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Abstrat

In this paper we introdue the method for investigation of oupled haoti

systems using topologial methods. We show that if the oupling is small then

there exists independent symboli dynamis for every oupled subsystem and

in onsequene the systems are not synhronized. As an example we onsider

oupled H�enon maps. Using omputer interval arithmeti we �nd parameter

mismath and perturbation range for whih the symboli dynamis in the H�enon

system is sustained. For oupled H�enon maps we ompute the value of oupling

strength for whih the symboli dynamis in every subsystem survives.

1 Introdution

It is well known that when haoti systems are oupled, they may demonstrate synhro-

nized behavior. Reently there has been a onsiderable interest in using the onept of

synhronization of haos for solving tehnial problems. For the appliations it is very

important to �nd tehniques for investigation of the phenomenon of synhronization

of haoti systems.

There are several methods for studying the synhronization problem. It was shown

in various papers that a very important role is played by the transversal Lyapunov

exponents of the synhronized trajetories [Peora & Carroll, 1990, Ogorza lek, 1993,

Heagy et al., 1994℄. It was shown that the riterion based on onditional Lyapunov

exponents alulated along a typial trajetory of the system is not suÆient and one

has to take into aount transversal Lyapunov exponents omputed along all periodi
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orbits [Heagy et al., 1995, Peora et al., 1995℄. Other methods are based on loal

transversal Lyapunov exponents [Peora et al., 1995, Galias, 1998a℄.

In this paper we desribe the method of investigation of oupled systems using

topologial methods. We are interested in the ase when synhronization of haoti

systems is not observed due to the existene of independent symboli dynamis in

oupled subsystems. We show that if the oupling is small then one may prove that

there exists independent symboli dynamis for every oupled subsystem. This means

that for two di�erent sequenes of symbols one may found trajetory of the oupled

system whih realizes these two sequenes in the oupled subsystems. As onsequene

we obtain the oexistene of di�erent periodi solutions in di�erent subsystems. In

this ontext the existene of independent symboli dynamis for di�erent subsystems

implies the lak of synhronization.

In Se. 2 we introdue the method for studying of synhronization properties by

means of independent symboli dynamis. In Se. 3 we reall results on the existene of

symboli dynamis for the H�enon map. In Se. 4 we study the robustness of symboli

dynamis on parameters and perturbation added to the system. In Se. 5 we analyze

oupled H�enon maps using the results from Se. 4.

2 Symboli dynamis and synhronization

Chaoti systems are often studied in terms of symboli dynamis and horseshoes whih

are one of the most important and desriptive tools available. We say that for a

given system there exist a symboli dynamis on n symbols if there are n disjoint sets

N

0

: : : N

n�1

and a �nite type subshift on n symbols f0; 1; : : : ; n � 1g suh that for

every sequene (s

k

)

1

k=0

allowable by this subshift there exist a trajetory (x

k

)

1

k=0

of the

system suh that x

k

2 N

s

k

for k = 0; 1; : : : . This orresponds to the existene of a

set (invariant part of N

0

[ � � � [N

n�1

) suh that the dynamis of the system restrited

to this set is semionjugate with the given subshift. We are interested in the ase

when the set of allowable sequenes has in�nite number of elements. In this ase the

embedded set is of a Cantor type and the system displays omplex dynamis.

One an rigorously prove the existene of symboli dynamis in nonlinear maps

using topologial methods. One has to �nd sets N

i

and hek that the images of these

sets lie properly with respet to the initial sets. Hene, in order to show the existene of

symboli dynamis one has to prove that the images of ertain sets in the phase spae

are enlosed in ertain regions in this spae. This an be done by means of interval

arithmeti implemented on a omputer.

In our earlier work we have used omputer interval arithmeti to perform a rigor-

2



ous omputer assisted proof of the existene of a (partial) horseshoe for disrete time

systems (for example the H�enon map [Zglizy�nski, 1997, Galias, 1998b℄) and also for

ontinuous time systems (Chua's iruit [Galias, 1997℄, Lorenz equations [Galias &

Zglizy�nski, 1998℄, R�ossler equations [Zglizy�nski, 1997℄). For ows we �rst redue the

problem to disrete{time by means of a Poinar�e map tehnique.

In urrent work we perform a sensitivity analysis. We onsider a perturbed haoti

system and show that symboli dynamis is not destroyed by a small enough pertur-

bation. For the appliations we want to prove the existene of symboli dynamis for

as large perturbation as possible.

For �nding the allowable perturbation we adapt the omputer assisted proof of

the existene of a (partial) horseshoe. The perturbation is represented by an interval

vetor whih modi�es the dynamis of the map. We propose to start with a large

interval vetor and then using the method of generalized bisetion to �nd regions in the

perturbation spae for whih the symboli dynamis exists. For a given perturbation

we try to prove the existene of symboli dynamis. If the proof fails we divide the

interval vetor representing the perturbation into several smaller interval vetors and

try to omplete the proof again.

One should notie that this method allows to �nd suÆient onditions for the

existene of symboli dynamis. It is possible that the omputer assisted proof fails to

show the existene of symboli dynamis of a given type but one ontinues to exist.

Another approah to the problem of the existene of symboli dynamis and its

robustness was reported in [Mishaikow et al., 1999℄, where the authors show sym-

boli dynamis in experimental time-series from a magnetoelasti ribbon under the

assumption that the experimental error and the noise are bounded.

The method for �nding the perturbation level not destroying the symboli dynamis

desribed above is a very general tehnique and may �nd appliations in many di�erent

areas. Here we use it for investigation of behavior of oupled haoti systems. If haoti

systems are oupled and the oupling strength is small, then we expet that the sym-

boli dynamis is not destroyed by the oupling. The method for studying of oupled

systems onsists of two steps. First for every subsystem we �nd the perturbation range

for whih we an verify that the symboli dynamis is not destroyed. Then for eah

subsystem we hek that the perturbation introdued by the oupling is smaller than

the maximum allowable perturbation. If this is true then the independent symboli

dynamis in every subsystem exists. In onsequene, the subsystems are not uniformly

synhronized in the sense that there exist trajetories of the whole system realizing

arbitrary allowable sequenes in every subsystem. We would like to stress that the

embedded symboli dynamis is usually assoiated with unstable Cantor{like haoti

saddles of zero measure. Hene we an make no onlusions onerning synhronization
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for the typial initial onditions.

In the subsequent setions we use this method for analysis of oupled haoti sys-

tems. For the sake of simpliity we will onsider a disrete{time system, namely the

H�enon map. This method an be also used for ontinuous{time systems, but in this

last ase the method an be omputationally expensive due to the neessity of evalu-

ation of the Poinar�e map. Appliation of this tehnique to ontinuous{time systems

will be reported elsewhere.

3 Symboli dynamis for h

2

and h

7

As an example we onsider the H�enon map [H�enon, 1976℄ de�ned by the following

equation:

h(x; y) = (1 + y � ax

2

; bx); (1)

where a = 1:4 and b = 0:3 are the \lassial" parameter values for whih the famous

H�enon attrator is observed.

In this setion we reall the results on the existene of symboli dynamis for h

2

and h

7

.

3.1 Symboli dynamis for h

2

In [Galias, 1998b℄ it was shown that there exists symboli dynamis embedded in h

2

orresponding to the golden subshift on two symbols (partial or deformed horseshoe).

The sets N

i

and E

i

are shown in Fig. 1(a). For the exat de�nition see [Galias, 1998b℄.

It was shown that the images of vertial edges of N

0

under h

2

are enlosed in E

0

and

E

2

on the opposite sides of N

0

[N

1

and that the images of vertial edges of N

1

under

h

2

are enlosed in E

0

and E

1

on the opposite sides of N

0

. It was also shown that

images of horizontal edges of N

0

and N

1

under h

2

are enlosed in the interior of the

topologial stripe E

0

[ N

0

[ E

1

[ N

1

[ E

2

. We say that h

2

(N

0

) overs N

0

and N

1

horizontally and h

2

(N

1

) overs N

0

horizontally. It follows that for every sequene of

symbols (a

0

; a

1

; : : : ; a

n�1

), from the set f0; 1g whih does not ontain the subsequene

(1; 1) there exists a point z = (x; y) suh that h

2i

(z) 2 N

a

i

for i = 0; : : : ; n � 1 and

h

2n

(z) = z. One should notie that we do not hek hyperboliity on the sets N

i

.

Therefore we annot state that eah in�nite symboli sequene identi�es exatly one

trajetory. There may exist many orbits in the phase spae whih projet onto a given

symboli sequene. For details see [Galias, 1998b℄.

4



In this way it was shown that the subshift on two symbols with the transition

matrix

�

1 1

1 0

�

is embedded in h

2

.

3.2 Symboli dynamis for h

7

In [Zglizy�nski, 1997℄ it was shown that there exist symboli dynamis embedded in h

7

orresponding two the full shift on two symbols (full horseshoe).

The sets N

i

and E

i

are shown in Fig 1(b). It was shown that for i = 0; 1 the images

of vertial edges of N

i

under h

7

lie on the opposite sides of N

0

[N

1

(are enlosed in E

0

and E

2

). It was also shown that the images of horizontal edges under h

7

are enlosed in

the interior of topologial stripe de�ned by the sets N

i

and E

i

. Eah of the sets h

7

(N

0

)

and h

7

(N

1

) overs N

0

and N

1

horizontally. For the details see [Zglizy�nski, 1997℄ or

[Galias, 1998b℄. It follows that for every sequene of symbols a = (a

0

; a

1

; : : : ; a

n�1

)

from the set f0; 1g there exists at least one point z = (x; y) suh that h

7i

(z) 2 N

a

i

for

i = 0; : : : ; n� 1 and h

7n

(z) = z. In other words the symboli dynamis orresponding

to the full shift on two symbols with the transition matrix

�

1 1

1 1

�

is embedded in h

7

.

4 Robustness of symboli dynamis

In this setion we study robustness of symboli dynamis for the H�enon map.

The �rst question we address is whether the symboli dynamis survives if the

parameters of the map are modi�ed.

Using the sets N

i

, E

i

plotted in Fig.1 we have heked whether for di�erent values

of (a; b) the assumptions of the theorem on the existene of symboli dynamis hold. In

order to perform this task we have used the following generalized bisetion proedure.

We start with intervals a = [1:2; 1:6℄ and b = [0:1; 0:5℄ and try to prove the existene

of symboli dynamis for these intervals. If we do not sueed we divide the retangle

a�b into 4 retangles and repeat the proedure. We do not divide the retangle if the

lengths of its edges are smaller than " = 0:001.
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It follows from the de�nition of the H�enon map that the images of N

i

hange

ontinuously with the parameter hanges and hene we an use the bisetion method.

In Fig. 2(a) we show the retangles (a; b) for whih we have proved the existene

of symboli dynamis for h

2

. Similarly in Fig. 2(b) we show regions in the parameter

spae for whih the symboli dynamis for h

7

exists. It is interesting to note that the

symboli dynamis is present in the dynamis of the map even for parameter values

far from the standard ones. For example the symboli dynamis for h

2

exists also for

a = 1:6, b = 0:35 and the symboli dynamis for h

7

exists for a = 1:55, b = 0:1.

The above results may be used for studying synhronization of systems when the

synhronization signal is introdued via parameter modi�ation.

The seond problem we investigate is the existene of symboli dynamis in the ase

when the dynamis of the map is perturbed by some additive signal. We assume that

we only know the upper limit of the absolute value of this perturbation. We onsider

a perturbed system

h

p

(x; y) = (1 + y � ax

2

+ e

1

; bx + e

2

); (2)

Using interval arithmeti we have found pairs (e

1

; e

2

) for whih the symboli dynamis

is not destroyed by the perturbation. In order to prove the existene of symboli

dynamis for partiular values of e

1

and e

2

we hek the assumptions of the existene

theorem for the map (2) (we hek that the images of edges of N

i

lie properly with

respet to the sets N

i

, E

i

).

As an example in Fig. 3 we show these images for the intervals e

1

= e

2

= [�0:012;

0:012℄. Vertial edges of N

i

were overed by 2, 2, 2, and 7 retangles respetively and

horizontal edges were overed by 27, 46, 6, 7 retangles respetively. The images of

these retangles under the map h

2

were omputed are we have heked that they lie

in a proper way with respet to the sets N

i

and E

i

. The results for vertial edges

are shown in Fig. 3(a) and for horizontal edges in Fig. 3(b). Hene we proved that

there exist symboli dynamis for the perturbed H�enon map if the perturbation has

magnitude je

i

j < 0:012.

Similar results for the e

1

; e

2

= [�0:0009; 0:0009℄ and for the symboli dynamis of

h

7

are plotted in Fig. 4.

In order to �nd the regions in the plane (e

1

; e

2

) for whih there exist symboli

dynamis we have used the generalized bisetion proedure starting with the intervals

e

1

; e

2

= [�0:04; 0:04℄. In Fig. 5(a) and 5(b) we plot retangles in the plane (e

1

; e

2

) for

whih we proved the existene of symboli dynamis for h

2

and h

7

respetively.

We want to say one again that we have found the regions in the plane (e

1

; e

2

) for

whih the symboli dynamis survives. It does not mean that for other (e

1

; e

2

) there is
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no symboli dynamis. The method gives a suÆient onditions and annot be used to

�nd regions where there is no symboli dynamis orresponding to the given subshift.

Possibly if we ould hange the positions of sets N

i

it would be possible to prove the

existene of symboli dynamis for larger regions.

One an learly see that for h

7

the proof of the existene of symboli dynamis is

less robust. It is not very surprising. As the H�enon map is haoti it has sensitive

dependene on initial onditions and hene it is easier to hek onditions involving

the seond iterate than the seventh iterate. On the other hand the di�erene in per-

turbation range is muh smaller than we ould have expeted. This is aused by the

de�nitions of sets N

i

. In the ase of h

7

the sets N

0

, N

1

are relatively small in the

unstable diretion and large in the stable diretion and hene points in N

i

after one

iteration are mapped not very far away from eah other.

5 Coupled H�enon maps

In this setion we analyze the behavior of oupled H�enon maps using the results from

the previous setion. In order to prove that there exist independent symboli dynamis

in a oupled system we have to estimate the perturbation introdued by adding the

oupling terms and hek that this perturbation is ontained in the region for whih

the symboli dynami exists (these regions are plotted in Fig. 5).

As a �rst example let us onsider two H�enon maps oupled in a master{slave on-

�guration:

h

m

(x; y) = h(x; y) = (1 + y � ax

2

; bx); (3)

h

s

(x

0

; y

0

) = h(x

0

+ d(x� x

0

); y

0

): (4)

The �rst system is independent and is alled a driving system or a master. The

seond one is alled a response system or a slave. From the results desribed in the

previous setion we know that if the response system is perturbed weakly then there

exist independent symboli dynamis in this system. In order to hek whether the

symboli dynamis survives we have to hek if the perturbation is small enough. The

error terms introdued by the oupling an be omputed as:

e

1

= �2adx

0

(x� x

0

) � ad

2

(x� x

0

)

2

;

e

2

= bd(x� x

0

):

As we investigate the existene of symboli dynamis, we know that (x; y); (x

0

; y

0

) 2

N

0

[ N

1

. From the de�nitions of sets N

1

and N

2

it follows that x; x

0

2 [�0:82; 0:42℄
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and y; y

0

2 [0:1; 0:39℄. By means of interval arithmeti one an easily hek that if

jdj < 0:0138 then je

1

j < 0:0397 and je

2

j < 0:00514. This retangle is ontained in the

region where the symboli dynamis exists [ompare Fig. 5(a)℄. Hene we are sure that

if jdj < 0:0138 there exist independent symboli dynamis in the response system. In

other words there are trajetories of the whole system realizing symboli sequenes in

the response system independent of the itinerary realized by the orbit in the driving

system.

Similarly for the symboli dynamis on h

7

we have x; x

0

2 [0:46; 0:755℄, y; y

0

2

[0; 0:28℄. For jdj < 0:0218 the perturbation is bounded by je

1

j < 0:01366 and je

2

j <

0:00193. This retangle is ontained in the region where the symboli dynamis exists

[ompare Fig. 5(b)℄.

It is interesting to note that although we have proved the existene of the symboli

dynamis for h

7

for smaller perturbation we an prove the existene of independent

symboli dynamis for stronger oupling. This is due to the fat that for h

7

, the sets

N

0

and N

1

have smaller range (in the x diretion) and in the estimation of errors e

i

we multiply the oupling by smaller intervals.

From the existene of independent symboli dynamis it follows that the systems

are not synhronized. The trajetory in the driving system following an arbitrary

symboli sequene does not inuene the symboli dynamis in the response system

and the trajetory in this seond system an realize any other symboli sequene.

One should also notie that the oupling values for whih one observes synhroniza-

tion (d > 0:4) [Galias, 1998a℄ are of an order of magnitude larger than the values for

whih we were able to prove the existene of independent symboli dynamis.

As a seond example let us onsider a ring of bidiretionally oupled H�enon maps.

Every ell is onneted with its two nearest neighbors. The dynamis of the kth ell is

given by

h

d

(x

k

; y

k

) = h(x

k

+ d(x

(k+1)modn

� x

k

) + d(x

(k�1)modn

� x

k

); y

k

); (5)

for k = 0; : : : ; n � 1. The error terms in the kth ell introdued by the oupling an

be omputed as

e

k1

= �2adx

k

z

k

� ad

2

z

2

k

;

e

k2

= bdz

k

:

where z

k

= x

(k+1)modn

+ x

(k�1)modn

� 2x

k

. Using interval arithmeti one an show that

for jdj < 0:0068 the error terms are bounded by je

k1

j < 0:0392 and je

k2

j < 0:00506 and

there exists the independent symboli dynamis for h

2

in every ell [ompare Fig. 5(b)℄.

Similarly one an show that for jdj < 0:0105 the independent symboli dynamis for
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h

7

exists. These results are independent of the number of ells in a ring, i.e. for any

number of oupled H�enon maps if the oupling strength is smaller than the values given

above then there exist independent symboli dynamis in every subsystem.

In the above two examples we have onsidered oupled H�enon maps. This is however

a general tehnique. We an also use the above method to analyze behavior of oupled

systems if they are di�erent. In fat the driving signal an ome from any system as

long as we know the range of this signal.

6 Conlusions

In this paper we have onsidered the problem of robustness of symboli dynamis for

haoti systems. We have shown that the symboli dynamis is not destroyed if the

perturbation is small. For the H�enon map we have found the parameter values and the

values of perturbation for whih the symboli dynamis survives. Using these results we

have found the values of oupling strength for whih there exist independent symboli

dynamis for every oupled subsystem for the ase of unidiretionally oupled H�enon

maps and a ring of bidiretionally oupled H�enon maps.
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Figure 1: (a) de�nition of the sets N

0

and N

1

for the proof of symboli dynamis for

h

2

, (b) de�nition of the sets N

0

and N

1

for the proof of symboli dynamis for h

7

.
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Figure 2: Regions in the (a; b) plane for whih symboli dynamis exists, (a) for h
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and its image under
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with retangles and their images

under h

7

, (b) overing of horizontal edges of N

0

and N

1

and their images under h

7

.
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Figure 5: (a) regions in the (e

1

; e

2

) spae for whih the symboli dynamis for h

2

exists, �lled retangle ontains error introdued due to the oupling for jdj < 0:0138.

(b) regions in the (e

1

; e

2

) spae for whih the symboli dynamis for h

7

exists, �lled

retangle ontains error introdued due to the oupling for jdj < 0:0218.
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