
given initial point.

Sometimes, from observations of long trajectories one
draws conclusions about the steady state behaviour of the
system. Here, we show an example that such claims might
be wrong. Fig. 2 shows two parts of the trajectory of the
Hénon map with a = 1.399999486944, b = 0.3 based
at the initial condition (x0, y0) = (0.1, 0.1). The first
part of the plot is obtained by skipping 5 · 109 iterations
and plotting the next 10000 iterations. The plot looks
like the classical Hénon attractor observed for a = 1.4,
b = 0.3. The second part, also composed of 10000 points
is obtained by skipping 6 ·109 iterations. One can see that
the second part of the plot is composed of 33 dots.

Just by looking at the plot, we cannot say what is the
true steady state solution (the observed period–33 orbit
might be an artefact of the numerical procedure). We can
however answer this question using techniques presented
in this work. The existence of a period–33 stable periodic
orbit for a = 1.399999486944, b = 0.3 is proved in
Section IV-B (see also [2]).
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Fig. 2. Trajectory of the Hénon map with a = 1.399999486944,
b = 0.3 for the initial condition (x0, y0) = (0.1, 0.1), 10000 points
after skipping 5 ·109 iterations are plotted using blue dots, 10000 points
after skipping 6 · 109 iterations are plotted using red circles, chaotic
transient is observed for more than 5 · 109 iterations; eventually, the
trajectory converges to the period–33 stable periodic orbit

This example shows that it might be necessary to wait
very long until the steady state is observed. Even if a
trajectory looks chaotic it might be a transient to a simpler
steady state behavior, like a periodic orbit. Sometimes,
one computes certain characteristics of a trajectory like
the Lyapunov exponents or the power spectrum to support

statements about the existence of chaos. If one of the
Lyapunov exponents evaluated over a long trajectory is
positive and the power spectrum is continuous, it is often
claimed that the system under study is chaotic. However,
note that Lyapunov exponents and the power spectrum
evaluated over the chaotic transient would not help in
predicting what is the steady state behavior. Lyapunov ex-
ponents become negative and the power spectrum becomes
discrete only after the trajectory converges to the periodic
steady state.

Examples presented above show that standard computer
simulations may lead to false conclusions. Fortunately,
there are computational methods, which can be used to
obtain results rigorous in the mathematical sense. Such
methods have to cope with the problem of rounding errors.
Interval analysis [3] implemented on a computer provides
a solution. In interval analysis, instead of performing
mathematical operations on uncertain real quantities, one
works with intervals that contain the quantities of interest.
All calculations are performed in such a way that the true
result is always enclosed within the interval produced by
the computations.

In this paper, several computational methods for the
rigorous study of nonlinear systems are presented. In
Section II, a brief introduction to interval analysis is
presented. We describe the wrapping effect and show
methods how to reduce it. Automatic differentiation is
also discussed. In Section III, several interval analysis
based methods for rigorous studies of nonlinear systems
are presented. This includes methods for computing tra-
jectories and representing the dynamics of a nonlinear
system in the form of a directed graph. It is explained
how this representation can be used to obtain accurate
enclosures of the invariant part of a set. Interval operators
for proving the existence of zeros of nonlinear maps are
also described. It is shown how to apply these operators to
find all short cycles. In Sections IV and V two nonlinear
systems are analysed numerically: the Hénon map — a
two-dimensional discrete system, and the Chua’s circuit —
a three-dimensional continuous system. We show how to
compute enclosures of trajectories, find a trapping region,
find enclosures of the invariant part of a given set, prove
the existence of periodic orbits and prove the existence of
chaos in the topological sense.

II. INTERVAL ANALYSIS

In interval analysis [3], [4] intervals are used instead of
real numbers. The closed interval with endpoints a ≤ a
is denoted by a = [a, a] = {a : a ≤ a ≤ a}. An
interval vector is a Cartesian product of m intervals v =
(a1,a2, . . . ,am) = {(a1, a2, . . . , am) : ai ∈ ai for i =
1, . . . ,m}. It corresponds to a box in Rm.

We will use bold letters to denote intervals, interval
vectors and matrices, and usual math italic to denote real
quantities. For a given interval a = [a, a] its diameter and
center are defined as diam(a) = a − a and mid(a) =
0.5(a+ a), respectively.
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On the set of intervals basic arithmetic operators (+, −,
×, ÷) are defined in such a way that the result of an oper-
ation on intervals is the smallest interval containing results
of the corresponding real operation for all combinations of
values from these intervals with the exception that a÷ b
is undefined if 0 ∈ b. For example the sum of intervals a
and b is defined as a + b = {a + b : a ∈ a, b ∈ b}.
The result of arithmetic operations on intervals can be
found by performing “real” arithmetic operations on their
endpoints. For example formulas for addition and multi-
plication of intervals are: [a, a] + [b, b] = [a + b, a + b],
[a, a]× [b, b] = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}].

In practice, it is impossible to perform arithmetic
operations (real of interval) with infinite precision. We
are limited by representations of finite precision. When
interval arithmetic is implemented on a computer one has
to make sure that the result of an operation on intervals
contains the results of the corresponding real operation
for all combinations of values from these intervals. In the
best implementation of interval arithmetic the left (right)
endpoint found by a computer is the largest (smallest)
representable real number not larger (not smaller) than
the correct value. This is obtained by using directed
rounding when performing “real” computations on interval
endpoints.

Interval extensions of elementary functions are imple-
mented using Taylor series of finite length and controlling
the error caused by skipping higher order terms. For
monotonic functions like exp and log it is sufficient to
evaluate the functions at interval endpoints controlling the
rounding modes. For non-monotonic functions like sin and
cos one additionally has to verify conditions for existence
of local extrema within the considered interval.

There are a number of interval algorithms, which can be
used for solving various computational problems [3], [4].
Some of them are simple extensions of algorithms for real
arithmetic, for example computation of the enclosure of a
trajectory of a continuous system using Taylor expansion
of the solution. There are also algorithms specific for
interval analysis. They are based on the fact that an interval
is a set of real numbers. Hence, one can compute the
intersection of two intervals, or verify whether one interval
is enclosed in another. Existence theorems for zeros of
nonlinear maps based on evaluation of an interval operator
belong to this class.

A. The wrapping effect and variable dependency

When computations are carried out in interval arith-
metic, one often observes overestimation of the result.
This effect is clearly visible when computations are based
on recursive formulas, like finding trajectories of discrete
or continuous dynamical systems [3], [5]. This overesti-
mation can be related to the wrapping effect caused by
enclosing intermediate results by intervals or to the vari-
able dependency problem. The overestimation propagates,
when intermediate results are used in further computations.
In case of computing trajectories the overestimation even-

tually prevents long-term integration. First, let us show a
simple example of the wrapping effect.

Let us consider a linear discrete dynamical system
zk+1 = f(zk), where f defines a rotation by the angle ϕ,
i.e. f(x, y) = (x cos(ϕ) − y sin(ϕ), x sin(ϕ) + y cos(ϕ)).
Let us compute the image of a square P = [0.9, 1.1] ×
[−0.1, 0.1] after n = 8 iterations for ϕ = π/8. Since
f describes the rotation, it is clear that the image of
P is a square of the same size as P . For ϕ = π/8
after n = 8 iterations we obtain the square fn(P ) =
[−1.1,−0.9]× [−0.1, 0.1] (compare Fig. 3).
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Fig. 3. Wrapping effect when computing iterations of f(x, y) =
(x cos(ϕ)− y sin(ϕ), x sin(ϕ) + y cos(ϕ)) for ϕ = π/8

On the other hand when the trajectory fn(P ) is com-
puted using interval arithmetic, after each iteration the
result is enclosed in an interval vector. The area of the
enclosure grows by the factor (cosϕ + sinϕ)2 in each
iteration. The result Q obtained after n = 8 iterations is
shown in Fig 3. The area of the square Q is (cos(ϕ) +
sin(ϕ))2n ≈ 72 times larger that the area of the true result
fn(P ).

The second factor which may cause the overestimation
is the variable dependency problem. If a certain variable is
used many times in computations, the result may be over-
estimated. This can be easily seen by computing 2x − x
for x ∈ x, using interval arithmetic methods. For example,
if x = [0, 1] then 2x− x = [0, 2]− [0, 1] = [−1, 2], while
the true result is [0, 1].

In the example presented above it is easy to rearrange
the computations, so that the result obtained is exact. To
see the variable dependency problem in a more complex
situation, when there is no simple reduction of components
let us compute

f(x1, x2) =
−x1 + 2x2

2x1 + x2
− 0.2x2 (1)

for x1 ∈ x1 = [0, 1], x2 ∈ x2 = [1, 3]. Computations in
interval arithmetic give f(x1,x2) = (−[0, 1]+2×[1, 3])÷
(2×[0, 1]+[1, 3])−0.2×[1, 3] = [1, 6]÷[1, 5]−[0.2, 0.6] =
[0.2, 6]−[0.2, 0.6] = [−0.4, 5.8]. The diameter of the result
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is 6.2. It can be shown that the true result is [−0.2 +
1/3, 1.8] with the diameter 5/3. We observe a significant
overestimation. This is a result of a multiple presence of
the variables x1 and x2 in the evaluated expression.

Let us see, that the result may depend on the formula
used. If we evaluate f using a mathematically equiv-
alent formula f(x1, x2) = (−x1 + 2x2 − 0.4x1x2 −
0.2x2

2)/(2x1+x2), the result is [−2, 5.8] with the diameter
7.8.

B. Reducing the overestimation

There are a number of methods to reduce or fully
eliminate the overestimation. The most general technique
is the division method. In order to evaluate the map f
on the interval vector x, we split x into smaller interval
vectors xi, compute enclosures fi of images of xi under f
and as a result take the interval f =

⋃
fi. The main disad-

vantage of this method is that the computation time grows
linearly with the number of boxes over which the map
is evaluated. Results obtained by applying this method
for the evaluation of (1) over (x1,x2) = ([0, 1], [1, 3])
using different number of boxes are reported in Table I.
Even when the number of boxes is small (4 or 16) the
improvement is significant. Also note that it is possible to
obtain an arbitrarily good approximation but the number
of boxes to improve the approximation grows very fast.

TABLE I
EVALUATION OF (1) USING THE DIVISION METHOD WITH DIFFERENT

NUMBER OF BOXES

n result diameter
1 [−0.4, 5.8] 6.2

2× 2 [−0.15, 3.8] 3.95
4× 4 [−0.015, 2.8] 2.815

10× 10 [0.0725, 2.2] 2.1275
100× 100 [0.1271, 1.84] 1.7129

1000× 1000 [0.1327, 1.804] 1.6713
10000× 10000 [0.13327, 1.8004] 1.66713

true result [0.13333, 1.8] 1.66667

Another approach to reduce the wrapping effect is based
on the mean value form

{f(x) : x ∈ x} ⊂ f(x̂) + f ′(x)(x− x̂), (2)

where x̂ ∈ x. Instead of computing f(x) in interval
arithmetic we choose a single point x̂ ∈ x, find its image
under f , compute the Jacobian matrix of f over x, and
finally use the formula (2) to find an enclosure. Usually,
x̂ is chosen to be the center of x. This method works
fine, when the input intervals are narrow. For example for
x = [0.9, 1], y = [2.9, 3] the mean value form produces
an interval with the diameter 0.0706, while the standard
evaluation gives a result with the diameter 0.1451. It is
interesting to note that one needs to divide this interval
vector into more than 100 boxes to achieve the same
accuracy using the division method. On the other hand,
for large intervals the method does not improve the result.
When (x1,x2) = ([0, 1], [1, 3]) the mean value form gives
the result with the diameter 24.6, which is much worse
than the standard interval arithmetic evaluation.

There are a number of methods which are aimed at
reducing the wrapping effect for finding trajectories of
dynamical systems. They are based on using different
representations of the set enclosing the solution. Taylor
expansions of first order are used in affine arithmetic [6].
The Lohner method described in Section III uses different
types of parallelograms [5]. Special classes of polytopes
have also been proposed [7]. One of the most promising
techniques is based on Taylor models [8]. In this approach
a function is represented on a given interval by the Taylor
polynomial of a given length and an interval reminder
term, which encloses the approximation error.

C. Automatic differentiation

In many applications it is necessary to compute deriva-
tives of a map. In the context of finding enclosures of
trajectories of dynamical systems derivatives are needed
for example to evaluate the mean value form and to find
coefficients of the Taylor expansion of the solution in
case of continuous systems. Classical methods of finding
derivatives include numerical and symbolic differentiation.
In numerical differentiation, derivatives are calculated as
difference quotients. This method does not provide enclo-
sures of true derivatives, and therefore cannot be used if
the goal is to compute exact results. Moreover, computing
higher order derivatives using difference quotients leads
to significant accuracy loss. The symbolic differentiation
method works by first deriving symbolic formulas for
derivatives, and then calculating derivatives using these
formulas. The main disadvantages of this approach are in-
creasing complexity when calculating higher order deriva-
tives and low computation speed.

An alternative method to compute derivatives is based
on automatic differentiation [9]. The evaluation of a map
is decomposed into a sequence of elementary operations
including the four basic elementary operations and ele-
mentary functions. Derivatives of elementary operations
can be easily calculated by a computer program. These
values are combined using the chain rule of differentiation.
In order to see how this idea works in practice let us
compute ∂f/∂x1 for f defined in (1). Let us assume
that x1 = 1 and x2 = 2. The sequence of elementary
operations to find f(x1, x2) and to calculate ∂f/∂x1 at
(x1, x2) = (1, 2) is:

z1 = x1 = 1, z′1 = 1,
z2 = x2 = 2, z′2 = 0,
z3 = −z1 = −1, z′3 = −z′1 = −1,
z4 = 2z2 = 4, z′4 = 2z′2 = 0,
z5 = z3 + z4 = 3, z′5 = z′3 + z′4 = −1,
z6 = 2z1 = 2, z′6 = 2z′1 = 2,
z7 = z6 + z2 = 4, z′7 = z′6 + z′2 = 2,

z8 = z5/z7 = 0.75, z′8 = (z′5z7 − z5z′7)/z2
7 = 0.625,

z9 = 0.2z2 = 0.4, z′9 = 0.2z′2 = 0,
z10 = z8 + z9 = 1.15, z′10 = z′8 + z′9 = 0.625.
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The initial values z′1 = 1 and z′2 = 0 are chosen so that
a correct derivative is computed. For the computation of
∂f/∂x2 the initial values have to be exchanged. Observe
that a computer stores the numerical values of the deriva-
tives — no symbolic formula is created. Also note that the
only information which is needed to compute derivatives
is the formula how a function is computed.

There are a number of freely available software pack-
ages for interval computations. One of the first C and
C++ packages available was the BIAS/Profil interval pack-
age [10]. This package can be easily combined with the
FADBAD++ package for automatic differentiation [11].
The INTLAB [12] package provides easy access to interval
arithmetic from the MATLAB environment.

One of the very well developed tools for interval analy-
sis is the CAPD library. It is a collection of C++ modules
designed for nonrigorous and validated computations for
dynamical systems and to computation of homology of
sets and maps [13], [14]. The CAPD library handles
automatic differentiation internally (it also provides access
to the FADBAD++ package), and the only input the user
has to provide to study a dynamical system is the equation
defining the map or the flow.

III. VALIDATED STUDIES OF NONLINEAR SYSTEMS

In this section, we present various interval analysis
based methods, which can be used for rigorous studies
of nonlinear systems. First, we discuss the problem how
to find enclosures of trajectories.

A. Enclosing trajectories

Let us assume that f : Rm 7→ Rm is the map defining
a discrete dynamical system. The problem of finding a
trajectory based at x0 is equivalent to computing subse-
quent iterations xk+1 = f(xk) for k = 0, 1, . . .. Each set
can be approximated with arbitrary precision by a union
of interval vectors. Hence, without loss of generality, we
may assume that the set of initial conditions for which we
want to compute enclosures is a single interval vector. Let
us denote it by x0. Below, we show how to find enclosures
of sets Sk = {fk(x0) : x0 ∈ x0}.

The simplest method is to evaluate the formula xk+1 =
f(xk) in interval arithmetic for k = 0, 1, . . ., where
f(xk) denotes the evaluation of the interval extension of
f over the interval vector xk. Note that in this method,
the enclosure of each of the sets Sk is an interval vector.
As shown in the previous section, this may lead to huge
overestimation (the wrapping effect).

Another option is to use the mean value form xk+1 =
f(x̂k)+f ′(xk)(xk−x̂k), where x̂k ∈ xk is usually chosen
as the center of xk. Note that the wrapping effect is still
present — in each iteration the enclosure of the solution
is represented by an interval vector.

Better results can be obtained by using different repre-
sentations of the set Sk. This idea was proposed in [5] for
the computation of trajectories of continuous systems and
is called the Lohner algorithm. The set Sk is represented as

an unevaluated sum Sk ⊂ x̂k + rk, where x̂k is the center
of the solution set. To initiate this representation, we com-
pute x̂0 = mid(x0) and r0 = x0 − x̂0. Next, in each step
we use the mean value form to find enclosures of Sk+1,
i.e. we compute x̂k+1 = mid(f(x̂k)), Ak = f ′(x̂k + rk),
rk+1 = f(x̂k)− x̂k+1 + Akrk.

Different versions of the Lohner algorithm are obtained
by using different representations of rk. When rk is rep-
resented as an interval vector we obtain just the standard
mean value form. This version will be referred to as
the IV (interval vector) version. In other methods rk is
represented as a parallelogram, i.e. rk = Bkr̂k, where Bk

is an invertible matrix and r̂k is an interval vector. To start
the computations, we choose the identity matrix B0 = I.
Then, in each step we choose Bk+1, compute rigorously
its inverse B−1

k+1, and use the following update formula:
r̂k+1 = B−1

k+1(f(x̂k) − x̂k+1) + (B−1
k+1AkBk)r̂k. In the

first version (referred to as PAR, for parallelogram), we
choose Bk+1 = mid(AkBk). This method often fails due
to the necessity of computing B−1

k+1, especially when the
matrix Bk becomes ill conditioned. In the second version
(referred in the following as the QR version), the matrix
mid(AkBk) is decomposed as Qk+1Rk+1, where Qk+1

is orthogonal and Rk+1 is upper triangular, and we choose
Bk+1 = Qk+1. In this version B−1

k+1 = QT
k+1, so there is

no need to compute the inverse of Bk+1. The last version
is useful when the initial set has nonzero diameter. In this
version, referred to as the IE version (internal enclosure),
rk is represented as the sum rk = Ekr0 + r̃k. The first
component is updated using the formula Ek+1 = AkEk

and r̃k is handled using for example the QR version.
When we want to compute a trajectory of a single point

a good alternative is to use multiple precision interval
arithmetic. An example is shown in Section IV-A.

Let us now consider the initial value problem x′(t) =
f(x(t)), x(0) = x0, where x(t) ∈ Rm and f : Rm 7→ Rm

is a smooth map. Let ϕ(t, x0) denote the solution of the
initial value problem. Below, we briefly present rigor-
ous numerical methods to compute enclosures of the set
{ϕ(T, x0) : x0 ∈ x0} for given T > 0 and x0.

To construct a rigorous integration method, we need a
numerical method xk+1 = Φ(xk, hk), where hk is the
integration step, for which there exist formulas for the
difference ε(xk, hk) between the true solution ϕ(hk, xk)
and Φ(xk, hk), i.e. ϕ(hk, xk) = Φ(xk, hk) + ε(xk, hk).
Usually, the error term ε(hk, xk) depends on some un-
known parameters but we can compute its enclosure.
The most commonly used integration method in he con-
text of validated computations is the Taylor method
which in 1D can be written as Φ(x, h) = x + hx′ +
h2x(2)/2 + . . .+hnx(n)/n! with the error term ε(x, h) =
hn+1x(n+1)(θh)/(n + 1)!, where θ ∈ [0, 1]. Although in
general the value of θ is unknown, we can easily compute
bounds for the error term ε(xk, hk) having an enclosure
of the set {ϕ(t, xk) : t ∈ [0, hk], xk ∈ xk}.

Each integration step starts with finding a rough
enclosure yk, containing trajectories {ϕ(t, xk) : t ∈
[0, hk], xk ∈ xk}. As a candidate for this set one can
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choose yk = xk +[0, hk]f(xk). If xk +[0, hk]f(yk) ⊂ yk

then {ϕ(t, xk) : t ∈ [0, h], xk ∈ xk} ⊂ yk, and yk is a
rough enclosure. If not, we may inflate yk or choose a
smaller integration step hk and try to verify the condition
xk + [0, hk]f(yk) ⊂ yk again.

Once the rough enclosure yk is known, the continuous
system may be integrated rigorously using the formula
xk+1 = Φ(xk, hk) + ε(yk, hk). To reduce the wrap-
ping effect, the Lohner method may by used. In this
method Φ(xk, hk) is computed using the mean value
form Φ(x̂k, hk) + ∂Φ/∂x(xk, hk)(xk − x̂k) and different
representations of xk are used. Note, that in order to use
the Taylor method of order p we need formulas for the
derivatives x(k) of the solution up to order p + 1 and
also formulas for derivatives ∂Φ/∂x of the Taylor method.
These derivatives can be found using automatic differenti-
ation. The only formula which needs to be supplied to the
computation procedure is the formula for the right hand
side f of the differential equation.

Let us note that in order to use an integration method
of order p, the vector field has to be of class Cp+1. It
follows, that integration methods presented above cannot
be used directly for the integration of piecewise linear
(PWL) systems (and more generally for piecewise smooth
systems). Now, we briefly discuss how to handle this case.
Let us assume that the vector field f is a PWL continuous
map and that linear regions are separated by the planes
Σ1,Σ2, . . . called in the following the C0-hyperplanes.

Clearly, when trajectories remain in a single linear
region, then general integration methods developed for
smooth systems can be used without any modifications.
When intersections of trajectories with the C0-hyperplanes
are transversal it is possible to extend methods developed
for smooth systems to integration of PWL systems. This
is achieved by using the C0-hyperplanes as transversal
sections. When a trajectory intersects a C0-hyperplane, its
intersection with the plane is computed and the result is
used as a set of initial conditions for further computations.
Another option is to treat the PWL system as a perturbed
linear system and use theory of differential inclusions to
obtain estimates for solutions of the nonlinear system. This
method allows one to handle trajectories which are tangent
to the C0-hyperplanes (for details see [15], [16]).

Sometimes, it is necessary to integrate trajectories pass-
ing arbitrarily close to an unstable equilibrium. Since the
integration time to pass a neighborhood of the unstable
equilibrium is not bounded, this case has to be treated in
a different way. First, a cube around the equilibrium is
selected. If the trajectory hits the cube the computations
are interrupted. We then change to the normal form
coordinates and explicitly compute the exit set from the
cube. There are two ways in which a box can pass through
the cube. If the box intersects the stable manifold of the
equilibrium then it is split along the line of intersection,
and exits the cube in two pieces. Otherwise, the box
flows out in one piece. After leaving the cube, we switch
back to the original coordinates, and resume numeric
computations. For a detailed description of this procedure

see [17]. An application to PWL systems is presented
in [18].

B. Graph representation of the dynamics

In this section we present methods which allow us
to study global dynamics of the system. The region of
the state space where the dynamics is studied is covered
by boxes. Usually as the region of interest one selects
a trapping region enclosing the numerically observed
attractor. Using methods presented in the previous section,
for each box we find a set of boxes containing its image.
This information is represented as a directed graph, where
boxes are graph vertices and non-forbidden transitions are
graph edges. This method is in some sense similar to the
nonrigorous method of generalized cell mappings [19],
where with each cell (box) probabilities of going to other
cells are associated. For a similar concept of analysing
structural features of complex systems see [20].

Based on the graph structure we can gather a lot of
information on the global dynamics of the original system.
One can find accurate enclosures of the region where inter-
esting dynamics takes place, find the approximate structure
of the attractor, locate homoclinic and heteroclinic orbits.
One can also find an enclosure of the set containing all
periodic orbits of a given length or the invariant part of a
given set.

The algorithms described here operate on objects called
ε–boxes. Let ε = (ε1, ε2, . . . , εm) ∈ Rm, where m
is the dimension of the state space. An ε–box is a an
interval vector with corners lying on a regular grid: v =
([k1ε1, (k1 + 1)ε1], [k2ε2, (k2 + 1)ε2], . . . , [kmεm, (km +
1)εm]), where ki are integer numbers. ε–boxes are well
suited for rigorous computations. Using different ε it is
possible to represent a given set by ε–boxes with arbitrary
precision. When ε is fixed an ε–box is defined uniquely
by a sequence of integer numbers. Such a representation
makes it possible to use different combinatorial algorithms
for operations on sets of ε–boxes.

Finding the invariant part of a set containing the attrac-
tor is an important step in studies of dynamical systems.
It allows one to find a region, where interesting dynamics
can take place. We say that x belongs to the invariant part
of a set Ω under f if there exist a trajectory (xk)∞k=−∞,
enclosed in Ω such that x = x0.

Algorithms for finding the invariant part of a given
set are relatively simple, and have been described in
many papers. A generalized bisection technique used for
the computation of invariant sets, invariant measures and
unstable manifolds was described in [21]. A combinatorial
procedure for finding invariant parts, isolating neighbour-
hoods, and index pairs is described in [22].

Now, we present a simple algorithm which for a given
set Ω computes an enclosure of its invariant part (compare
also [23]). In order to find an invariant part of Ω we
choose ε = (ε1, . . . , εm) and cover Ω by ε–boxes. The set
V = {vi} of ε–boxes is the vertex set of the graph. Non-
forbidden transitions between boxes constitute the edge
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set E = {(vi,vj) : f(vi) ∩ vj 6= ∅}. The algorithm to
improve the enclosure is following. The box vi is removed
from the graph if it is not the beginning of any edge
({(vi,vj) : vj ∈ V } = ∅) or if it is not the ending of
any edge ({(vj ,vi) : vj ∈ V } = ∅). Removing boxes is
continued until no more boxes can be removed from the
graph.

The process of finding the invariant part is often com-
bined with the subdivision algorithm. Each box is split
into several smaller boxes and the computations (finding
connections and removing boxes not belonging to the
invariant part) are repeated. This process is continued until
the required accuracy of the covering is achieved.

C. Periodic orbits

In this section, we discuss methods to study the ex-
istence of fixed points and periodic orbits using interval
analysis tools. Fixed points and periodic orbits represent
long term behavior of dynamical systems and are the sim-
plest examples of limit sets. Periodic orbits are especially
important in the analysis of chaotic system, which under
certain assumptions are characterized by the existence
of infinitely many periodic orbits embedded within the
attractor. The structure of a chaotic attractor is built on
the set of unstable periodic orbits which are ordered hier-
archically. Shorter orbits provide a coarse description of an
attractor, while longer orbits reveal its finer structure [24],
[25]. Short periodic orbits can be used to characterize
the attractor. Using the number and lengths of short
periodic orbits one can compute good approximations of
the topological entropy and the dimension of the attractor.

The basic numerical technique for locating periodic or-
bits is based on the Newton method for searching for zeros
of nonlinear maps. If f : Rm 7→ Rm is a differentiable map
then the Newton iteration is defined by

xk+1 = N(xk) = xk − f ′(xk)−1f(xk), (3)

where f ′(x) is the Jacobian matrix of f at x, and x0 is
the initial point.

Fig. 4 shows an example of the Newton iteration process
for the map f(x) = x2−2. The initial point is selected as
x0 = 0.6. One can see that the convergence is very fast.
After three iterations x3 ≈ 1.41623, and the relative error
in finding the position of the true zero of f (which is

√
2)

is less than 0.0015. After six iterations the error is of the
order of double precision machine error. Generally, if the
initial point is sufficiently close to the unknown zero, the
Newton method converges quadratically, i.e. the number
of correct digits is doubled in each iteration.

In order to find a period–p orbit of f one can apply the
Newton method for the map g(x) = x − fp(x). In order
to find many (hopefully all) short periodic orbits one can
use the Newton method with different initial conditions.

Due to rounding errors which are inevitable in numer-
ical simulations it is not sure that there is a real periodic
orbit in a neighborhood of the computer generated one.
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1
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Fig. 4. Newton operator to find a zero of f(x) = x2 − 2, x0 = 0.6

Proving the existence of periodic orbits is usually a non-
trivial task. This can be done analytically only for some
simple dynamical systems.

D. Interval operators for proving the existence of zeros

In this section, we present interval operators for proving
the existence of zeros of nonlinear maps, and we show how
to use them to prove the existence of periodic orbits. Let
us assume that f : Rm 7→ Rm is a twice continuously dif-
ferentiable map. The interval Newton operator evaluated
at the interval vector x is defined by

N(x) = x̂− f ′(x)−1f(x̂), (4)

where f ′(x) is an interval matrix containing the Jacobian
matrices f ′(x) for x ∈ x and x̂ is an arbitrary point from
x. Usually, one chooses x̂ to be the center of x.

The following theorem [26], [27] can be used to study
the existence and uniqueness of zeros:

Theorem 1: Let x be an interval vector, x̂ ∈ x and let
us assume that f ′(x)−1 exists.

(a) If N(x) ∩ x = ∅, then x contains no zeros of f ,
(b) If N(x) ⊂ x, then x contains exactly one zero

of f .
As an example to see how the interval Newton method

works in practice, let us use it to prove the existence of
a single zero of a function f(x) = x2 − 2 in the interval
x = [0.5, 2]. In this case we have

x̂ = 1.25, f(x̂) = −0.4375,

f ′(x) = 2x = [1, 4], f ′(x)−1 = [0.25, 1],

N(x) = x̂− f ′(x)−1f(x̂)
= 1.25− [0.25, 1] · (−0.4375)
= 1.25− [−0.4375,−0.109375]
= [1.359375, 1.6875].

Since N(x) = [1.359375, 1.6875] ⊂ x = [0.5, 2], it
follows from Theorem 1 that x contains exactly one
zero of f . A plot of the function f is shown in Fig. 5.
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Derivatives of f at the endpoints of x define slopes of
straight lines which pass through the point (x̂, f(x̂)) and
intersect the horizontal axis at the endpoints of the interval
N(x).

Once the existence condition is satisfied, one may iterate
the interval Newton operator to obtain a sequence of nested
intervals containing the solution: x0 = x, xk+1 = N(xk),
for k ≥ 0. In the example considered the convergence is
very fast. The diameter dk = diam(xk) of the interval xk

enclosing zero after k iterations is d0 = 1.5, d1 ≈ 0.328,
d2 ≈ 0.0229, d3 ≈ 4.34 · 10−5, and d4 ≈ 7.23 · 10−11.
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f(x)

Fig. 5. Interval Newton operator to prove the existence of a single zero
of f(x) = x2 − 2 in the interval x = [0.5, 2]. x̂ = 1.25, N(x) =
[1.359375, 1.6875]

There are other interval operators, which may be used
to study the existence of zeros of nonlinear maps, for
example the Krawczyk operator and the Hansen–Sengupta
operator. The Krawczyk operator K(x) = x̂−Cf(x̂)+(I−
Cf ′(x))(x− x̂) is obtained by using the mean value form
for modified Newton operator N(x) = x− Cf(x), where
C is an invertible preconditioning matrix. C is usually
chosen as the inverse of the Jacobian matrix f ′(x̂). The
Hansen–Sengupta operator is based on the Gauss–Seidel
iterative method for solving linear systems of equations.

These two operators have similar properties as the
Newton operator (compare [26]). Their advantage is that
they do not involve inversion of interval matrices, and in
certain cases produce narrower enclosures of zeros.

E. Existence of periodic orbits

To study the existence of period–p orbits of f one can
apply an interval operator to the map g = id− fp, where
id denotes the identity map.

The second possibility is to apply an interval operator
to the map G : (Rm)p 7→ (Rm)p defined by [G(z)]k =
x(k+1) mod p − f(xk) for k = 0, 1, . . . , p − 1, where z =
(x0, x1, . . . , xp−1)T. Let us note that z is a zero of G if
and only if x0 is a fixed point of fp. The problem of the
existence of periodic orbits is converted to the problem of
the existence of zeros of a higher dimensional function.

Once an interval vector containing a periodic orbit is
known, a better approximation of the position of the orbit
can be found by iterating the interval operator. It is also
possible to find the Jacobian matrix and verify stability of
the orbit.

F. Finding all short periodic orbits

All period–p cycles of f enclosed in a given set Ω can
be found using a combination of the method described
above and the generalized bisection technique (compare
also [28]).

First, the region Ω is covered by a finite number of
interval vectors. Then for each interval vector x the inter-
val operator N(x) for the map g = id − fp is evaluated.
Finally, we use the Theorem 1 to prove that there is exactly
one fixed point of fn in x or that there are no fixed points
of fn in x. If none of the two conditions hold, the interval
vector x is split into smaller parts and the computations
are repeated.

Note that the graph representation of the dynamics over
the set Ω can help us in locating short periodic orbits
(see also [29]). To find all period-p orbits we first find all
period–p cycles in the graph (each cycle may correspond
to a periodic orbit of the dynamical system). Then, for
each cycle, we evaluate an interval operator on the interval
vector corresponding to the cycle under study. This method
is very useful for finding all short periodic orbits in case
of flows, when the time needed for the evaluation of the
Poincaré map is significant (compare [30]).

G. Symbolic dynamics and other tools

Symbolic dynamics approach is one of common meth-
ods for the characterization of systems trajectories [31]. In
this approach, the state space is divided into disjoint sets
N1, N2 . . . , Np and with each trajectory (xk) a sequence
of symbols (sk) is associated in such a way that xk ∈ Nsk

.
Let us now define what is understood by the existence

of symbolic dynamics of a certain type for the map
f : Rm 7→ Rm. Let A = (aij)p

i,j=1 be a matrix with
entries 0 or 1. The subshift of finite type with the transition
matrix A is the map σA = σ|ΣA, where σ : Σp 7→ Σp

is the shift operator (i.e. (σ(s))i = si+1) defined on the
set Σp = {(. . . , s−1, s0, s1, s2 . . .) : sk ∈ {1, 2, . . . , p}}
of bi-infinite sequences, and ΣA = {s ∈ Σp : asksk+1 =
1 for all k}, The map σA = σ|ΣA is the shift operator
restricted to the set ΣA.

We say that the map f is semiconjugate with a subshift
of finite type σA if there exists a homeomorphism h : Ω 7→
ΣA, with Ω ⊂ Rm such that h◦f = σA ◦h. The existence
of h means that there is a one-to-one relation between
trajectories in Ω and a sequence of symbols in ΣA. The
existence of symbolic dynamics means that the dynamics
of f is at least as complicated as the dynamics of σA.

From the existence of nontrivial symbolic dynamics one
can conclude that the map is chaotic in the topological
sense, i.e. that its topological entropy is positive. More
precisely if f is semiconjugate with a subshift with the
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transition matrix A then the topological entropy H(f) of f
is not less than the dominant eigenvalue of A, i.e. H(f) ≥
λ, where λ is an eigenvalue of A such that λ ≥ |λj | for
all eigenvalues λj of A.

There are a number of methods which can be used for
proving the existence of symbolic dynamics. A simple
connectivity based method was described in [32]. A topo-
logical method, which can be used to prove the existence
of symbolic dynamics is based on the notion of a covering
relation [33], [34]. In this method one has to prove that
sets supporting the symbolic dynamics cover topologically
each other. Each covering corresponds to a non-zero entry
in the transition matrix. Some examples are given in the
following sections.

Other rigorous computational methods for studying non-
linear systems include techniques to find enclosures of
stable and unstable invariant manifolds, proving the exis-
tence of chaos in the sense of Shilnikov [35], proving the
existence of homoclinic tangencies, proving the existence
of certain types of bifurcations [36]. In certain cases it is
also possible to prove the existence of a chaotic attractor,
which is generally a much more complicated problem than
proving the existence of nontrivial symbolic dynamics.
In [17] the existence of the Lorenz attractor was proved.
The method used requires hyperbolicity of the considered
dynamical system, and can be applied only to a narrow
class of nonlinear systems.

H. Application of the methods for continuous time systems

All the methods described in the previous sections can
be applied to the analysis of continuous systems using the
Poincaré map technique. This is a general method which
reduces problems concerning continuous dynamical sys-
tems to the corresponding problems for discrete systems.

Let Σ be the union of hyperplanes Σ1, Σ2,. . . , Σl.
The Poincaré map P : Σ 7→ Σ is defined as P (x) =
ϕ(τ(x), x), where ϕ(t, x) is the trajectory of the system
based at x, and τ(x) is the time needed for the trajectory
ϕ(t, x) to reach Σ. The Poincaré map and its derivatives
can be evaluated using rigorous integration methods de-
scribed in previous sections.

IV. THE HÉNON MAP

As the first example let us consider the Hénon map [37]:

h(x, y) = (1 + y − ax2, bx). (5)

For the classical parameter values a = 1.4, b = 0.3 the
Hénon attractor is observed (see Fig. 6). The quadrangle Ω,
with corners (−1.33, 0.42), (1.32, 0.133), (1.245,−0.14),
and (−1.06,−0.5), is a trapping region for h, i.e., h(Ω) ⊂
Ω. Ω contains the numerically observed attractor. The
Hénon map has two fixed points. One of them belongs
to Ω, while the second one lies outside Ω (compare Fig. 6).

Ω

-1.0 0.0 1.0
-0.5

0.0

0.5

Fig. 6. A trajectory of the Hénon map composed of 10000 points, the
trapping region Ω, and two unstable fixed points: (“+”, “×”)

A. Rigorous computations of trajectories

Let us first show how to compute very accurate en-
closures of true trajectories. Let us assume that the ini-
tial point is (x0, y0) = (0, 0) and standard parameter
values a = 1.4, b = 0.3 are used. Fig. 7(a) shows
the first coordinate of the trajectory found using double
precision nonrigorous computations (red star symbols) and
validated enclosure of the first coordinate found using
interval analysis (blue intervals). Computations involve
representing parameter values 0.3 and 1.4 as intervals
with nonzero diameter (the numbers 1.4 and 0.3 are not
machine representable) and evaluating the Hénon map
formula in interval arithmetic. Around iteration number
k = 57 the diameter of the interval becomes visible, and
for k ≥ 66 it is larger than the size of the attractor. This is
a classical example of the wrapping effect. Theoretically,
the result hk(x0, y0) is a point. However, due to rounding
errors and their propagation, the diameter of the enclosure
grows very fast and after a certain number of iterations the
results obtained using interval analysis become useless.

Some reduction of the wrapping effect can be achieved
by using methods presented in Sec. II-B. However, when
the set of initial conditions is small (a point in our case)
much more accurate results can be achieved by using
multiple precision interval arithmetic. Most of the modern
interval packages provide implementations or interface to
multiple precision computations, for example the GNU
Multiple Precision Arithmetic Library. Fig. 7(b) shows
how the diameter of the enclosure of the first coordinate
changes with the iteration number k for various precisions.
Results for representations of length 64, 128, and 256 bits
are plotted. For comparison, results for the standard inter-
val arithmetic based on the double precision computations
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Fig. 7. (a) the first coordinate of the trajectory of the Hénon map
with a = 1.4, b = 0.3 based at (0, 0) computed nonrigorously in
double precision (red stars) and rigorous enclosures of the first coordinate
found using interval analysis (blue intervals), (b) the diameter of the
validated enclosure of the first coordinate found using double and
multiple precision interval arithmetic

are shown. One can see that the diameter of the repre-
sentation grows almost linearly in the logarithmic scale.
Based on this observation one can easily decide which
representation should be used to achieve required accuracy
after a specified number of iterations. In the example
shown, the diameter of the enclosure after 200 iterations
is close to 10−30, when using representations composed
of 256 bits. This representation was used to compute the
distance between the double precision trajectory and the
true trajectory reported in the Introduction.

B. Short periodic orbits

In this section, we present results on the existence of
short periodic orbits.

First, let us show that for a = 1.399999486944,
b = 0.3 the period-33 sink presented in Fig. 2 exists. The
proof is carried out in the following steps. First, we take

-1.0 0.0 1.0
-0.5

0.0

0.5

Fig. 8. Periodic orbits with period p ≤ 30 within the trapping region Ω

a pseudo-periodic orbit (x0, y0), (x1, y1), . . . (xp−1, yp−1)
of length p = 33 found by iterating the Hénon map. This
pseudo-periodic orbit with the initial point (x0, y0) =
(0.653621903129, 0.0720266134686) serves as an initial
guess of the position of the true orbit. Then, by ap-
plying the standard (non-interval) Newton operator the
approximation is improved. Finally, we define the interval
vector (z0, z1, . . . , zp−1) around this position by using the
formula zi = (xi,yi) = ([xi − r, xi + r], [yi − r, yi + r])
with r = 10−9 and prove the existence of a single periodic
orbit within this interval vector by applying the interval
Newton operator. To show that the orbit is stable, we
evaluate the Jacobian matrix h′(zp−1) · · ·h′(z1) · h′(z0)
and verify that its eigenvalues are within the unit circle.

Now, let us consider the case (a, b) = (1.4, 0.3).
The problem of existence of short periodic orbits was
studied using the Krawczyk operator combined with the
generalized bisection procedure. For larger periods this
operator is faster than other operators (compare [38]). All
periodic orbits with period p ≤ 30 have been found (see
Fig. 8). There are exactly 109033 periodic orbits with
period p ≤ 30 and 3065317 points belonging to these
orbits. In particular, it was confirmed that there are no
period–3 and period–5 orbits within the trapping region
and that there are periodic orbits with all other periods
p ≤ 30. The results obtained are summarized in Table II,
where Qp is the number of periodic orbits with period p,
and Pp is the number of fixed points of hp.

Short periodic orbits give a good approximation of the
attractor. One can see small gaps in the plot when com-
pared to the numerically observed attractor (see Fig. 8).

Results on short periodic orbits can be used to obtain
estimates for the topological entropy for the Hénon map.
Hp = p−1 log(Pp) is an estimate of the topological
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TABLE II
THE NUMBER Qp OF PERIOD–p ORBITS FOR THE HÉNON MAP

p Qp Pp Hp p Qp Pp Hp

1 1 1 0.00000 16 102 1695 0.46471
2 1 3 0.54931 17 166 2823 0.46739
3 0 1 0.00000 18 233 4263 0.46432
4 1 7 0.48648 19 364 6917 0.46535
5 0 1 0.00000 20 535 10807 0.46440
6 2 15 0.45134 21 834 17543 0.46535
7 4 29 0.48104 22 1225 27107 0.46398
8 7 63 0.51789 23 1930 44391 0.46525
9 6 55 0.44526 24 2902 69951 0.46481

10 10 103 0.46347 25 4498 112451 0.46521
11 14 155 0.45849 26 6806 177375 0.46485
12 19 247 0.45912 27 10518 284041 0.46507
13 32 417 0.46408 28 16031 449519 0.46485
14 44 647 0.46231 29 24740 717461 0.46495
15 72 1081 0.46571 30 37936 1139275 0.46486

entropy based on the number of periodic orbits with
period p. One can see that the values Hp(h) are almost
constant for p ≥ 10. This allows us to state the hypothesis
that the topological entropy of the Hénon map is close to
H(h) ≈ 0.465.

C. The invariant part

Let us now compute the invariant part of the set B =
[−1.5, 1.5] × [−0.5, 0.5]. This set contains the trapping
region Ω and both unstable fixed point (compare Fig. 6).
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0.0

0.5

Fig. 9. The invariant part of B = [−1.5, 1.5] × [−0.5, 0.5] for the
Hénon map, unstable fixed points (+, ×)

We have found ε–boxes covering the invariant part of
B for ε = (1/2n, 1/(3 · 2n)), with n = 1, 2, . . . , 11.
Fig. 9 shows results obtained for different ε (darker color
corresponds to larger n — more accurate covering). The
covering of the invariant part contains the chaotic attractor,
the fixed point lying outside of Ω and one branch of the

unstable manifold of this fixed point connecting it to the
attractor.

The area of the set B is 3, while the area of the covering
containing the invariant part is smaller than 0.01. With
such a fine representation of the attractor the area of the
region containing complicated dynamics is significantly
reduced.

D. Symbolic dynamics and bounds for topological entropy

The problems of the existence of symbolic dynamics
and obtaining bounds for the topological entropy for the
Hénon map were studied in many research papers [39],
[40], [41], [34], [42].

In [34], using the method of covering relations the
existence of the full shift dynamics on two symbols for
h7 was proved. The full shift corresponds to a transition
matrix with no zero entries, i.e. aij = 1 for i, j = 1, 2.
The dominant eigenvalue of the transition matrix is 2, and
hence a lower bound of the topological entropy of h is
H(h) ≥ (log 2)/7 > 0.099.

Using the same method, one can prove the existence
of the golden mean shift for h2. The sets supporting the
symbolic dynamics and their images under h2 are shown in
Fig 10(a). One can see that the image of the first set covers
both sets (i.e. its image intersects vertical edges of both
sets, it has empty intersection with horizontal edges, and
images of vertical edges of the first set lie to the left and
to the right of both sets), while the second one covers the
first one. Based on this information the transition matrix A
has the following entries a11 = a12 = a21 = 1, a22 = 0.
Its dominant eigenvalue is 0.5(

√
5 + 1), which leads to

the following bound for the topological entropy: H(h) ≥
0.5 log(0.5(

√
5 + 1)) > 0.24.

In [42] the existence of symbolic dynamics on five
symbols for different iterates of h was proved. This
symbolic dynamics gives the bound H(h) > 0.338 for
the topological entropy.

It is possible to further increase the lower bound of
the topological entropy by constructing more complicated
symbolic dynamics. Fig 10(b) shows sets supporting sym-
bolic dynamics on 29 symbols involving 46 covering
relations. The resulting bound of the topological entropy
is H(h) > 0.43. Other methods can also be used to obtain
bounds for the topological entropy. In [43], rigorously
found enclosures of stable and unstable manifolds of
unstable periodic points were used to show that H(h) >
0.46469.

V. THE CHUA’S CIRCUIT

The dynamics of the Chua’s circuit [44] shown in
Fig. 11 is governed by a third order ordinary differential
equation:

C1ẋ1 = (x2 − x1)/R− g(x1),
C2ẋ2 = (x1 − x2)/R+ x3, (6)
Lẋ3 = −x2 −R0x3,
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Fig. 10. (a) symbolic dynamics for h2, quadrangles N1, N2 and their
images, (b) symbolic dynamics on 29 symbols

where g(·) is a three-segment piecewise linear characteris-
tic g(z) = Gbz+0.5(Ga−Gb)(|z+1|−|z−1|). There are a
number of interesting dynamical phenomena observed for
this system. For different values of the parameters one can
observe stable fixed points, stable periodic orbits, period-
doubling bifurcations, and different types of attractors
including the spiral attractor, the double scroll attractor
and the double hook attractor [44].

In this work, the system (6) is considered with the
following parameter values (after appropriate parameter
rescaling): C1 = 1, Ga = −3.4429, Gb = −2.1849,
L = 0.06913, R = 0.33065, R0 = 0.00036. For
C2 = 9.3515 the double-scroll attractor is observed (see
Fig. 12(a)) and for C2 = 7.65 the spiral attractor exists

C1C2 RNL

RR0

x1x2

x3

g(x1)

Fig. 11. The Chua’s circuit

(see Fig. 12(b)).
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Fig. 12. Trajectories of the Chua’s circuit with the PWL nonlinearity;
(a) C2 = 9.3515, the double-scroll attractor; (b) C2 = 7.65, the spiral
attractor

When the nonlinearity is of a cubic type g(z) = g1z +
g2z

3, the double scroll attractor is observed for C1 = 0.7,
C2 = 7.8, L = 1.891, R = 2, R0 = 0.01499, g1 = −0.59,
g2 = 0.02 (compare Fig. 13).

A. Comparison of methods for rigorous integration

Let us first consider the Chua’s circuit with the cubic
nonlinearity. This is an example of a smooth dynamical
system, and hence general integration methods can be
used to compute trajectories. Let x = [−2.301,−2.3] ×
[−0.141,−0.14]× [1.23, 1.231] be the set of initial condi-
tions. Fig. 14 shows results of rigorous numerical integra-
tion using four methods described in Section III-A. One
can see that the standard Taylor method is able to integrate
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Fig. 13. The double-scroll attractor for the Chua’s circuit with the cubic
nonlinearity

the system for a very short time only (t < 4). Using the
mean value form (Lohner IV) increases the integration
time to t ≈ 23. The QR version of the Lohner method
which uses parallelograms to represent the solution set
allows us to integrate up to t ≈ 85. The internal enclosure
(IE) version of the Lohner method which uses doubleton
representation outperforms other methods and carries out
integration for t < 175. From this example one can see
that the Lohner method significantly reduces the wrapping
effect. Without using this method the enclosures obtained
are overly pessimistic and very often useless.
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Fig. 14. Rigorous computation of a trajectory for the Chua’s circuit
with the cubic nonlinearity

Let us now consider the PWL nonlinearity. The state
space R3 can be divided into three regions U1 = {x ∈
R3 : x1 <−1}, U2 = {x : |x1|< 1} and U3 = {x : x1 >
1} separated by planes Σ1 = {x : x1 = −1} and Σ2 =
{x : x1 = 1}. In the region Ri, the system is linear, the
state equation can be written as: ẋ = Ai(x− pi), and the
solution has the form ϕ(t, x) = exp(Ait)(x− pi) + pi.

In Section III-A, two methods to compute trajectories of
PWL systems were described. The first method uses planes
Σi as transversal sections. Each time a trajectory hits Σi,
the intersection is found and is used as a set of initial
conditions for further computations. The second method
treats the PWL system as a perturbed linear system and
obtains enclosures for solutions of the nonlinear system
using the theory of differential inclusions. As an example
let us compute a trajectory for the initial point x =
(1,−0.2212,−6.8978). The diameter d of the enclosure

obtained using the two method versus the integration time
is shown in Fig 15. One can see that for the first method
there are jumps in the size of the enclosure. These jumps
correspond to intersections with the planes Σi. The second
method handles intersections via integration of perturbed
dynamical systems and as one can see this approach
significantly reduces the overestimation.
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0

t

d
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Fig. 15. Comparison of integration methods for PWL systems, the
diameter d of the enclosure as a function of the integration time

B. Analysis of the spiral attractor

In this section, the dynamics of the spiral attractor is
studied. A computer generated trajectory of the Poincaré
map P defined by the plane Σ2 is shown in Fig. 16(a).

In the first step of the rigorous analysis, a trapping
region containing the numerically observed attractor is
found. Two polygons enclosing a long trajectory are
constructed and modified by hand to satisfy the condition
for the trapping region. The fact that the selected set is
a trapping region is proved rigorously using techniques
presented in the previous sections.

In the second step, the graph representation of the
dynamics of the system in the trapping region is found.
The trapping region is covered by 6067 ε–boxes, with
ε = (0.001, 0.0025). Using the algorithm presented in
Section III-B an accurate enclosure of the invariant part
is found. After four subdivisions, we obtain the covering
of the invariant part composed of 24482 ε–boxes of
size (0.001, 0.0025)/24. There are 139553 non-forbidden
transitions between boxes.

Once the graph is generated, we can find bounds for
the return time for all points belonging to the attractor.
Using the information on admissible connections between
boxes and bounds for the return time for individual boxes
one can obtain enclosures for the return time Tn of
Pn, for example T1 ⊂ [1.1986, 4.3658] and T1000 ⊂
[3270.4, 3314.1]. It follows that the average return time
for every trajectory belonging to the attractor belongs to
the interval [3.2704, 3.3141] and that the period of an orbit
having p intersections with Σ2 belongs to the interval
[3.2704 · p, 3.3141 · p].

The method described in Section III-F is applied to find
all low-period cycles of P . All periodic orbits with no
more than p = 16 intersection with Σ2 are found. The
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Fig. 17. Eight shortest periodic orbits embedded in the Chua’s circuit spiral attractor, p is the number of intersections with Σ2
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Fig. 16. Chua’s circuit, the spiral attractor, (a) computer generated
trajectory of the Poincaré map P , (b) a trapping region composed of
two polygons

orbits are plotted in Fig. 17. There is one period-2 orbit,
one period–4 orbit, one period–8 orbit, two period–12 or-
bits, and three period-16 orbits. One should note that there
are no periodic orbits with periods 6, 10 and 14. It was
shown that all of the orbits found are unstable. Since the
average return time belongs to the interval [3.2704, 3.3141]
it follows that all periodic orbits with the flow time shorter
than 58 have been found (3.2704 · 18 > 58).

C. Analysis of the double-scroll attractor

There are a number of results concerning chaotic be-
haviour for the Chua’s circuit double-scroll attractor. The
geometric structure of the attractor was described in [45].
The existence of chaos in the sense of Shilnikov was
shown in [35]. It was proved that for some parameter
value belonging to a certain small interval there exist a
homoclinic orbit. From the existence of this homoclinic
orbit, it follows the existence of a symbolic dynamics on
some sets located close to the homoclinic orbit.

In [46], it was shown that the double scroll attractor is
chaotic in the topological sense. Let P be the Poincaré
map defined by the plane Σ2 = {x : x1 = 1}. A tra-
jectory of P is shown in Fig. 18. Intersections with Σ2

with different directions are plotted using different colors.
Fig. 18 also shows two quadrangles supporting nontrivial
symbolic dynamics. It can be shown that the image of S1

covers both S1 and S2, and that the image of S2 covers
S1. It follows that the golden mean subshift is embedded
in P 2. Hence, the topological entropy of P is positive and
the system is chaotic in the topological sense.

The trapping region for the double scroll attractor was
constructed in [18]. In order to carry out the proof, a
combination of methods for integration of trajectories
tangent to the C0-hyperplanes and methods for integration
of trajectories passing arbitrarily close to an unstable
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Fig. 18. Chua’s circuit, the double-scroll attractor, computer generated
trajectory of the Poincaré map P and quadrangles S1, S2 supporting
nontrivial symbolic dynamics

equilibrium was used. The existence of a trapping region
makes it possible to study rigorously the global dynamics
of the double scroll attractor.

VI. CONCLUSIONS

In this work, several interval analysis based methods
for studying the dynamics of nonlinear systems have been
described. These methods make it possible to prove with
the aid of a computer mathematically precise statements
concerning discrete and continuous dynamical systems.
Such statements may involve the existence of symbolic
dynamics, the existence and stability of periodic orbits,
the existence of trapping regions for the system, graph
representation of the dynamics, and so on. Examples of
validated computations concerning the Hénon map and the
Chua’s circuit are presented.

This work shows that many interval analysis tools
are available to study dynamical systems and formulate
statements and prove theorems about such systems in
a precise mathematical sense. Several interval arithmetic
based software libraries are easily available. They are
capable of computing accurate enclosures of trajectories,
proving existence of periodic orbits, and performing other
validated computations, with very little input which has
to be provided by the user. Usually, it is sufficient to
provide the equation (a map or a vector field) defining
the dynamical system.

In spite of these developments, there are still many open
problems in the area of rigorous numerical analysis of
nonlinear systems. One of the most challenging problems
is long term integration of dynamical systems. In this
context, a promising approach in offered by Taylor mod-
els. Unfortunately, there are very few software packages
implementing this idea and access to them is limited.

Another important problem is the development of meth-
ods making it possible to prove the existence of chaotic
attractors. Such a proof was carried out successfully for
the Lorenz system, but for other systems, like the Chua’s

circuit, the problem of existence of a chaotic attractor is
still open.

Another great challenge is rigorous study of higher
dimensional systems and dynamical systems of infinite
dimensions, for example partial differential equations and
dynamical systems with delays. A necessary step to anal-
yse such systems is to reduce the dimensionality to a
finite number and at the same time ensure that the results
obtained are valid for the original infinite dimensional
system.
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