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Abstract

In this paper we introduce the method for investigation of coupled chaotic
systems using topological methods. We show that if the coupling is small then
there exists independent symbolic dynamics for every coupled subsystem and
in consequence the systems are not synchronized. As an example we consider
coupled Hénon maps. Using computer interval arithmetic we find parameter
mismatch and perturbation range for which the symbolic dynamics in the Hénon
system is sustained. For coupled Hénon maps we compute the value of coupling
strength for which the symbolic dynamics in every subsystem survives.

1 Introduction

It is well known that when chaotic systems are coupled, they may demonstrate synchro-
nized behavior. Recently there has been a considerable interest in using the concept of
synchronization of chaos for solving technical problems. For the applications it is very
important to find techniques for investigation of the phenomenon of synchronization
of chaotic systems.

There are several methods for studying the synchronization problem. It was shown
in various papers that a very important role is played by the transversal Lyapunov
exponents of the synchronized trajectories [Pecora & Carroll, 1990, Ogorzaltek, 1993,
Heagy et al., 1994]. It was shown that the criterion based on conditional Lyapunov
exponents calculated along a typical trajectory of the system is not sufficient and one
has to take into account transversal Lyapunov exponents computed along all periodic



orbits [Heagy et al., 1995, Pecora et al., 1995]. Other methods are based on local
transversal Lyapunov exponents [Pecora et al., 1995, Galias, 1998aq].

In this paper we describe the method of investigation of coupled systems using
topological methods. We are interested in the case when synchronization of chaotic
systems is not observed due to the existence of independent symbolic dynamics in
coupled subsystems. We show that if the coupling is small then one may prove that
there exists independent symbolic dynamics for every coupled subsystem. This means
that for two different sequences of symbols one may found trajectory of the coupled
system which realizes these two sequences in the coupled subsystems. As consequence
we obtain the coexistence of different periodic solutions in different subsystems. In
this context the existence of independent symbolic dynamics for different subsystems
implies the lack of synchronization.

In Sec. 2 we introduce the method for studying of synchronization properties by
means of independent symbolic dynamics. In Sec. 3 we recall results on the existence of
symbolic dynamics for the Hénon map. In Sec. 4 we study the robustness of symbolic
dynamics on parameters and perturbation added to the system. In Sec. 5 we analyze
coupled Hénon maps using the results from Sec. 4.

2 Symbolic dynamics and synchronization

Chaotic systems are often studied in terms of symbolic dynamics and horseshoes which
are one of the most important and descriptive tools available. We say that for a
given system there exist a symbolic dynamics on n symbols if there are n disjoint sets
Noy...N,_; and a finite type subshift on n symbols {0,1,... ,n — 1} such that for
every sequence (s;)>, allowable by this subshift there exist a trajectory (xy)3>, of the
system such that x;, € N;, for £ = 0,1,.... This corresponds to the existence of a
set (invariant part of NgU---UN,,_1) such that the dynamics of the system restricted
to this set is semiconjugate with the given subshift. We are interested in the case
when the set of allowable sequences has infinite number of elements. In this case the
embedded set is of a Cantor type and the system displays complex dynamics.

One can rigorously prove the existence of symbolic dynamics in nonlinear maps
using topological methods. One has to find sets N; and check that the images of these
sets lie properly with respect to the initial sets. Hence, in order to show the existence of
symbolic dynamics one has to prove that the images of certain sets in the phase space
are enclosed in certain regions in this space. This can be done by means of interval
arithmetic implemented on a computer.

In our earlier work we have used computer interval arithmetic to perform a rigor-



ous computer assisted proof of the existence of a (partial) horseshoe for discrete time
systems (for example the Hénon map [Zgliczyniski, 1997, Galias, 19980]) and also for
continuous time systems (Chua’s circuit [Galias, 1997], Lorenz equations [Galias &
Zgliczynski, 1998], Rossler equations [Zgliczyniski, 1997]). For flows we first reduce the
problem to discrete—time by means of a Poincaré map technique.

In current work we perform a sensitivity analysis. We consider a perturbed chaotic
system and show that symbolic dynamics is not destroyed by a small enough pertur-
bation. For the applications we want to prove the existence of symbolic dynamics for
as large perturbation as possible.

For finding the allowable perturbation we adapt the computer assisted proof of
the existence of a (partial) horseshoe. The perturbation is represented by an interval
vector which modifies the dynamics of the map. We propose to start with a large
interval vector and then using the method of generalized bisection to find regions in the
perturbation space for which the symbolic dynamics exists. For a given perturbation
we try to prove the existence of symbolic dynamics. If the proof fails we divide the
interval vector representing the perturbation into several smaller interval vectors and
try to complete the proof again.

One should notice that this method allows to find sufficient conditions for the
existence of symbolic dynamics. It is possible that the computer assisted proof fails to
show the existence of symbolic dynamics of a given type but one continues to exist.

Another approach to the problem of the existence of symbolic dynamics and its
robustness was reported in [Mischaikow et al., 1999], where the authors show sym-
bolic dynamics in experimental time-series from a magnetoelastic ribbon under the
assumption that the experimental error and the noise are bounded.

The method for finding the perturbation level not destroying the symbolic dynamics
described above is a very general technique and may find applications in many different
areas. Here we use it for investigation of behavior of coupled chaotic systems. If chaotic
systems are coupled and the coupling strength is small, then we expect that the sym-
bolic dynamics is not destroyed by the coupling. The method for studying of coupled
systems consists of two steps. First for every subsystem we find the perturbation range
for which we can verify that the symbolic dynamics is not destroyed. Then for each
subsystem we check that the perturbation introduced by the coupling is smaller than
the maximum allowable perturbation. If this is true then the independent symbolic
dynamics in every subsystem exists. In consequence, the subsystems are not uniformly
synchronized in the sense that there exist trajectories of the whole system realizing
arbitrary allowable sequences in every subsystem. We would like to stress that the
embedded symbolic dynamics is usually associated with unstable Cantor—like chaotic
saddles of zero measure. Hence we can make no conclusions concerning synchronization



for the typical initial conditions.

In the subsequent sections we use this method for analysis of coupled chaotic sys-
tems. For the sake of simplicity we will consider a discrete—time system, namely the
Hénon map. This method can be also used for continuous—time systems, but in this
last case the method can be computationally expensive due to the necessity of evalu-
ation of the Poincaré map. Application of this technique to continuous-time systems
will be reported elsewhere.

3 Symbolic dynamics for h? and A’

As an example we consider the Hénon map [Hénon, 1976 defined by the following
equation:

h(z,y) = (1 +y — az?, br), (1)

where @ = 1.4 and b = 0.3 are the “classical” parameter values for which the famous
Hénon attractor is observed.

In this section we recall the results on the existence of symbolic dynamics for h?
and h’.

3.1 Symbolic dynamics for h?

In [Galias, 1998b] it was shown that there exists symbolic dynamics embedded in h?
corresponding to the golden subshift on two symbols (partial or deformed horseshoe).
The sets NV; and E; are shown in Fig. 1(a). For the exact definition see [Galias, 1998b).
It was shown that the images of vertical edges of Ny under h? are enclosed in E, and
E5 on the opposite sides of Ny U N; and that the images of vertical edges of Ny under
h? are enclosed in E, and E;, on the opposite sides of Ny. It was also shown that
images of horizontal edges of Ny and N; under h? are enclosed in the interior of the
topological stripe Fy U Ny U E; U N; U E,. We say that h*(Ny) covers Ny and N,
horizontally and h%(N;) covers Ny horizontally. Tt follows that for every sequence of
symbols (ag, ai, ... ,a,_1), from the set {0,1} which does not contain the subsequence
(1,1) there exists a point z = (z,y) such that h*(z) € N,, for i =0,...,n — 1 and
h*'(z) = z. One should notice that we do not check hyperbolicity on the sets NV;.
Therefore we cannot state that each infinite symbolic sequence identifies exactly one
trajectory. There may exist many orbits in the phase space which project onto a given
symbolic sequence. For details see [Galias, 19985].



In this way it was shown that the subshift on two symbols with the transition
matrix
11
10

3.2 Symbolic dynamics for h’

is embedded in h®.

In [Zgliczytiski, 1997] it was shown that there exist symbolic dynamics embedded in A7
corresponding two the full shift on two symbols (full horseshoe).

The sets N; and E; are shown in Fig 1(b). It was shown that for i = 0, 1 the images
of vertical edges of N; under AT lie on the opposite sides of Ny U N; (are enclosed in Ej
and F,). Tt was also shown that the images of horizontal edges under h” are enclosed in
the interior of topological stripe defined by the sets N; and E;. Each of the sets h7(Ny)
and h"(N;) covers Ny and N; horizontally. For the details see [Zgliczyniski, 1997] or

[Galias, 1998b]. It follows that for every sequence of symbols a = (ag,as, ... ,a, 1)
from the set {0,1} there exists at least one point z = (z,y) such that h™(z) € N,, for
i=0,...,n—1and h™(z) = 2. In other words the symbolic dynamics corresponding

to the full shift on two symbols with the transition matrix

(1)

is embedded in A’.

4 Robustness of symbolic dynamics

In this section we study robustness of symbolic dynamics for the Hénon map.

The first question we address is whether the symbolic dynamics survives if the
parameters of the map are modified.

Using the sets N;, E; plotted in Fig.1 we have checked whether for different values
of (a,b) the assumptions of the theorem on the existence of symbolic dynamics hold. In
order to perform this task we have used the following generalized bisection procedure.
We start with intervals a = [1.2,1.6] and b = [0.1,0.5] and try to prove the existence
of symbolic dynamics for these intervals. If we do not succeed we divide the rectangle
a x b into 4 rectangles and repeat the procedure. We do not divide the rectangle if the
lengths of its edges are smaller than € = 0.001.
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It follows from the definition of the Hénon map that the images of N; change
continuously with the parameter changes and hence we can use the bisection method.

In Fig. 2(a) we show the rectangles (a,b) for which we have proved the existence
of symbolic dynamics for h?. Similarly in Fig. 2(b) we show regions in the parameter
space for which the symbolic dynamics for h7 exists. It is interesting to note that the
symbolic dynamics is present in the dynamics of the map even for parameter values
far from the standard ones. For example the symbolic dynamics for h? exists also for
a =1.6, b = 0.35 and the symbolic dynamics for h” exists for a = 1.55, b = 0.1.

The above results may be used for studying synchronization of systems when the
synchronization signal is introduced via parameter modification.

The second problem we investigate is the existence of symbolic dynamics in the case
when the dynamics of the map is perturbed by some additive signal. We assume that
we only know the upper limit of the absolute value of this perturbation. We consider
a perturbed system

hyl,y) = (1+y — aa® + o1, be + e3), @)

Using interval arithmetic we have found pairs (eq, e5) for which the symbolic dynamics
is not destroyed by the perturbation. In order to prove the existence of symbolic
dynamics for particular values of e; and e; we check the assumptions of the existence
theorem for the map (2) (we check that the images of edges of N; lie properly with
respect to the sets N;, E;).

As an example in Fig. 3 we show these images for the intervals e; = ey = [—0.012,
0.012]. Vertical edges of IV; were covered by 2, 2, 2, and 7 rectangles respectively and
horizontal edges were covered by 27, 46, 6, 7 rectangles respectively. The images of
these rectangles under the map h? were computed are we have checked that they lie
in a proper way with respect to the sets N; and FE;. The results for vertical edges
are shown in Fig. 3(a) and for horizontal edges in Fig. 3(b). Hence we proved that
there exist symbolic dynamics for the perturbed Hénon map if the perturbation has
magnitude |e;| < 0.012.

Similar results for the e;, e, = [—0.0009, 0.0009] and for the symbolic dynamics of
h" are plotted in Fig. 4.

In order to find the regions in the plane (e;,es) for which there exist symbolic
dynamics we have used the generalized bisection procedure starting with the intervals
er, ey = [—0.04,0.04]. In Fig. 5(a) and 5(b) we plot rectangles in the plane (ey, e2) for
which we proved the existence of symbolic dynamics for A2 and A7 respectively.

We want to say once again that we have found the regions in the plane (ey, ey) for
which the symbolic dynamics survives. It does not mean that for other (e, es) there is



no symbolic dynamics. The method gives a sufficient conditions and cannot be used to
find regions where there is no symbolic dynamics corresponding to the given subshift.
Possibly if we could change the positions of sets /V; it would be possible to prove the
existence of symbolic dynamics for larger regions.

One can clearly see that for h” the proof of the existence of symbolic dynamics is
less robust. It is not very surprising. As the Hénon map is chaotic it has sensitive
dependence on initial conditions and hence it is easier to check conditions involving
the second iterate than the seventh iterate. On the other hand the difference in per-
turbation range is much smaller than we could have expected. This is caused by the
definitions of sets IV;. In the case of h” the sets Ny, N, are relatively small in the
unstable direction and large in the stable direction and hence points in N; after one
iteration are mapped not very far away from each other.

5 Coupled Hénon maps

In this section we analyze the behavior of coupled Hénon maps using the results from
the previous section. In order to prove that there exist independent symbolic dynamics
in a coupled system we have to estimate the perturbation introduced by adding the
coupling terms and check that this perturbation is contained in the region for which
the symbolic dynamic exists (these regions are plotted in Fig. 5).

As a first example let us consider two Hénon maps coupled in a master-slave con-
figuration:

ho(z,y) = h(2,y) = (1 +y — az?, bx), (3)
hs(2',y') = W@’ +d(x — 2'),y). (4)

The first system is independent and is called a driving system or a master. The
second one is called a response system or a slave. From the results described in the
previous section we know that if the response system is perturbed weakly then there
exist independent symbolic dynamics in this system. In order to check whether the
symbolic dynamics survives we have to check if the perturbation is small enough. The
error terms introduced by the coupling can be computed as:

e1 = —2aday' (v — 2') — ad?*(z — 2)?,

ez = bd(x — ).

As we investigate the existence of symbolic dynamics, we know that (z,y), (¢/,vy') €
Ny U N;. From the definitions of sets N; and N it follows that z,2" € [—0.82,0.42]
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and y,y € [0.1,0.39]. By means of interval arithmetic one can easily check that if
|d| < 0.0138 then |e;| < 0.0397 and |es| < 0.00514. This rectangle is contained in the
region where the symbolic dynamics exists [compare Fig. 5(a)]. Hence we are sure that
if |d| < 0.0138 there exist independent symbolic dynamics in the response system. In
other words there are trajectories of the whole system realizing symbolic sequences in
the response system independent of the itinerary realized by the orbit in the driving
system.

Similarly for the symbolic dynamics on h” we have xz,2' € [0.46,0.755], y,y' €
[0,0.28]. For |d| < 0.0218 the perturbation is bounded by |e;| < 0.01366 and |es| <
0.00193. This rectangle is contained in the region where the symbolic dynamics exists
[compare Fig. 5(b)].

It is interesting to note that although we have proved the existence of the symbolic
dynamics for A" for smaller perturbation we can prove the existence of independent
symbolic dynamics for stronger coupling. This is due to the fact that for A", the sets
Ny and N; have smaller range (in the x direction) and in the estimation of errors e;
we multiply the coupling by smaller intervals.

From the existence of independent symbolic dynamics it follows that the systems
are not synchronized. The trajectory in the driving system following an arbitrary
symbolic sequence does not influence the symbolic dynamics in the response system
and the trajectory in this second system can realize any other symbolic sequence.

One should also notice that the coupling values for which one observes synchroniza-
tion (d > 0.4) [Galias, 19984/ are of an order of magnitude larger than the values for
which we were able to prove the existence of independent symbolic dynamics.

As a second example let us consider a ring of bidirectionally coupled Hénon maps.
Every cell is connected with its two nearest neighbors. The dynamics of the kth cell is
given by

ha(zk, yi) = h(zr + (@ (k+1)modn — Tk) + A(T(k—1)modn — Tk)s Yk), (5)

for k =0,...,n — 1. The error terms in the kth cell introduced by the coupling can
be computed as

ex1 = —2adxyz, — a,d?zz,

€Ly — bde
where zx = Z(k11)modn + T(k=1)modn — 27} Using interval arithmetic one can show that
for |d| < 0.0068 the error terms are bounded by |ex1| < 0.0392 and |exs| < 0.00506 and

there exists the independent symbolic dynamics for h? in every cell [compare Fig. 5(b)].
Similarly one can show that for |d| < 0.0105 the independent symbolic dynamics for
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h" exists. These results are independent of the number of cells in a ring, i.e. for any
number of coupled Hénon maps if the coupling strength is smaller than the values given
above then there exist independent symbolic dynamics in every subsystem.

In the above two examples we have considered coupled Hénon maps. This is however
a general technique. We can also use the above method to analyze behavior of coupled
systems if they are different. In fact the driving signal can come from any system as
long as we know the range of this signal.

6 Conclusions

In this paper we have considered the problem of robustness of symbolic dynamics for
chaotic systems. We have shown that the symbolic dynamics is not destroyed if the
perturbation is small. For the Hénon map we have found the parameter values and the
values of perturbation for which the symbolic dynamics survives. Using these results we
have found the values of coupling strength for which there exist independent symbolic
dynamics for every coupled subsystem for the case of unidirectionally coupled Hénon
maps and a ring of bidirectionally coupled Hénon maps.
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Figure 1: (a) definition of the sets Ny and N; for the proof of symbolic dynamics for
h%, (b) definition of the sets Ny and N, for the proof of symbolic dynamics for .
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Figure 2: Regions in the (a,b) plane for which symbolic dynamics exists, (a) for h?
(b) for A"
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Figure 3: (a) the covering of the vertical edges of Ny and NN; with rectangles and its
image under h?, (b) the covering of horizontal edges of Ny and N; and its image under
h?.
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Figure 4: (a) covering of vertical edges of Ny and N; with rectangles and their images
under 17, (b) covering of horizontal edges of Ny and N; and their images under h'.
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Figure 5: (a) regions in the (ej,ey) space for which the symbolic dynamics for h?
exists, filled rectangle contains error introduced due to the coupling for |d| < 0.0138.
(b) regions in the (e, es) space for which the symbolic dynamics for h” exists, filled
rectangle contains error introduced due to the coupling for |d| < 0.0218.
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