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Abstra
t

In this paper, we investigate the possibility of using interval arithmeti
 for

rigorous investigations of periodi
 orbits in dis
rete{time dynami
al systems with

spe
ial emphasis on 
haoti
 systems. We show that methods based on interval

arithmeti
 when implemented properly are 
apable of �nding all period-n 
y
les

for 
onsiderable large n. We 
ompare several interval methods for �nding periodi


orbits. We 
onsider the interval Newton method and methods based on the

Kraw
zyk operator and Hansen{Sengupta operator. We also test the global

versions of these three methods. We propose algorithms for 
omputation of the

invariant part and nonwandering part of a given set and for 
omputation of the

basin of attra
tion of stable periodi
 orbits, whi
h allow redu
ing greatly the

sear
h spa
e for periodi
 orbits.

As examples we 
onsider two{dimensional 
haoti
 dis
rete{time dynami
al

systems, de�ned by the H�enon map and the Ikeda map, with the \standard"

parameter values for whi
h the 
haoti
 behavior is observed. For both maps

using the algorithms presented in this paper, we �nd very good approximation of

the invariant part and the nonwandering part of the region en
losing the 
haoti


attra
tor observed numeri
ally. For the H�enon map we �nd all 
y
les with period

n � 30 belonging to the trapping region. For the Ikeda map we �nd the basin

of attra
tion of the stable �xed point and all periodi
 orbits with period n � 15.

For both systems using the number of short 
y
les, we estimate its topologi
al

entropy.
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1 Introdu
tion

Finding periodi
 orbits of nonlinear systems is an important problem en
ountered

frequently in a variety of �elds. In parti
ular the problem of existen
e of periodi


orbits is 
ru
ial for analysis of 
haoti
 systems, whi
h under 
ertain assumptions are


hara
terized by the existen
e of in�nitely many unstable periodi
 orbits embedded

within the 
haoti
 attra
tor. The stru
ture of the strange attra
tor is built on an

in�nite set of unstable periodi
 orbits. Periodi
 orbits are ordered hierar
hi
ally, longer

orbits give better approximations to the 
haoti
 attra
tor. The problem of existen
e of

periodi
 orbits is also of great importan
e in many appli
ations. In the area of 
haoti


systems one 
ould mention 
ontrolling 
haos by stabilization of one of in�nitely many

periodi
 orbits embedded in a 
haoti
 attra
tor [Ott et al., 1990℄ or using periodi
 orbits

as a 
ommuni
ation alphabet in a 
haos 
ommuni
ation s
heme [Hayes & Grebogi,

1995℄.

Usually periodi
 orbits are found in numeri
al studies but there is no guarantee

that there exists a true periodi
 traje
tory that stays near a 
omputer{generated one.

This problem is espe
ially important for 
haoti
 systems, as due to inevitable round{o�

errors and sensitive dependen
e on initial 
onditions usually after 
ertain number of

iterations (100 or so) the 
omputer{generated traje
tory be
omes un
orrelated with

the true traje
tory. A very important question is whether there really exists a true

periodi
 traje
tory in the neighborhood of the 
omputer{generated one.

A method to �nd periodi
 solutions form a time series was developed in [Lathrop &

Kosteli
h, 1989℄. In this method one sear
hes for parts of a traje
tory whi
h are almost

periodi
 (the traje
tory returns 
lose to the initial point). The method is based on the

assumption that in the neighborhood of su
h a fragment there exists a real periodi


orbit. However, one never knows if a real traje
tory a
tually exists. For example, in a

quasiperiodi
 motion de�ned on the two-dimensional torus the method of 
lose returns

would �nd many periodi
 orbits but we know that there exists no periodi
 orbit for

this system.

The basi
 numeri
al method for dete
tion of period{n orbit of a map f is based on

the Newton method for sear
hing for zeros applied to the fun
tion g(x) = x � f

n

(x).

The pro
ess of �nding periodi
 orbit begins with the 
hoi
e of initial point followed

be 
omputation of su

essive 
orre
tions. The method has very good 
onvergen
e

properties (the 
onvergen
e is quadrati
), assuming that the initial point is suÆ
iently


lose to the periodi
 orbit. We have however no rigorous proof that the periodi
 orbit

exists. In order to �nd all periodi
 orbits one 
an 
he
k many initial 
onditions for

example using a uniform grid. Again it is not sure that all periodi
 orbits are found.

There are several methods, whi
h 
an be used for proving rigorously the existen
e

of periodi
 orbits. Many of them are a simple 
on
lusion of the Brouwer's �xed point

theorem, whi
h states that if a 
onvex 
ompa
t set X � R

n

is mapped by a 
ontinuous

map f into itself then f has a �xed point in X (i.e., there exist x 2 X su
h that

f(x) = x). Using this theorem one 
an easily prove the existen
e of a stable periodi


orbit. If the orbit is asymptoti
ally stable one 
an �nd a neighborhood U su
h that

f

n

(U) � U , proving that there exists period{n point of f in U . Similarly, if the map

is invertible one 
an prove the existen
e of a periodi
 orbit unstable in all dire
tions
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(it be
omes stable when the dire
tion of time is 
hanged). Unfortunately, this method


annot be used dire
tly for proving the existen
e of saddle type orbits.

Another 
lass of methods is based on the �xed point index properties. In one of the

methods one has to prove the topologi
al 
onjuga
y of the map in the neighborhood

of the �xed point with a linear map possessing a saddle{type �xed point [Miranda,

1940, Galias et al., 1994℄. The se
ond method involves 
omputation of an integral of

a 
ertain fun
tion over a 
ir
le surrounding a �xed point of the map. If this integral is

non-zero then the existen
e of the �xed point is ensured [Krasnosielskij, 1963℄. This last

method 
an be used when the map is two{dimensional. Both methods allow proving

the existen
e of all types of periodi
 orbits (also of the saddle{type). Their main

drawba
k is non-eÆ
ien
y | one has to perform a lot of 
al
ulation in order to prove

the assumptions of the existen
e theorem and 
ontrol the 
omputational error (in 
ase

of a 
omputer assisted proof).

The re
ent development of new interval methods for proving the existen
e and

uniqueness of zeros of nonlinear fun
tions have opened the possibility of rigorous inves-

tigations of 
haoti
 systems in terms of unstable periodi
 orbits. We 
ompare several

interval methods, whi
h 
an be used for �nding all low{period 
y
les of a nonlinear

map. The main 
riterion is the 
omputation time needed to �nd all period{n orbits

in the 
onsidered region. In Se
. 2 we present a short introdu
tion to interval arith-

meti
. We brie
y re
all the de�nitions of the interval operators and show how to use

these operators and bise
tion te
hnique to �nd all periodi
 orbits for given period.

We test methods based on the interval Newton operator, the Kraw
zyk operator and

the Hansen{Sengupta operator. We also 
onsider the so{
alled global versions of these

methods, where the problem of existen
e of periodi
 orbits is translated to the problem

of existen
e of zeros of a higher{dimensional map. We introdu
e a modi�
ation where

the dimension of the sear
h spa
e for the global version is redu
ed to the dimension of

the original dynami
al system. We also des
ribe improvements useful espe
ially if the

map is invertible and if we know a trapping region of the system.

In Se
. 3 we present algorithms for 
omputation of invariant and nonwandering part

of a given set and an algorithm for 
omputation of the basin of attra
tion of stable

periodi
 orbits, whi
h may signi�
antly redu
e the sear
h spa
e for periodi
 orbits.

In Se
s. 4 and 5 we use the algorithms presented in this paper to study the existen
e

of periodi
 orbits for the H�enon map and the Ikeda map. For both systems, we �nd

very tight en
losures of the invariant and nonwandering parts of the trapping region

in whi
h 
haoti
 behavior is observed. We also �nd all low period 
y
les and estimate

the topologi
al entropy of both maps.

2 In
lusion Methods for Proving the Existen
e of

Periodi
 Orbits

In this se
tion we present di�erent interval methods for �nding periodi
 solutions of

dis
rete{time dynami
al systems. Let us start by a short des
ription of interval arith-

meti
 | a basi
 
omputational tool used in this study.
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2.1 Interval arithmeti


Interval arithmeti
 is a growing bran
h of applied mathemati
s developed to satisfy

the demands on numeri
al 
omputations to obtain rigorous results. Computations

in properly rounded interval arithmeti
 produ
e results, whi
h 
ontain both ma
hine

arithmeti
 results and also true (in�nite arithmeti
 pre
ision) results.

Here we present a very short introdu
tion to the interval arithmeti
 (for the thor-

ough presentation see [Moore, 1979℄ or [Alefeld & Herzberger, 1983℄). In this paper,

we use boldfa
e letters to denote intervals, interval ve
tors, and interval matri
es and

usual math itali
 lower
ase letters to denote \real" quantities. By an interval we mean

a 
losed bounded set of real numbers

x = [a; b℄ = fx : a � x � bg:

We 
an also regard interval as a number represented by the ordered pair of its endpoints

a and b. By an n{dimensional interval ve
tor we mean an ordered n{tuple of intervals

v = (x

1

;x

2

; : : : ;x

n

).

On the set of intervals we de�ne basi
 arithmeti
 operations.

x

1

� x

2

= fx = x

1

� x

2

: x

1

2 x

1

; x

2

2 x

2

g: (1)

where � is any of the following operators: +, �, �, =. All operations but division are

de�ned for arbitrary intervals. For the division we assume that the interval x

2

does not


ontain the number 0. Sin
e a real number a 
an be treated as a degenerate interval

a = [a; a℄ the interval arithmeti
 
ontains usual \real" arithmeti
.

The result interval 
an be always 
omputed in terms of the endpoints. For example,

the rule for interval addition is following:

[a; b℄ + [
; d℄ = [a + 
; b + d℄:

In pra
ti
e we 
annot 
arry out \real" or interval operations exa
tly. We are 
on-

�ned to approximate arithmeti
 of limited pre
ision. It is possible to implemented

interval arithmeti
 on a 
omputer to 
arry out the operations of interval arithmeti


with appropriate rounding, when ne
essary, of left and right 
omputed endpoints, in

su
h a way that the ma
hine 
omputed interval result always 
ontain the exa
t interval

result. In the \best" rounded interval arithmeti
 the ma
hine 
omputed right endpoint

is the smallest ma
hine number not less than the 
orre
t right endpoint and similarly

the ma
hine 
omputed left endpoint is the largest ma
hine number not greater than

the 
orre
t left endpoint. There are many programming pa
kages, whi
h 
an be used

for interval 
omputations. They are available as libraries for C, C++, Fortran, and as

a Matlab toolbox.

Some interval algorithms are extensions of 
orresponding real algorithms. Some of

them however are essentially di�erent. The di�eren
e results from a dual nature of an

interval. As an interval is not only a number represented by its endpoints but also a

set of real numbers, we 
an 
ompute the interse
tion of two or more intervals or 
he
k

the in
lusion of one interval in another. Self{validating methods 
alled also in
lusion

methods for proving the existen
e of zeros belong to this 
lass.
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Let us now introdu
e interval Newton operator, Kraw
zyk operator and Hansen{

Sengupta operator [Alefeld, 1994, Neumaier, 1990℄, whi
h provide simple 
omputational

tests for uniqueness, existen
e, and nonexisten
e of a zero of a fun
tion within a given

interval ve
tor.

2.2 Interval Newton operator

Let us 
onsider a fun
tion R

m

3 x 7! f(x) 2 R

m

. In order to investigate the existen
e

of zeros of f in an m-dimensional interval ve
tor x one evaluates the interval Newton

operator

N(x) = x

0

� (f

0

(x))

�1

f(x

0

); (2)

where f

0

(x) is the interval matrix 
ontaining all Ja
obian matri
es of the form f

0

(x)

for x 2 x and x

0

is an arbitrary point belonging to the interval ve
tor x. One usually


hooses x

0

to be the 
enter of x.

One should noti
e that it is not ne
essary to 
ompute the inverse of f

0

(x) in order

to evaluate N(x). For 
omputation or the expression (f

0

(x))

�1

f(x

0

) one 
an use for

example the Gaussian algorithm.

The following theorem [Neumaier, 1990, Alefeld, 1994℄ 
an be used to prove the

existen
e and uniqueness of zeros of f .

Theorem 1. If N(x) � int(x) then f(x) = 0 has a unique solution in x. If N(x) \

x = ; then there are no zeros of f in x.

The elementary proof of the above theorem is given in the appendix for the 
om-

pleteness and in order to give the reader an idea of what kind of mathemati
s is involved

when we use interval 
omputations to rigorously prove the existen
e and uniqueness of

zeros.

The interval Newton operator 
an be used only when the interval matrix f

0

(x) is

regular, i.e., 
omposed of nonsingular matri
es. The following two operators 
an be

used for a wider 
lass of systems.

2.3 Kraw
zyk and Hansen{Sengupta operators

Kraw
zyk operator is de�ned as

K(x)=x

0

�Cf(x

0

)�(Cf

0

(x)�I)(x�x

0

); (3)

where x

0

is an arbitrary point belonging to x (usually one uses the 
enter of x) and C

is a pre
onditioning matrix. It is usually 
hosen as the inverse of f

0

(x

0

).

Hansen{Sengupta operator is de�ned as

H(x)=x

0

+�(CDf(x);�Cf(x

0

);x� x

0

); (4)

where � is the Gauss{Seidel operator [Neumaier, 1990℄. For intervals a;b;x the Gauss{

Seidel operator �(a;b;x) is the tightest interval en
losing the set fx 2 x : ax =
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b for some a 2 a; b 2 bg and for interval matrix A and interval ve
tors b;x the Gauss{

Seidel operator �(A;b;x) is de�ned by

y

i

= �(A;b;x)

i

(5)

= � (A

ii

; b

i

� �

k<i

A

ik

y

k

� �

k>i

A

ik

x

k

;x

i

) :

For these two operators there are similar theorems on the existen
e and uniqueness of

zeros as for the Newton operator (see [Neumaier, 1990℄).

2.4 Existen
e of periodi
 orbits. Standard and global versions

The above three operators 
an be used to prove the existen
e of period-n 
y
les of f

by applying the interval operator to the map g = id� f

n

. We shall 
all this te
hnique

a standard version of the method.

Another 
hoi
e, whi
h will be 
alled a global version, is to apply the interval operator

to the map F : (R

m

)

n

7! (R

m

)

n

de�ned by

[G(z)℄

k

= x

(k+1)modn

� f(x

k

) (6)

for k = 0; : : : ; n � 1, where z = (x

0

; : : : ; x

n�1

). See that G(z) = 0 if and only if x

0

is a �xed point of f

n

. In this method, the problem of existen
e of periodi
 orbits is

translated to the problem of existen
e of zeros of a higher{dimensional fun
tion.

2.5 Finding all periodi
 orbits

In this study we are interested in �nding for a given map all period-n 
y
les en
losed

in a 
ertain region A.

In order to �nd �xed points of f

n

we use the 
ombination of one of the interval

methods des
ribed above and the generalized bise
tion (see also [Kearfott & Novoa,

1990℄). First the region of interest is 
overed by m{dimensional intervals (the number

of them in
reases with n). For ea
h interval x the interval operator N(x) for the map

g (standard method) or G (global method) is evaluated, where N stands for Newton,

Kraw
zyk or Hansen{Sengupta operators. If N(x) � int(x) then there is exa
tly one

�xed point of f

n

in x. If N(x)\x = ; then there are no �xed points of f

n

in x. If none

of these two 
onditions is ful�lled we divide the interval ve
tor x into smaller parts and

repeat the 
omputations.

For the Newton operator we have to use a di�erent non{existen
e stopping 
riterion.

The reason is that we are not able to evaluate the interval Newton operator for ea
h

interval ve
tor 
ontaining a point x su
h that f

0

(x) is not invertible. Hen
e as the non{

existen
e 
riterion we use the following 
ondition: N(x)\x = ; or f

n

(x)\x = ;. The

se
ond part of the 
ondition allows us to ex
lude regions for whi
h the Ja
obian matrix

is singular. This is not ne
essary for the two other operators as for their evaluation we

do not need to invert the interval matrix f

0

(x).

Let us noti
e that none of the methods is 
apable of proving the existen
e of non-

hyperboli
 periodi
 orbit. If su
h a 
ase is dete
ted the pro
edure should as a result

return also the interval ve
tors for whi
h the method failed. Su
h instan
es are rare and
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in the examples 
onsidered, we have not found a single 
ase like that. The uniqueness

results in this 
ase 
an no longer be proved. In order to prove the existen
e of non-

hyperboli
 orbits one may use purely topologi
al methods based on the 
on
ept of

topologi
al index or its simple formulation going ba
k to [Miranda, 1940℄ (see also

[Neumaier, 1990℄).

2.6 Redu
ing the dimension of the sear
h spa
e for the global

version

The problem that arises, when we implement the global version, is the dimension of

the spa
e, where we are looking for periodi
 orbits. In order to �nd all period{n orbits

of an m{dimensional map we have to sear
h an mn{dimensional spa
e.

In order to redu
e the dimension of the sear
h spa
e we propose to use R

m

as the

sear
h spa
e. For the interval ve
tor x 2 R

m

we �rst produ
e the sequen
e (x

i

)

n�1

i=0

,

where x

i

= f

i

(x) and we set z = (x

0

; : : : ;x

n�1

). Then we apply the global interval

operator to z. If the division is ne
essary we divide the m{dimensional interval x,

instead of mn{dimensional interval z. Although some of the 
omponents of z generated

from x using the pro
edure des
ribed above may by large (due to the wrapping e�e
t

and positive Lyapunov exponents of f if f is 
haoti
) it appears that this method is

superior to all the other methods.

2.7 Further modi�
ations

In order to speed up the algorithm we add two modi�
ations.

The �rst modi�
ation uses the fa
t that we sear
h for periodi
 solutions en
losed in

A. For the interval x under 
onsideration we 
ompute several forward and ba
kward

(if the map is invertible) iterations. If for some positive i the image f

i

(x) or the inverse

f

�i

(x) lies outside A than there is no periodi
 orbit in x, whi
h is entirely en
losed in

A. Obviously if A is the trapping region for the map (f(A) � A) it makes no sense to


he
k the forward iterates as for x \ A 6= ; we have f

n

(x) \ A 6= ; for all n > 0.

The se
ond modi�
ation is possible be
ause we are sear
hing for periodi
 orbits.

As before we 
ompute f

i

(x) for positive and negative i. If any of these iterations is

en
losed in the region for whi
h the algorithm was 
ompleted then we 
an skip the

interval x, as there are no new periodi
 orbits in x.

3 Invariant Part and Nonwandering Part

Our main goal is to �nd all periodi
 orbits en
losed in the region A. In many 
ases it

is possible to redu
e the 
omputation time by removing parts of the region A whi
h


annot 
ontain periodi
 orbits. In this se
tion, we develop methods for redu
ing the

sear
h area for periodi
 orbits based on the notions of invariant and nonwandering part

of a set.

For A � R

m

we de�ne the invariant part of A under the map f as

Inv(A) = fx : 9(x

k

)

1

k=�1

su
h that x

0

= x, x

k

2 A and x

k+1

= f(x

k

) for all kg: (7)
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We say that a set A is a trapping region for f if f(A) � A. If A is a trapping region

the invariant part of A 
an be also de�ned as

Inv(A) =

\

n�0

f

n

(A): (8)

3.1 Invariant sets

Here we des
ribe the algorithm �nding for a given set A a possibly small set en
losing

Inv(A). The set found will be the union of boxes (
alled interval ve
tors when the

pro
edure is implemented using 
omputer interval arithmeti
).

Let us 
hoose positive real numbers "

i

, i = 1; 2; : : : ; m. Let " = ("

1

; "

2

; : : : ; "

m

).

Let us 
all an "{box a set of the form

[k

1

"

1

; (k

1

+ 1)"

1

℄� [k

2

"

2

; (k

2

+ 1)"

2

℄� � � � � [k

m

"

m

; (k

m

+ 1)"

m

℄; (9)

where k

i

are integer numbers. Let V = fv

i

g be a set of boxes. By jV j we will denote

the sum of all boxes in V (jV j =

S

v

i

).

Boxes of the form (9) are very well suited for interval 
omputations. First by


hanging " one may a
hieve arbitrary good approximation of representing a given set by

the set of "{boxes. In a 
omputer program when " is �xed an "{box 
an be represented

as a sequen
e of integers (k

1

; k

2

; : : : ; k

m

). This makes it easier for the program to 
he
k

whether a parti
ular "{box belongs to a set of boxes.

First let us assume that the set A is the sum of a �nite number of "{boxes, i.e.,

V = fv

i

g is a set of boxes and A = jV j =

S

v

i

).

The following pro
edure from the set of boxes V removes those whi
h has empty

interse
tion with the invariant part of A. It is 
onvenient to express the algorithm in

the language of the graph theory. We 
reate the dire
ted graph G = (V;E) where

verti
es v

i

2 V are boxes and the edges 
orrespond to the possibility of going from

one box to another under the a
tion of f . In order to 
reate the set of edges for ea
h

box v

i

we evaluate f(v

i

) and we add edge e

ij

if f(v

i

) \ v

j

6= ;. Below we des
ribe the

algorithm in terms of a simple model language with 
lear meaning of syntax.

pro
edure Redu
eInvariantPart(V )

E  the set of edges (e

i;j

2 E if f(v

i

) \ v

j

6= ;);

repeat

Improved  FALSE;

for all v

i

2 V do begin

if 8j e

ij

62 E or 8j e

ji

62 E then begin

remove v

i

and all edges in
ident with v

i

from the graph;

Improved  TRUE;

end

end

until not Improved;

end of Redu
eInvariantPart

In the above pro
edure the box v

i

is removed if f(v

i

)\ v

j

= ; for all j (the box v

i

is not the beginning of any edge in the graph) or if f(v

j

) \ v

i

= ; for all j (the box
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v

i

is not the end of any edge in the graph). We pro
eed until no more boxes 
an be

removed.

In order to 
ompute the invariant part of an arbitrary set A we �rst 
hoose " =

("

1

; : : : ; "

m

) and 
over A by "{boxes. We 
all the pro
edure Redu
eInvariantPart to

remove boxes whi
h has empty interse
tion with Inv(A). Then we re�ne the division of

the remaining boxes and 
all the pro
edure Redu
eInvariantPart again. We 
ontinue

until we rea
h a pres
ribed a

ura
y. Subsequent 
alls of Redu
eInvariantPart and

re�ning the division is a
tually better solution then starting with the a

ura
y we want

to a
hieve and 
alling the pro
edure Redu
eInvariantPart on
e only. This latter


hoi
e would lead to a huge number of verti
es in the graph and make the pro
edure

very slow. The pro
edure performing this task is presented below.

pro
edure FindInvariantPart(A,V )

set "

0

; (desired a

ura
y)

set " = ("

1

; "

2

; : : : ; "

m

); (defining the initial division into boxes)

V  the set of "-boxes 
overing A;

Redu
eInvariantPart(V );

while (min(") < "

0

) do begin

"  "=2;

V  the set of "-boxes 
overing jV j \ A;

Redu
eInvariantPart(V );

end

end of FindInvariantPart

The following lemma states that given A the above pro
edure returns the set of

boxes 
ontaining the invariant part of A.

Lemma 1. Let V be the set of boxes returned by the pro
edure FindInvariantPart.

Then

Inv(A) � jV j =

[

v

i

: (10)

Proof. We show that the 
ondition

Inv(A) � jV j (11)

is ful�lled during the whole 
ourse of the pro
edure. At the beginning by the 
onstru
-

tion A � jV j and sin
e Inv(A) � A the 
ondition (11) is true. During the pro
edure

we remove the box v

i

if f(v

i

) \ v

j

= ; for all v

j

2 V or f(v

j

) \ v

i

= ; for all v

j

2 V .

Let us 
onsider the �rst 
ase, i.e., f(v

i

) \ v

j

= ; for all v

j

2 V . Let us 
hoose

x 2 v

i

. It follows that f(x) \ jV j = ;. Sin
e Inv(A) � jV j we have f(x) 62 Inv(A).

From the property of the invariant part (x 2 Inv(A) ) f(x) 2 Inv(A)) we obtain

x 62 Inv(A) for all x 2 v

i

. Finally v

i

\ Inv(A) = ; and Inv(A) � jV j n v

i

.

Now let us assume that f(v

j

) \ v

i

= ; for all v

j

2 V . It follows that x 62 f(jV j)

for all x 2 v

i

and hen
e x 62 f(Inv(A)) for all x 2 v

i

. Sin
e the impli
ation x 2

Inv(A)) x 2 f(Inv(A)) is true, we have x 62 Inv(A) for all x 2 v

i

and in 
onsequen
e

Inv(A) � jV j n v

i

.

We have shown that in both 
ases Inv(A) � jV j n v

i

, so after removing v

i

from V

the 
ondition (11) still holds.

9



3.2 Nonwandering 
omponent

Previously we have des
ribed the method how to obtain a rigorous en
losure of the

set Inv(A). The invariant part of the trapping region may 
ontain stable and unstable

manifolds of �xed or periodi
 points. The so-
alled nonwandering 
omponent is perhaps

more important to the study of long{term behavior. Fixed points and 
losed orbits

are important in the study of dynami
al systems, sin
e they represent stationary or

repeatable behavior. A generalization of these sets is the nonwandering set. A point x

is 
alled nonwandering for the map f if for any neighborhood U of x there exists n > 0

su
h that f

n

(U)\U 6= ;. The set of nonwandering points is 
losed and it 
ontains the


losure of the set of �xed points and periodi
 orbits. For a given set A we de�ne the

nonwandering part of A as the set of nonwandering points of the map f jInv(A).

We 
an easily adapt the pro
edure Redu
eInvariantPart to remove from V boxes

having empty interse
tion with the nonwandering part of jV j. We modify the pro
edure

by adding one more 
ondition under whi
h the box may be removed from the graph.

If for a given "{box there is no 
losed path of edges going through this box then this

box 
ontains wandering points only and must lie 
ompletely outside the nonwandering

part. We may then remove this box from the graph. The problem of �nding verti
es

not belonging to any 
losed loops is equivalent to sear
hing for strongly 
onne
ted


omponents in a graph. This is a standard problem in algorithmi
 graph theory and

has a very fast solution, whi
h operates in linear time [Gibbons, 1985℄. The algorithm

for removing boxes not belonging to the nonwandering part of a set of boxes is given

below.

pro
edure Redu
eNonwanderingPart(V )

E  the set of edges (e

i;j

2 E if f(v

i

) \ v

j

6= ;);

repeat

Improved  FALSE;

for all v

i

2 V do begin

if 8j e

ij

62 E or 8j e

ji

62 E then begin

or v

i

does not belong to any 
losed path then begin

remove v

i

and all edges in
ident with v

i

from the graph;

Improved  TRUE;

end

end

until not Improved;

end of Redu
eNonwanderingPart

The pro
edure FindNonwanderingPart for �nding the en
losure of nonwandering

part of an arbitrary set is the same as the pro
edure FindInvariantPart ex
ept that it


alls the pro
edure Redu
eNonwanderingPart instead of Redu
eInvariantPart. One


an easily show that the set jV j returned by this pro
edure 
ontains the nonwandering

part of A.

The above pro
edures 
an be implemented in a very fast and eÆ
ient way. The

most time{
onsuming part is the generation of the 
onne
tions in the graph. In sub-

sequent se
tions, we apply these pro
edures for �nding nonwandering 
omponent of

10



the trapping regions for the Ikeda and H�enon maps. We will show that with these

pro
edures one 
an signi�
antly redu
e the region, whi
h needs to be 
he
ked in order

to �nd all periodi
 orbits for the map.

3.3 Basins of attra
tion of stable periodi
 orbits

When studying periodi
 orbits for a parti
ular system we may en
ounter a stable

periodi
 orbit. A question, whi
h arises, is what is its basin of attra
tion. We say that

a periodi
 orbit p = fx

1

; : : : ; x

m

g is asymptoti
ally stable if there is some neighborhood

U of p su
h that f

k

(x) 2 U for k � 0 and f

k

(x)! p as k !1 for all x 2 U . A basin

of attra
tion of a periodi
 orbit is a set of points whi
h 
onverge to this periodi
 orbit

as time goes to in�nity

fx : f

k

(x)! p for k !1g: (12)

Let B and A be arbitrary sets and assume that B � A. The pro
edure FindBasin

presented below returns the set of boxes V en
losed in the basin of attra
tion of B,

jV j � fx : 9n � 0 f

n

(x) 2 Bg: (13)

The sear
h is limited to A, i.e., we 
he
k only boxes, whi
h has non{empty interse
tion

with A. At the beginning of the pro
edure V is the set of boxes en
losed in B and W

if the set of boxes, whi
h 
overs A n B. We move a box w

i

from W to V if this box

or its image is en
losed in V . We 
ontinue until no more boxes 
an be moved from W

to V . Then we re�ne the division of boxes and repeat 
omputations until a pres
ribed

a

ura
y is a
hieved.

pro
edure FindBasin(B,A,V )

set "

0

;

set " = ("

1

; "

2

; : : : ; "

m

);

V  ;;

repeat

V  the set of "-boxes en
losed in B [ jV j;

W  the set of "-boxes 
overing A n (B [ jV j);

repeat

Improved  FALSE;

for all w

i

2 W do begin

if w

i

� jV j or f(w

i

) � jV j then

move w

i

from W to V ;

Improved  TRUE;

end

end

until Improved;

"  "=2;

until (min(") < "

0

);

11



end of FindBasin

The above pro
edure des
ribes the basi
 idea for �nding a subset of A of points,

whi
h eventually visit B. Several re�nements are possible. One may for example

use higher iterations of f as a test 
ondition for moving w

i

from W to V . Another

modi�
ation is to evaluate f(w

i

) after dividing w

i

into smaller boxes. This helps to

avoid the wrapping e�e
t.

Now we explain how to use the above algorithm to �nd the basin of attra
tion of

a stable periodi
 orbit. Assume that p is an asymptoti
ally stable periodi
 orbit and

we want to �nd the interse
tion of its basin of attra
tion with a given set A. Sin
e

the orbit is asymptoti
ally stable it is easy to �nd a neighborhood U of p whi
h is a

trapping region for the map. We use this set as a starting point for our pro
edure. To

�nd interse
tion of A with the basin of attra
tion of p we 
all the pro
edure FindBasin

with parameters U and A. This allows us to obtain rigorous approximation of the basin

of attra
tion. It is rigorous in the sense that the union of the set of boxes V returned

by the pro
edure is en
losed in the basin of attra
tion of p. This information 
an be

used for many di�erent purposes. One of them is sear
h for periodi
 orbits. It is 
lear

that there is no other periodi
 orbits of any period within the basin of attra
tion of

p. Hen
e, if we lo
ate the stable periodi
 orbit we 
an ex
lude points belonging to its

basin of attra
tion from sear
h for any other periodi
 orbits.

In the next part of the paper we use the above pro
edure for �nding basin of

attra
tion of the stable period{1 orbit for the Ikeda map.

4 H�enon Map

As a �rst example, we 
onsider the H�enon map de�ned by the following equation

[H�enon, 1976℄

h(x; y) = (1 + y � ax

2

; bx); (14)

where a = 1:4 and b = 0:3 are the \
lassi
al" parameter values for whi
h the famous

H�enon attra
tor is observed.

It is well known [H�enon, 1976℄ that the set 
 de�ned as a quadrangle ABCD,

where A = (�1:33; 0:42), B = (1:32; 0:133), C = (1:245;�0:14) and D = (�1:06;�0:5)

is a trapping region for the H�enon map, i.e. h(
) � 
. In our study we sear
h

for periodi
 solution in the trapping region 
, whi
h en
loses the strange attra
tor

observed numeri
ally. The trapping region 
 and a traje
tory of the H�enon map are

shown in Fig. 1.

It 
an be easily 
he
ked that there are two �xed points for the H�enon map:

P

1

= (x

1

; bx

1

); P

2

= (x

2

; bx

2

): (15)

where

x

1;2

=

b� 1�

p

(1� b)

2

+ 4a

2a

Both of then are unstable. The point P

1

is lo
ated inside the trapping region while P

2

lies outside (
ompare Fig. 1).

12
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Figure 1: Traje
tory of the H�enon map 
onsisting of 20000 points and the trapping

region 
, unstable �xed points: inside the trapping region (+) and outside the trapping

region (�).
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Invariant part Nonwandering part

n box # area box # area

1 22 1.83 20 1.67

2 51 1.06 48 1.00

3 137 0.714 118 0.615

4 325 0.423 278 0.362

5 776 0.253 660 0.215

6 1892 0.154 1531 0.125

7 4577 0.0931 3387 0.0689

8 10464 0.0532 7804 0.0397

9 24768 0.0315 18665 0.0237

10 59581 0.0189 44817 0.0142

11 141426 0.0112 107938 0.00858

Table 1: The number of "{boxes 
overing the invariant part and nonwandering part

of the re
tangle [�1:5; 1:5℄ � [�0:5; 0:5℄ and the area of the boxes, for given n " =

(1=(2

n

); 1=(3 � 2

n

)).

4.1 Invariant part and nonwandering part

First let us �nd invariant part and nonwandering part of the re
tangle [�1:5; 1:5℄ �

[�0:5; 0:5℄ en
losing the trapping region 
 and the unstable �xed point P

2

.

We �nd sets of "{boxes 
overing the invariant part and nonwandering part for

" = (1=2

n

; 1=(3�2

n

)), n = 1; 2; : : : ; 11. We also 
ompute the area of the region obtained.

The results are summarized in Table 1. The area for n = 11 of the region 
ontaining

the nonwandering part is smaller than 0:0086. Hen
e using the representation of the

nonwandering region by "{boxes we 
an redu
e the sear
h region 
onsiderably (the area

of the initial re
tangle is 3).

The results obtained for invariant and nonwandering parts are shown in Fig. 2 and

Fig. 3 respe
tively. Using di�erent shades we plot results for di�erent values of " with

darker 
olor meaning �ner division | larger n (in bla
k we plot the results obtained for

n = 11). One 
an 
learly see that the en
losure of the invariant part 
ontains the 
haoti


attra
tor, the unstable �xed point P

2

and the 
onne
tion between these two sets. The

en
losure of the nonwandering part is smaller and has two 
omponents. One 
ontains

the 
haoti
 attra
tor while the se
ond (very small) 
ontains the unstable �xed point.

We were able to break the 
onne
tion between these two sets and removed the part

of the unstable manifold of the �xed point P

2

from the en
losure of the nonwandering

part.

4.2 Periodi
 orbits

In this se
tion, we test the interval methods for �nding periodi
 orbits des
ribed pre-

viously. First, we 
ompare �ve versions of the interval Newton method: standard

version (Newton Standard), standard version with modi�
ations (Newton Standard

+), global version with the sear
h spa
e R

2

(Newton Global), global version with the

14



-1.0 0.0 1.0
-0.5

0.0

0.5

Figure 2: H�enon map, invariant part of the region [�1:5; 1:5℄� [�0:5; 0:5℄, approxima-

tions of the invariant part obtained for di�erent " are plotted using di�erent shades,

unstable �xed points: inside the trapping region (+) and outside the trapping re-

gion (�).
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Figure 3: H�enon map, nonwandering part of the re
tangle [�1:5; 1:5℄� [�0:5; 0:5℄, un-

stable �xed points: inside the trapping region (+) and outside the trapping region (�).
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Newton Standard  
Newton Standard +
Newton Global    
Newton Global +  
Newton Global N  

Figure 4: Computation time needed to �nd all period{n 
y
les using di�erent versions

of the interval Newton method: standard version, standard version with modi�
ations,

global version, global version with modi�
ations and global version with R

2n

sear
h

spa
e.

0 5 10 15 20 25 30
10

−2

10
0

10
2

10
4

10
6

Newton Global +         
Krawczyk Global +       
Hansen−Sengupta Global +

Figure 5: Computation time needed to �nd all period{n 
y
les using Newton, Kraw
zyk

and Hansen{Sengupta methods.
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sear
h spa
e R

2

and with modi�
ations (Newton Global +) and global version with

R

2n

sear
h spa
e (Newton Global N). In Fig. 4 we plot the 
omputation time ne
essary

to �nd all period{n 
y
les. For n � 3 the standard Newton method is the fastest. For

4 � n � 12 the standard interval Newton method with modi�
ations is the qui
kest

one. It is not possible however to use the standard Newton method for �nding all

longer orbits. It appears that the method fails to �nd all periodi
 orbits with period n

for n > 17. For n = 18 there are some periodi
 points x for whi
h one 
annot 
he
k the

assumption N(x) � x for any interval ve
tor x 3 x. This is due to the wrapping e�e
t,

whi
h 
auses that Dh

n

(x) has a very large diameter [Galias, 1998a℄. For N � 13 the

global version with redu
ed sear
h spa
e and other improvements is better.

It is interesting to note that the global version with sear
h spa
e R

2n

is the worst one.

Although many re
tangles 
an be ex
luded before evaluation of the interval operator,

the algorithm is very slow. It is even slower than the algorithm based on the standard

Newton operator and hen
e of not mu
h use.

In Fig. 5 we show the 
omputation time for global versions of Newton, Kraw
zyk

and Hansen{Sengupta methods. One 
an 
learly see that there are no signi�
ant

di�eren
es in 
omputation time between these three methods.

Using the Kraw
zyk method whi
h is slightly better than the two other methods

we have found all periodi
 orbits with period n � 30. The periodi
 orbits found are

plotted in Fig. 6. The results are summarized in Table 2, where we give the number

Q

n

of periodi
 orbits with period n, the number P

n

of �xed points of h

n

, estimation

of topologi
al entropy, and the number of re
tangles into whi
h the initial region was

divided in order to �nd all periodi
 orbits. In parti
ular, we have proved that there are

no period{3 and period{5 orbits for the H�enon map within the trapping region. We

have proved that there are exa
tly 109033 periodi
 orbits with period n � 30 and there

are 3065317 points belonging to these orbits. These unstable periodi
 points shown in

Fig. 7 give very good approximation of the H�enon attra
tor.

In Fig. 7 one 
an see small regions of the attra
tor not visited by periodi
 orbits

found. Knowing the positions of periodi
 orbits, we 
an study an interesting problem

how well the periodi
 orbits �ll the attra
tor. In Table 3 we 
olle
t several numbers

whi
h give some insight into this problem. D




and D

e

des
ribe the performan
e of

the interval method. D




is the minimum diameter of the interval for whi
h uniqueness

of period{n orbit was proved. We want this number to be as large as possible so we

do not need to divide the sear
h area in a very �ne way to �nd all periodi
 orbits.

It 
annot be however larger that the distan
e between the 
losest period{n points.

D

e

is the maximum diameter of interval for whi
h the existen
e was proved. This

number des
ribes the a

ura
y of the position of periodi
 orbit found. Clearly the

a

ura
y degrades with n. D

min

, D

max

, and D

av

des
ribe how well periodi
 orbits �ll

the attra
tor. For ea
h period{n point we �nd its 
losest neighbor and we de�ne D

min

,

D

max

, and D

av

as the minimum, maximum, and average distan
e from the 
losest

neighbor. The smaller D

min

is the more diÆ
ult it is to �nd all periodi
 orbits as

we need to divide the sear
h region into smaller re
tangles, as the existen
e theorem


annot work if there are two or more periodi
 points within a given re
tangle. The

value of D

min

= 8:5 � 10

�8

for n = 27 means that some period{27 points are lo
ated

very 
lose to ea
h other and we need a very �ne division of the sear
h area in order
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n=1 n=2 n=3 n=4 n=5

n=6 n=7 n=8 n=9 n=10

n=11 n=12 n=13 n=14 n=15

n=16 n=17 n=18 n=19 n=20

n=21 n=22 n=23 n=24 n=25

n=26 n=27 n=28 n=29 n=30

Figure 6: Period-n 
y
les of the H�enon map for n = 1; : : : ; 30 within the trapping

region.
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Figure 7: Cy
les within the trapping region of the H�enon map with period n =

1; : : : ; 30.
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n Q

n

P

n

Q

�n

P

�n

H

n

re
tangles

1 1 1 1 1 0.00000 9

2 1 3 2 3 0.54931 21

3 0 1 2 3 0.00000 41

4 1 7 3 7 0.48648 101

5 0 1 3 7 0.00000 89

6 2 15 5 19 0.45134 205

7 4 29 9 47 0.48104 285

8 7 63 16 103 0.51789 569

9 6 55 22 157 0.44526 737

10 10 103 32 257 0.46347 1149

11 14 155 46 411 0.45849 1521

12 19 247 65 639 0.45912 2457

13 32 417 97 1055 0.46408 4093

14 44 647 141 1671 0.46231 5973

15 72 1081 213 2751 0.46571 9653

16 102 1695 315 4383 0.46471 16281

17 166 2823 481 7205 0.46739 26273

18 233 4263 714 11399 0.46432 43545

19 364 6917 1078 18315 0.46535 71657

20 535 10807 1613 29015 0.46440 121181

21 834 17543 2447 46529 0.46535 199889

22 1225 27107 3672 73479 0.46398 333625

23 1930 44391 5602 117869 0.46525 560725

24 2902 69951 8504 187517 0.46481 961981

25 4498 112451 13002 299967 0.46521 1584185

26 6806 177375 19808 476923 0.46485 2670517

27 10518 284041 30326 760909 0.46507 4346609

28 16031 449519 46357 1209777 0.46485 7346653

29 24740 717461 71097 1927237 0.46495 12264301

30 37936 1139275 109033 3065317 0.46486 21058121

Table 2: Periodi
 orbits for the H�enon map. Q

n

| number of periodi
 orbits with

period n, P

n

| number of �xed points of h

n

, Q

�n

| number of periodi
 orbits with

period smaller or equal to n, P

�n

| number of �xed points of h

i

for i � n, H

n

=

n

�1

log(P

n

) | estimation of topologi
al entropy based on P

n

.
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n P

n

D




D

e

D

min

D

max

D

aver

1 1 7:2�10

�1

4:5�10

�16

| | |

2 3 9:1�10

�2

7:8�10

�16

0.478 1.1120 0.69

3 1 9:1�10

�2

6:7�10

�16

| | |

4 7 1:2�10

�2

1:2�10

�15

0.235 0.4136 0.31

5 1 3:2�10

�2

7:8�10

�16

| | |

6 15 3:8�10

�3

1:4�10

�15

0.063 0.1770 0.11

7 29 1:3�10

�3

2:0�10

�15

0.016 0.1276 0.062

8 63 2:9�10

�4

5:4�10

�15

5:4�10

�3

0.1032 0.041

9 55 1:5�10

�4

1:1�10

�14

1:7�10

�3

0.1110 0.033

10 103 1:5�10

�4

6:0�10

�15

2:0�10

�3

0.1183 0.024

11 155 4:9�10

�5

7:5�10

�15

9:6�10

�4

0.0699 0.017

12 247 5:2�10

�5

7:0�10

�15

5:0�10

�4

0.0498 0.011

13 417 7:5�10

�6

2:7�10

�14

3:8�10

�4

0.0519 0.0079

14 647 6:0�10

�6

6:9�10

�15

2:4�10

�4

0.0299 0.0044

15 1081 1:9�10

�6

1:3�10

�14

1:2�10

�4

0.0237 0.0034

16 1695 7:4�10

�7

2:9�10

�14

8:6�10

�5

0.0235 0.0021

17 2823 7:0�10

�7

1:7�10

�14

3:9�10

�5

0.0210 0.0015

18 4263 7:8�10

�8

1:2�10

�13

8:9�10

�6

0.0214 0.0011

19 6917 2:2�10

�7

2:1�10

�14

1:4�10

�5

0.0139 0.00077

20 10807 1:6�10

�8

1:5�10

�13

3:7�10

�6

0.0138 0.00053

21 17543 9:9�10

�9

5:2�10

�14

4:9�10

�6

0.0077 0.00038

22 27107 4:9�10

�9

2:7�10

�13

5:5�10

�7

0.0109 0.00026

23 44391 3:2�10

�9

6:4�10

�14

1:3�10

�6

0.0055 0.00018

24 69951 1:4�10

�9

1:4�10

�13

3:2�10

�7

0.0047 0.00012

25 112451 5:0�10

�10

9:6�10

�14

3:3�10

�7

0.0041 0.000086

26 177375 2:2�10

�10

9:2�10

�14

1:2�10

�7

0.0026 0.000060

27 284041 5:3�10

�11

1:7�10

�13

8:5�10

�8

0.0044 0.000041

Table 3: Short 
y
les for the H�enon map, D




| diameter of interval for whi
h unique-

ness was proved, D

e

| diameter of interval for whi
h existen
e was proved, 
losest

neighbor distan
e: D

min

, D

max

, D

av

.
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to �nd all periodi
 orbits. Large D

max

indi
ates that there are period{n points well

separated from other su
h points and this means that periodi
 points do not �ll the

attra
tor densely. D

max

does not de
rease as fast with n as one 
ould expe
t (see for

example D

max

for n = 22; : : : ; 27). This 
orresponds to 
learly visible gaps in Fig. 7.

4.3 Estimation of topologi
al entropy

In this se
tion we use the number of periodi
 orbits for the estimation of topologi
al

entropy of the H�enon map.

Topologi
al entropy H(f) of a map f 
hara
terizes \mixing" of points by the map

f . One of the equivalent de�nitions of topologi
al entropy is based on the notion of

(n; "){separated sets (see [Bowen, 1971℄).

A set E � X is 
alled (n; "){separated if for every two di�erent points x; y 2 E,

there exists 0 � j < n su
h that the distan
e between f

j

(x) and f

j

(y) is greater than

". Let us de�ne the number s

n

(") as the 
ardinality of a maximum (n; "){separated

set:

s

n

(") = maxf 
ardE : E is (n; ")-separated g

The number

H(f) = lim

"!0

lim sup

n!1

1

n

log s

n

("); (16)

is 
alled the topologi
al entropy of the map f . The number of periodi
 orbits is 
losely

related to the topologi
al entropy. For axiom A di�eomorphisms we have

H(f) = lim

n!1

log P

n

n

; (17)

where P

n

denotes the number of �xed points of f

n

. It is also possible to use the number

of periodi
 orbits for the estimation of topologi
al entropy when there exists a symboli


dynami
s for the map.

Using the existen
e of symboli
 dynami
s for h

7

one 
an prove that (
ompare

[Zgli
zy�nski, 1997, Galias, 1998b℄):

H(h) �

1

7

log 2 > 0:099:

Similarly one 
an obtain the estimation of topologi
al entropy based on the existen
e

of symboli
 dynami
s for h

2

(
ompare [Galias, 1998b℄):

H(h) �

1

2

log

p

5 + 1

2

> 0:24:

In Fig. 8(a) we plot in semilogarithmi
 s
ale the number P

n

of �xed points of h

n

as

a fun
tion of n. One 
an see that for n > 10 the plot is almost linear, whi
h indi
ates
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Figure 8: (a) The number of �xed points of h

n

and (b) Estimation of topologi
al

entropy of the H�enon map based on the number of low{period 
y
les.

that the number P

n


an be used for obtaining a good approximation of topologi
al

entropy. Here we use the formula

H

n

(h) =

log P

n

n

(18)

as the approximation of topologi
al entropy. The results are plotted in Fig. 8(b) (see

also Table 2). One 
an see that H

n

(h) is almost 
onstant for n � 10. This lets us state

the hypothesis that the topologi
al entropy of the H�enon map is 
lose to 0:465.

5 Ikeda Map

As a se
ond example let us 
onsider the Ikeda map [Hammel et al., 1985℄

f(z) = p + B exp

�

i�� i�=(1 + jzj

2

)

�

z; (19)

where z = x+ iy is a 
omplex number. This map 
an be written as a two dimensional

system in the following form:

f(x; y) = (p + B(x 
os t� y sin t); B(x sin t + y 
os t)); (20)

where t = t(x; y) = �� �=(1 + x

2

+ y

2

).

First let us observe that the ball K = B((p; 0); pB=(1�B)) is a trapping region for

the map f (f(K) � K) [Hammel et al., 1985℄. For z 2 K we have

jf(z)� pj � Bjzj � B(p +

pB

1�B

) =

pB

1�B

;
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Invariant part Nonwandering part

n box # area box # area

0 61 61.00 61 61.00

1 155 38.80 69 17.20

2 328 20.50 176 11.00

3 789 12.30 368 5.75

4 1971 7.70 1098 4.29

5 5392 5.27 3597 3.51

6 15399 3.76 11890 2.90

7 46604 2.84 39660 2.42

8 145346 2.22 131837 2.01

Table 4: The number of "{boxes 
overing the invariant part and nonwandering part of

the trapping region and sum of the area of the boxes for " = (1=2

n

; 1=2

n

).

and hen
e f(z) 2 K.

It may be shown that all initial points are mapped to this trapping region in �nite

time and hen
e we may limit our analysis to the behavior of the system in the trapping

region.

We 
onsider the Ikeda map with the following parameter values: p = 1, B = 0:9,

� = 0:4 and � = 6, for whi
h in simulations a 
haoti
 behavior is observed. A typi
al


haoti
 traje
tory is shown in Fig. 9.

There are three �xed points of the map. They belong to the following interval

ve
tors:

P

1

2 (2:9721316179105

71

38

; 4:145946421395

91

87

);

P

2

2 (0:5327546229407

93

88

; 0:24689677271101

49

12

);

P

3

2 (1:114269614581

43

39

;�2:2856944609861

45

69

):

The �rst �xed point is stable and the two others are unstable. P

2

belongs to the

numeri
ally observed 
haoti
 attra
tor.

We have found sets of "{boxes en
losing the invariant part and the nonwandering

part of the trapping region. The results are shown in Fig. 10 and 11 respe
tively and

summarized in Table 4. We plot the results for " = (1=2

n

; 1=2

n

) for n = 0; : : : ; 8 using

di�erent shades and bla
k denoting the smallest set (n = 8).

The invariant part 
ontains the stable �xed point, unstable periodi
 point, 
haoti


attra
tor and unstable manifold of P

3


onne
ting this point with the stable �xed point

and the 
haoti
 attra
tor. The area of the region obtained is 2:22.

The nonwandering part is smaller than the invariant part. Its area is 2:01. It does

not 
ontain the hetero
lini
 orbit 
onne
ting the unstable and stable �xed points. We

were not able however to break the 
onne
tion between the unstable periodi
 orbit and

the region where the numeri
ally observed attra
tor exists. Hen
e we 
annot state for

sure that the unstable �xed point P

3

does not belong to the attra
tor.

The nonwandering region 
ontains all periodi
 orbits and !{limit sets for the sys-

tem. Hen
e in the sear
h for periodi
 orbits we may limit ourselves to the region
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-1

0

1

Figure 9: Ikeda map, a 
haoti
 traje
tory, the unstable point inside the attra
tor (+)

and unstable �xed point lo
ated slightly below the attra
tor (+�).
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Figure 10: Ikeda map, invariant part of the trapping, the stable �xed point P

1

(�) and

the unstable �xed points P

2

and P

3

(+,+�).
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Figure 11: Ikeda map, nonwandering part of the trapping region.
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ontaining the nonwandering part, area of whi
h is mu
h smaller than the area of the

trapping region 254:5.

In order to better understand the dynami
s of the system we have found the basin of

attra
tion of the stable �xed point P

1

. First, we have lo
ated a trapping region around

the stable �xed point. The size and the shape of the basin of attra
tion is a global

feature and 
annot be studied by means of the Ja
obian matrix at the stable �xed point

alone. However, analysis of the Ja
obian matrix helps us to 
hoose the initial trapping

region. Close to the �xed point when the linear approximation is valid, we may easily

�nd a small set, whi
h is a trapping region. For the algorithm FindBasin this set

should be as large as possible. The matrix norm indu
ed by the Eu
lidean norm for

the Ja
obian matrix at P

1

is 1:753 > 1. This means that in the linear approximation


ir
les are not trapping regions and we need to start with an ellipse. We have found

that the following ellipse is a trapping region for the map:

�


os

2

'

r

2

1

+

sin

2

'

r

2

2

�

(x� x

0

)

2

+

�

sin

2

'

r

2

1

+


os

2

'

r

2

2

�

(y � y

0

)

2

+

�

1

r

2

1

�

1

r

2

2

�

sin(2')(x� x

0

)(y � y

0

) � 1; (21)

where x

0

= 2:972132, y

0

= 4:145946, r

1

= 1:2, r

2

= 2:1, ' = 1. Then using the

hyperboli
ity of the �xed point we have shown that the invariant part of this trapping

region is P

1

(all traje
tories starting in the ellipse 
onverge to the �xed point).

Finally using the algorithm FindBasin we have found a subset of the re
tangle

[�10; 10℄� [�10; 10℄ en
losed in the basin of attra
tion of P

1

(see Fig. 12). The region

found has an area of 357.005. Sin
e in ea
h basin of attra
tion there is only one periodi


orbit on
e we lo
ate this orbit we may ex
lude the basin of attra
tion from the region

where we sear
h for other periodi
 orbits.

5.1 Periodi
 orbits with period n � 15

We have found all periodi
 orbits for the Ikeda map with period smaller or equal to

15. For the standard version, the Kraw
zyk and Hansen{Sengupta operators are 2 or

3 times faster than the Newton operator is. However for the global version there are

no signi�
ant di�eren
es in 
omputation time. The results are 
olle
ted in Table 5.

Periodi
 orbits found are shown in Fig. 13 and 14. One 
an see that low{period 
y
les

do not �ll the attra
tor uniformly and an interesting Cantor set like stru
ture is formed.

As for the H�enon map we 
ompute the 
losest neighbor distan
e and summarize the

results in Table 6.

5.2 Estimation of topologi
al entropy

As before we use the formula (18) to estimate the topologi
al entropy of the map.

The values of H

n

(h) = log(P

n

)=n for di�erent n are 
olle
ted in Table 5 and plotted

in Fig. 15. The approximation stabilizes as n is in
reased. This lets us state the

hypothesis that the topologi
al entropy of the Ikeda map for the parameters 
onsidered

is H(f) � 0:6.
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Figure 12: Ikeda map, basin of attra
tion of the stable �xed point P

1

(�), the unstable

�xed point P

2

(+) belonging to the attra
tor and the unstable �xed point P

3

(+�) lying

on the border of the basin of attra
tion of P

1

.
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n=1 n=2 n=3

n=4 n=5 n=6

n=7 n=8 n=9

n=10 n=11 n=12

n=13 n=14 n=15

Figure 13: Ikeda map, periodi
 orbit with period n � 15.
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Figure 14: Ikeda map, periodi
 orbits with period n = 1; : : : ; 15, basin of attra
tion of

P

1
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n Q

n

P

n

Q

�n

P

�n

H

n

1 2 2 2 2 0.6931

2 1 4 3 4 0.6931

3 2 8 5 10 0.6931

4 3 16 8 22 0.6931

5 4 22 12 42 0.6182

6 7 52 19 84 0.6585

7 10 72 29 154 0.6110

8 14 128 43 266 0.6065

9 26 242 69 500 0.6099

10 46 484 115 960 0.6182

11 76 838 191 1796 0.6119

12 110 1384 301 3116 0.6027

13 194 2524 495 5638 0.6026

14 317 4512 812 10076 0.6010

15 566 8518 1378 18566 0.6033

Table 5: Q

n

| number of periodi
 orbits with period n, P

n

| number of �xed points

of f

n

, Q

�n

| number of 
y
les with period smaller or equal to n, P

�n

| number of

�xed points of f

i

for i � n, H

n

= n

�1

log(P

n

) | estimation of topologi
al entropy.

n P

n

D




D

e

D

min

D

max

D

av

1 2 3:19�10

�2

2:98�10

�14

2.599 2.599 2.599

2 4 1:69�10

�3

2:98�10

�14

0.370 1.783 0.8445

3 8 6:37�10

�4

3:38�10

�14

0.395 1.220 0.6442

4 16 8:01�10

�5

3:56�10

�14

0.175 0.956 0.3739

5 22 8:01�10

�5

3:85�10

�14

0.143 0.644 0.3033

6 52 2:40�10

�5

5:20�10

�14

4:27�10

�2

0.495 0.1404

7 72 3:48�10

�6

6:89�10

�14

1:98�10

�2

0.355 0.1057

8 128 1:23�10

�6

1:41�10

�13

4:56�10

�2

0.264 0.0726

9 242 7:80�10

�8

5:89�10

�13

7:39�10

�4

0.210 0.0456

10 484 5:92�10

�8

2:72�10

�13

1:25�10

�3

0.143 0.0310

11 838 1:26�10

�8

3:25�10

�13

7:22�10

�4

0.119 0.0226

12 1384 5:25�10

�9

2:92�10

�13

4:11�10

�4

0.337 0.0160

13 2524 2:06�10

�9

3:12�10

�13

2:55�10

�4

0.270 0.0109

14 4512 4:13�10

�10

8:36�10

�13

7:01�10

�5

0.260 0.00753

15 8518 8:08�10

�11

5:14�10

�13

1:02�10

�4

0.197 0.00515

Table 6: P

n

| number of �xed points of f

n

, D




| diameter of interval for whi
h

uniqueness was proved, D

e

| diameter of interval for whi
h existen
e was proved,


losest neighbor distan
e: minimum D

min

, maximum D

max

, average D

av

.

33



0 2 4 6 8 10 12 14 16
0.5

0.55

0.6

0.65

0.7

0.75

0.8

n

H
n
(f)

Figure 15: Estimation of topologi
al entropy for the Ikeda map based on the number

of short periodi
 orbits.

6 Con
lusions

In this paper we have shown that interval arithmeti
 is a very powerful tool for in-

vestigations of nonlinear systems and rigorous studies of periodi
 orbits in parti
ular.

We have des
ribed methods for 
omputation of the en
losure of the invariant part and

the nonwandering part of a given set. We have also developed methods for �nding all

low period 
y
les for the dis
rete{time dynami
al systems based on interval operators.

We have 
ompared the performan
e of several interval methods. We have shown that

the global version with the redu
ed sear
h spa
e is superior to all other methods. We

have also shown that for the maps 
onsidered using Kraw
zyk or Hansen{Sengupta

operators does not redu
e the 
omputational time 
onsiderably. It is true however that

there exist systems for whi
h Newton operator is signi�
antly slower then the two other

operators. A very simple example is the non{invertible logisti
 map.

Using these methods we have found all periodi
 orbits for the H�enon map with

period n � 30 and for the Ikeda map with period n � 15 and estimated the topologi
al

entropy of these maps.

It was shown that the information about periodi
 orbits whi
h 
an be obtained using

the presented methods allows to investigate further the stru
ture of 
haoti
 attra
tors.

First, the number of periodi
 orbits gives us a good approximation of invariants like

topologi
al entropy. The 
onvergen
e of the approximation is 
onsiderably fast. Se
-

ond, we 
an easily identify regions within the 
haoti
 attra
tor not visited by short


y
les and this gives us better insight into the stru
ture of the attra
tor.

The methods presented 
an also be applied to investigate periodi
 orbits for 
onti-

nuous{time systems by using the te
hnique of Poin
ar�e map [Galias, 1999℄.
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Appendix

In the appendix we present a simple proof of the theorem on the existen
e, uniqueness,

and nonexisten
e of zeros of a map using interval Newton operator.

Theorem 2. Let f : R

n

� D 7! R

n

be a 
ontinuously di�erentiable mapping. Let

x � D be an interval ve
tor and let us 
hoose x

0

2 x. f

0

(x) is the interval arithmeti


evaluation of the Ja
obian of f over the interval x. We assume that f

0

(x)

�1

exists.

Let N(x) = x

0

� f

0

(x)

�1

f(x

0

).

(i). If N(x) \ x = ; then f has no zero in x.

(ii). If N(x) � x then f has a unique zero in x.

Proof. Let g(t) = f(x

0

+ t(x� x

0

)). It is 
lear that

f(x)� f(x

0

) = g(1)� g(0) =

Z

1

0

g

0

(t)dt =

Z

1

0

f

0

(x

0

+ t(x� x

0

))(x� x

0

)dt; (22)

Hen
e

f(x)� f(x

0

) = J(x)(x� x

0

); (23)

where

J(x) =

Z

1

0

f

0

(x

0

+ t(x� x

0

))dt: (24)

If x; x

0

2 x and t 2 [0; 1℄ then x

0

+ t(x � x

0

) 2 x as the interval ve
tor x is 
onvex.

Hen
e J(x) 2 f

0

(x). From the existen
e of f

0

(x)

�1

it follows that f

0

(x) does not 
ontain

any singular matrix and hen
e J(x) is nonsingular for all x 2 x.

(i). First we show that if f has a zero x

?

in x then x

?

2 N(x). The �rst part of the

theorem will then follow.

J(x

?

)(x

?

� x

0

) = f(x

?

)� f(x

0

) = �f(x

0

): (25)

Sin
e J(x

?

) 2 f

0

(x) it is nonsingular and therefore x

?

= x

0

� J(x

?

)

�1

f(y) 2 x

0

�

f

0

(x)f(x

0

) = N(x). It is 
lear that if x \N(x) = ; then x 
ontains no zeros of f .
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(ii). Let us de�ne p(x) = x

0

� J(x)

�1

f(x

0

).

p(x) = x

0

� J(x)

�1

f(x

0

) 2 N(x) � x: (26)

for all x 2 x. Sin
e p(x) � x by Brouwer's �xed point theorem there exists x

?

su
h

that p(x

?

) = x

?

. Then

0 = p(x

?

)� x

?

= x

0

� J(x

?

)

�1

f(x

0

)� x

?

= x

0

� J(x

?

)

�1

(f(x

?

)� J(x

?

)(x

?

� x

0

))� x

?

= x

0

� J(x

?

)

�1

f(x

?

) + x

?

� x

0

� x

?

= �J(x

?

)

�1

f(x

?

):

Sin
e J(x

?

) is nonsingular f(x

?

) = 0.

Now we prove the uniqueness of the �xed point. Assume that x

?

and x

??

are two zeros

of f in x. We will show that from the existen
e of f

0

(x)

�1

if follows that they must be

equal.

J(x

?

)(x

?

� x

??

) = f(x

?

)� f(x

??

) = 0; (27)

where

J(x

?

) =

Z

1

0

f(x

??

+ t(x

?

� x

??

))dt: (28)

As J(x

?

) is nonsingular it follows that x

?

= x

??

.
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