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Abstra
t

In this paper we introdu
e the method for investigation of 
oupled 
haoti


systems using topologi
al methods. We show that if the 
oupling is small then

there exists independent symboli
 dynami
s for every 
oupled subsystem and

in 
onsequen
e the systems are not syn
hronized. As an example we 
onsider


oupled H�enon maps. Using 
omputer interval arithmeti
 we �nd parameter

mismat
h and perturbation range for whi
h the symboli
 dynami
s in the H�enon

system is sustained. For 
oupled H�enon maps we 
ompute the value of 
oupling

strength for whi
h the symboli
 dynami
s in every subsystem survives.

1 Introdu
tion

It is well known that when 
haoti
 systems are 
oupled, they may demonstrate syn
hro-

nized behavior. Re
ently there has been a 
onsiderable interest in using the 
on
ept of

syn
hronization of 
haos for solving te
hni
al problems. For the appli
ations it is very

important to �nd te
hniques for investigation of the phenomenon of syn
hronization

of 
haoti
 systems.

There are several methods for studying the syn
hronization problem. It was shown

in various papers that a very important role is played by the transversal Lyapunov

exponents of the syn
hronized traje
tories [Pe
ora & Carroll, 1990, Ogorza lek, 1993,

Heagy et al., 1994℄. It was shown that the 
riterion based on 
onditional Lyapunov

exponents 
al
ulated along a typi
al traje
tory of the system is not suÆ
ient and one

has to take into a

ount transversal Lyapunov exponents 
omputed along all periodi
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orbits [Heagy et al., 1995, Pe
ora et al., 1995℄. Other methods are based on lo
al

transversal Lyapunov exponents [Pe
ora et al., 1995, Galias, 1998a℄.

In this paper we des
ribe the method of investigation of 
oupled systems using

topologi
al methods. We are interested in the 
ase when syn
hronization of 
haoti


systems is not observed due to the existen
e of independent symboli
 dynami
s in


oupled subsystems. We show that if the 
oupling is small then one may prove that

there exists independent symboli
 dynami
s for every 
oupled subsystem. This means

that for two di�erent sequen
es of symbols one may found traje
tory of the 
oupled

system whi
h realizes these two sequen
es in the 
oupled subsystems. As 
onsequen
e

we obtain the 
oexisten
e of di�erent periodi
 solutions in di�erent subsystems. In

this 
ontext the existen
e of independent symboli
 dynami
s for di�erent subsystems

implies the la
k of syn
hronization.

In Se
. 2 we introdu
e the method for studying of syn
hronization properties by

means of independent symboli
 dynami
s. In Se
. 3 we re
all results on the existen
e of

symboli
 dynami
s for the H�enon map. In Se
. 4 we study the robustness of symboli


dynami
s on parameters and perturbation added to the system. In Se
. 5 we analyze


oupled H�enon maps using the results from Se
. 4.

2 Symboli
 dynami
s and syn
hronization

Chaoti
 systems are often studied in terms of symboli
 dynami
s and horseshoes whi
h

are one of the most important and des
riptive tools available. We say that for a

given system there exist a symboli
 dynami
s on n symbols if there are n disjoint sets

N

0

: : : N

n�1

and a �nite type subshift on n symbols f0; 1; : : : ; n � 1g su
h that for

every sequen
e (s

k

)

1

k=0

allowable by this subshift there exist a traje
tory (x

k

)

1

k=0

of the

system su
h that x

k

2 N

s

k

for k = 0; 1; : : : . This 
orresponds to the existen
e of a

set (invariant part of N

0

[ � � � [N

n�1

) su
h that the dynami
s of the system restri
ted

to this set is semi
onjugate with the given subshift. We are interested in the 
ase

when the set of allowable sequen
es has in�nite number of elements. In this 
ase the

embedded set is of a Cantor type and the system displays 
omplex dynami
s.

One 
an rigorously prove the existen
e of symboli
 dynami
s in nonlinear maps

using topologi
al methods. One has to �nd sets N

i

and 
he
k that the images of these

sets lie properly with respe
t to the initial sets. Hen
e, in order to show the existen
e of

symboli
 dynami
s one has to prove that the images of 
ertain sets in the phase spa
e

are en
losed in 
ertain regions in this spa
e. This 
an be done by means of interval

arithmeti
 implemented on a 
omputer.

In our earlier work we have used 
omputer interval arithmeti
 to perform a rigor-
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ous 
omputer assisted proof of the existen
e of a (partial) horseshoe for dis
rete time

systems (for example the H�enon map [Zgli
zy�nski, 1997, Galias, 1998b℄) and also for


ontinuous time systems (Chua's 
ir
uit [Galias, 1997℄, Lorenz equations [Galias &

Zgli
zy�nski, 1998℄, R�ossler equations [Zgli
zy�nski, 1997℄). For 
ows we �rst redu
e the

problem to dis
rete{time by means of a Poin
ar�e map te
hnique.

In 
urrent work we perform a sensitivity analysis. We 
onsider a perturbed 
haoti


system and show that symboli
 dynami
s is not destroyed by a small enough pertur-

bation. For the appli
ations we want to prove the existen
e of symboli
 dynami
s for

as large perturbation as possible.

For �nding the allowable perturbation we adapt the 
omputer assisted proof of

the existen
e of a (partial) horseshoe. The perturbation is represented by an interval

ve
tor whi
h modi�es the dynami
s of the map. We propose to start with a large

interval ve
tor and then using the method of generalized bise
tion to �nd regions in the

perturbation spa
e for whi
h the symboli
 dynami
s exists. For a given perturbation

we try to prove the existen
e of symboli
 dynami
s. If the proof fails we divide the

interval ve
tor representing the perturbation into several smaller interval ve
tors and

try to 
omplete the proof again.

One should noti
e that this method allows to �nd suÆ
ient 
onditions for the

existen
e of symboli
 dynami
s. It is possible that the 
omputer assisted proof fails to

show the existen
e of symboli
 dynami
s of a given type but one 
ontinues to exist.

Another approa
h to the problem of the existen
e of symboli
 dynami
s and its

robustness was reported in [Mis
haikow et al., 1999℄, where the authors show sym-

boli
 dynami
s in experimental time-series from a magnetoelasti
 ribbon under the

assumption that the experimental error and the noise are bounded.

The method for �nding the perturbation level not destroying the symboli
 dynami
s

des
ribed above is a very general te
hnique and may �nd appli
ations in many di�erent

areas. Here we use it for investigation of behavior of 
oupled 
haoti
 systems. If 
haoti


systems are 
oupled and the 
oupling strength is small, then we expe
t that the sym-

boli
 dynami
s is not destroyed by the 
oupling. The method for studying of 
oupled

systems 
onsists of two steps. First for every subsystem we �nd the perturbation range

for whi
h we 
an verify that the symboli
 dynami
s is not destroyed. Then for ea
h

subsystem we 
he
k that the perturbation introdu
ed by the 
oupling is smaller than

the maximum allowable perturbation. If this is true then the independent symboli


dynami
s in every subsystem exists. In 
onsequen
e, the subsystems are not uniformly

syn
hronized in the sense that there exist traje
tories of the whole system realizing

arbitrary allowable sequen
es in every subsystem. We would like to stress that the

embedded symboli
 dynami
s is usually asso
iated with unstable Cantor{like 
haoti


saddles of zero measure. Hen
e we 
an make no 
on
lusions 
on
erning syn
hronization
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for the typi
al initial 
onditions.

In the subsequent se
tions we use this method for analysis of 
oupled 
haoti
 sys-

tems. For the sake of simpli
ity we will 
onsider a dis
rete{time system, namely the

H�enon map. This method 
an be also used for 
ontinuous{time systems, but in this

last 
ase the method 
an be 
omputationally expensive due to the ne
essity of evalu-

ation of the Poin
ar�e map. Appli
ation of this te
hnique to 
ontinuous{time systems

will be reported elsewhere.

3 Symboli
 dynami
s for h

2

and h

7

As an example we 
onsider the H�enon map [H�enon, 1976℄ de�ned by the following

equation:

h(x; y) = (1 + y � ax

2

; bx); (1)

where a = 1:4 and b = 0:3 are the \
lassi
al" parameter values for whi
h the famous

H�enon attra
tor is observed.

In this se
tion we re
all the results on the existen
e of symboli
 dynami
s for h

2

and h

7

.

3.1 Symboli
 dynami
s for h

2

In [Galias, 1998b℄ it was shown that there exists symboli
 dynami
s embedded in h

2


orresponding to the golden subshift on two symbols (partial or deformed horseshoe).

The sets N

i

and E

i

are shown in Fig. 1(a). For the exa
t de�nition see [Galias, 1998b℄.

It was shown that the images of verti
al edges of N

0

under h

2

are en
losed in E

0

and

E

2

on the opposite sides of N

0

[N

1

and that the images of verti
al edges of N

1

under

h

2

are en
losed in E

0

and E

1

on the opposite sides of N

0

. It was also shown that

images of horizontal edges of N

0

and N

1

under h

2

are en
losed in the interior of the

topologi
al stripe E

0

[ N

0

[ E

1

[ N

1

[ E

2

. We say that h

2

(N

0

) 
overs N

0

and N

1

horizontally and h

2

(N

1

) 
overs N

0

horizontally. It follows that for every sequen
e of

symbols (a

0

; a

1

; : : : ; a

n�1

), from the set f0; 1g whi
h does not 
ontain the subsequen
e

(1; 1) there exists a point z = (x; y) su
h that h

2i

(z) 2 N

a

i

for i = 0; : : : ; n � 1 and

h

2n

(z) = z. One should noti
e that we do not 
he
k hyperboli
ity on the sets N

i

.

Therefore we 
annot state that ea
h in�nite symboli
 sequen
e identi�es exa
tly one

traje
tory. There may exist many orbits in the phase spa
e whi
h proje
t onto a given

symboli
 sequen
e. For details see [Galias, 1998b℄.
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In this way it was shown that the subshift on two symbols with the transition

matrix

�

1 1

1 0

�

is embedded in h

2

.

3.2 Symboli
 dynami
s for h

7

In [Zgli
zy�nski, 1997℄ it was shown that there exist symboli
 dynami
s embedded in h

7


orresponding two the full shift on two symbols (full horseshoe).

The sets N

i

and E

i

are shown in Fig 1(b). It was shown that for i = 0; 1 the images

of verti
al edges of N

i

under h

7

lie on the opposite sides of N

0

[N

1

(are en
losed in E

0

and E

2

). It was also shown that the images of horizontal edges under h

7

are en
losed in

the interior of topologi
al stripe de�ned by the sets N

i

and E

i

. Ea
h of the sets h

7

(N

0

)

and h

7

(N

1

) 
overs N

0

and N

1

horizontally. For the details see [Zgli
zy�nski, 1997℄ or

[Galias, 1998b℄. It follows that for every sequen
e of symbols a = (a

0

; a

1

; : : : ; a

n�1

)

from the set f0; 1g there exists at least one point z = (x; y) su
h that h

7i

(z) 2 N

a

i

for

i = 0; : : : ; n� 1 and h

7n

(z) = z. In other words the symboli
 dynami
s 
orresponding

to the full shift on two symbols with the transition matrix

�

1 1

1 1

�

is embedded in h

7

.

4 Robustness of symboli
 dynami
s

In this se
tion we study robustness of symboli
 dynami
s for the H�enon map.

The �rst question we address is whether the symboli
 dynami
s survives if the

parameters of the map are modi�ed.

Using the sets N

i

, E

i

plotted in Fig.1 we have 
he
ked whether for di�erent values

of (a; b) the assumptions of the theorem on the existen
e of symboli
 dynami
s hold. In

order to perform this task we have used the following generalized bise
tion pro
edure.

We start with intervals a = [1:2; 1:6℄ and b = [0:1; 0:5℄ and try to prove the existen
e

of symboli
 dynami
s for these intervals. If we do not su

eed we divide the re
tangle

a�b into 4 re
tangles and repeat the pro
edure. We do not divide the re
tangle if the

lengths of its edges are smaller than " = 0:001.
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It follows from the de�nition of the H�enon map that the images of N

i


hange


ontinuously with the parameter 
hanges and hen
e we 
an use the bise
tion method.

In Fig. 2(a) we show the re
tangles (a; b) for whi
h we have proved the existen
e

of symboli
 dynami
s for h

2

. Similarly in Fig. 2(b) we show regions in the parameter

spa
e for whi
h the symboli
 dynami
s for h

7

exists. It is interesting to note that the

symboli
 dynami
s is present in the dynami
s of the map even for parameter values

far from the standard ones. For example the symboli
 dynami
s for h

2

exists also for

a = 1:6, b = 0:35 and the symboli
 dynami
s for h

7

exists for a = 1:55, b = 0:1.

The above results may be used for studying syn
hronization of systems when the

syn
hronization signal is introdu
ed via parameter modi�
ation.

The se
ond problem we investigate is the existen
e of symboli
 dynami
s in the 
ase

when the dynami
s of the map is perturbed by some additive signal. We assume that

we only know the upper limit of the absolute value of this perturbation. We 
onsider

a perturbed system

h

p

(x; y) = (1 + y � ax

2

+ e

1

; bx + e

2

); (2)

Using interval arithmeti
 we have found pairs (e

1

; e

2

) for whi
h the symboli
 dynami
s

is not destroyed by the perturbation. In order to prove the existen
e of symboli


dynami
s for parti
ular values of e

1

and e

2

we 
he
k the assumptions of the existen
e

theorem for the map (2) (we 
he
k that the images of edges of N

i

lie properly with

respe
t to the sets N

i

, E

i

).

As an example in Fig. 3 we show these images for the intervals e

1

= e

2

= [�0:012;

0:012℄. Verti
al edges of N

i

were 
overed by 2, 2, 2, and 7 re
tangles respe
tively and

horizontal edges were 
overed by 27, 46, 6, 7 re
tangles respe
tively. The images of

these re
tangles under the map h

2

were 
omputed are we have 
he
ked that they lie

in a proper way with respe
t to the sets N

i

and E

i

. The results for verti
al edges

are shown in Fig. 3(a) and for horizontal edges in Fig. 3(b). Hen
e we proved that

there exist symboli
 dynami
s for the perturbed H�enon map if the perturbation has

magnitude je

i

j < 0:012.

Similar results for the e

1

; e

2

= [�0:0009; 0:0009℄ and for the symboli
 dynami
s of

h

7

are plotted in Fig. 4.

In order to �nd the regions in the plane (e

1

; e

2

) for whi
h there exist symboli


dynami
s we have used the generalized bise
tion pro
edure starting with the intervals

e

1

; e

2

= [�0:04; 0:04℄. In Fig. 5(a) and 5(b) we plot re
tangles in the plane (e

1

; e

2

) for

whi
h we proved the existen
e of symboli
 dynami
s for h

2

and h

7

respe
tively.

We want to say on
e again that we have found the regions in the plane (e

1

; e

2

) for

whi
h the symboli
 dynami
s survives. It does not mean that for other (e

1

; e

2

) there is
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no symboli
 dynami
s. The method gives a suÆ
ient 
onditions and 
annot be used to

�nd regions where there is no symboli
 dynami
s 
orresponding to the given subshift.

Possibly if we 
ould 
hange the positions of sets N

i

it would be possible to prove the

existen
e of symboli
 dynami
s for larger regions.

One 
an 
learly see that for h

7

the proof of the existen
e of symboli
 dynami
s is

less robust. It is not very surprising. As the H�enon map is 
haoti
 it has sensitive

dependen
e on initial 
onditions and hen
e it is easier to 
he
k 
onditions involving

the se
ond iterate than the seventh iterate. On the other hand the di�eren
e in per-

turbation range is mu
h smaller than we 
ould have expe
ted. This is 
aused by the

de�nitions of sets N

i

. In the 
ase of h

7

the sets N

0

, N

1

are relatively small in the

unstable dire
tion and large in the stable dire
tion and hen
e points in N

i

after one

iteration are mapped not very far away from ea
h other.

5 Coupled H�enon maps

In this se
tion we analyze the behavior of 
oupled H�enon maps using the results from

the previous se
tion. In order to prove that there exist independent symboli
 dynami
s

in a 
oupled system we have to estimate the perturbation introdu
ed by adding the


oupling terms and 
he
k that this perturbation is 
ontained in the region for whi
h

the symboli
 dynami
 exists (these regions are plotted in Fig. 5).

As a �rst example let us 
onsider two H�enon maps 
oupled in a master{slave 
on-

�guration:

h

m

(x; y) = h(x; y) = (1 + y � ax

2

; bx); (3)

h

s

(x

0

; y

0

) = h(x

0

+ d(x� x

0

); y

0

): (4)

The �rst system is independent and is 
alled a driving system or a master. The

se
ond one is 
alled a response system or a slave. From the results des
ribed in the

previous se
tion we know that if the response system is perturbed weakly then there

exist independent symboli
 dynami
s in this system. In order to 
he
k whether the

symboli
 dynami
s survives we have to 
he
k if the perturbation is small enough. The

error terms introdu
ed by the 
oupling 
an be 
omputed as:

e

1

= �2adx

0

(x� x

0

) � ad

2

(x� x

0

)

2

;

e

2

= bd(x� x

0

):

As we investigate the existen
e of symboli
 dynami
s, we know that (x; y); (x

0

; y

0

) 2

N

0

[ N

1

. From the de�nitions of sets N

1

and N

2

it follows that x; x

0

2 [�0:82; 0:42℄
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and y; y

0

2 [0:1; 0:39℄. By means of interval arithmeti
 one 
an easily 
he
k that if

jdj < 0:0138 then je

1

j < 0:0397 and je

2

j < 0:00514. This re
tangle is 
ontained in the

region where the symboli
 dynami
s exists [
ompare Fig. 5(a)℄. Hen
e we are sure that

if jdj < 0:0138 there exist independent symboli
 dynami
s in the response system. In

other words there are traje
tories of the whole system realizing symboli
 sequen
es in

the response system independent of the itinerary realized by the orbit in the driving

system.

Similarly for the symboli
 dynami
s on h

7

we have x; x

0

2 [0:46; 0:755℄, y; y

0

2

[0; 0:28℄. For jdj < 0:0218 the perturbation is bounded by je

1

j < 0:01366 and je

2

j <

0:00193. This re
tangle is 
ontained in the region where the symboli
 dynami
s exists

[
ompare Fig. 5(b)℄.

It is interesting to note that although we have proved the existen
e of the symboli


dynami
s for h

7

for smaller perturbation we 
an prove the existen
e of independent

symboli
 dynami
s for stronger 
oupling. This is due to the fa
t that for h

7

, the sets

N

0

and N

1

have smaller range (in the x dire
tion) and in the estimation of errors e

i

we multiply the 
oupling by smaller intervals.

From the existen
e of independent symboli
 dynami
s it follows that the systems

are not syn
hronized. The traje
tory in the driving system following an arbitrary

symboli
 sequen
e does not in
uen
e the symboli
 dynami
s in the response system

and the traje
tory in this se
ond system 
an realize any other symboli
 sequen
e.

One should also noti
e that the 
oupling values for whi
h one observes syn
hroniza-

tion (d > 0:4) [Galias, 1998a℄ are of an order of magnitude larger than the values for

whi
h we were able to prove the existen
e of independent symboli
 dynami
s.

As a se
ond example let us 
onsider a ring of bidire
tionally 
oupled H�enon maps.

Every 
ell is 
onne
ted with its two nearest neighbors. The dynami
s of the kth 
ell is

given by

h

d

(x

k

; y

k

) = h(x

k

+ d(x

(k+1)modn

� x

k

) + d(x

(k�1)modn

� x

k

); y

k

); (5)

for k = 0; : : : ; n � 1. The error terms in the kth 
ell introdu
ed by the 
oupling 
an

be 
omputed as

e

k1

= �2adx

k

z

k

� ad

2

z

2

k

;

e

k2

= bdz

k

:

where z

k

= x

(k+1)modn

+ x

(k�1)modn

� 2x

k

. Using interval arithmeti
 one 
an show that

for jdj < 0:0068 the error terms are bounded by je

k1

j < 0:0392 and je

k2

j < 0:00506 and

there exists the independent symboli
 dynami
s for h

2

in every 
ell [
ompare Fig. 5(b)℄.

Similarly one 
an show that for jdj < 0:0105 the independent symboli
 dynami
s for

8



h

7

exists. These results are independent of the number of 
ells in a ring, i.e. for any

number of 
oupled H�enon maps if the 
oupling strength is smaller than the values given

above then there exist independent symboli
 dynami
s in every subsystem.

In the above two examples we have 
onsidered 
oupled H�enon maps. This is however

a general te
hnique. We 
an also use the above method to analyze behavior of 
oupled

systems if they are di�erent. In fa
t the driving signal 
an 
ome from any system as

long as we know the range of this signal.

6 Con
lusions

In this paper we have 
onsidered the problem of robustness of symboli
 dynami
s for


haoti
 systems. We have shown that the symboli
 dynami
s is not destroyed if the

perturbation is small. For the H�enon map we have found the parameter values and the

values of perturbation for whi
h the symboli
 dynami
s survives. Using these results we

have found the values of 
oupling strength for whi
h there exist independent symboli


dynami
s for every 
oupled subsystem for the 
ase of unidire
tionally 
oupled H�enon

maps and a ring of bidire
tionally 
oupled H�enon maps.
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