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Abstract

In this paper, we investigate the possibility of using interval arithmetic for
rigorous investigations of periodic orbits in discrete-time dynamical systems with
special emphasis on chaotic systems. We show that methods based on interval
arithmetic when implemented properly are capable of finding all period-n cycles
for considerable large n. We compare several interval methods for finding periodic
orbits. We counsider the interval Newton method and methods based on the
Krawczyk operator and Hansen—Sengupta operator. We also test the global
versions of these three methods. We propose algorithms for computation of the
invariant part and nonwandering part of a given set and for computation of the
basin of attraction of stable periodic orbits, which allow reducing greatly the
search space for periodic orbits.

As examples we consider two—dimensional chaotic discrete—time dynamical
systems, defined by the Hénon map and the Ikeda map, with the “standard”
parameter values for which the chaotic behavior is observed. For both maps
using the algorithms presented in this paper, we find very good approximation of
the invariant part and the nonwandering part of the region enclosing the chaotic
attractor observed numerically. For the Hénon map we find all cycles with period
n < 30 belonging to the trapping region. For the Ikeda map we find the basin
of attraction of the stable fixed point and all periodic orbits with period n < 15.
For both systems using the number of short cycles, we estimate its topological
entropy.



1 Introduction

Finding periodic orbits of nonlinear systems is an important problem encountered
frequently in a variety of fields. In particular the problem of existence of periodic
orbits is crucial for analysis of chaotic systems, which under certain assumptions are
characterized by the existence of infinitely many unstable periodic orbits embedded
within the chaotic attractor. The structure of the strange attractor is built on an
infinite set of unstable periodic orbits. Periodic orbits are ordered hierarchically, longer
orbits give better approximations to the chaotic attractor. The problem of existence of
periodic orbits is also of great importance in many applications. In the area of chaotic
systems one could mention controlling chaos by stabilization of one of infinitely many
periodic orbits embedded in a chaotic attractor [Ott et al., 1990] or using periodic orbits
as a communication alphabet in a chaos communication scheme [Hayes & Grebogi,
1995].

Usually periodic orbits are found in numerical studies but there is no guarantee
that there exists a true periodic trajectory that stays near a computer—generated one.
This problem is especially important for chaotic systems, as due to inevitable round—off
errors and sensitive dependence on initial conditions usually after certain number of
iterations (100 or so) the computer—generated trajectory becomes uncorrelated with
the true trajectory. A very important question is whether there really exists a true
periodic trajectory in the neighborhood of the computer—generated one.

A method to find periodic solutions form a time series was developed in [Lathrop &
Kostelich, 1989]. In this method one searches for parts of a trajectory which are almost
periodic (the trajectory returns close to the initial point). The method is based on the
assumption that in the neighborhood of such a fragment there exists a real periodic
orbit. However, one never knows if a real trajectory actually exists. For example, in a
quasiperiodic motion defined on the two-dimensional torus the method of close returns
would find many periodic orbits but we know that there exists no periodic orbit for
this system.

The basic numerical method for detection of period—n orbit of a map f is based on
the Newton method for searching for zeros applied to the function g(x) = z — f"(x).
The process of finding periodic orbit begins with the choice of initial point followed
be computation of successive corrections. The method has very good convergence
properties (the convergence is quadratic), assuming that the initial point is sufficiently
close to the periodic orbit. We have however no rigorous proof that the periodic orbit
exists. In order to find all periodic orbits one can check many initial conditions for
example using a uniform grid. Again it is not sure that all periodic orbits are found.

There are several methods, which can be used for proving rigorously the existence
of periodic orbits. Many of them are a simple conclusion of the Brouwer’s fixed point
theorem, which states that if a convex compact set X C R" is mapped by a continuous
map f into itself then f has a fixed point in X (i.e., there exist x € X such that
f(z) = x). Using this theorem one can easily prove the existence of a stable periodic
orbit. If the orbit is asymptotically stable one can find a neighborhood U such that
f™(U) C U, proving that there exists period—n point of f in U. Similarly, if the map
is invertible one can prove the existence of a periodic orbit unstable in all directions



(it becomes stable when the direction of time is changed). Unfortunately, this method
cannot be used directly for proving the existence of saddle type orbits.

Another class of methods is based on the fixed point index properties. In one of the
methods one has to prove the topological conjugacy of the map in the neighborhood
of the fixed point with a linear map possessing a saddle-type fixed point [Miranda,
1940, Galias et al., 1994]. The second method involves computation of an integral of
a certain function over a circle surrounding a fixed point of the map. If this integral is
non-zero then the existence of the fixed point is ensured [Krasnosielskij, 1963]. This last
method can be used when the map is two—dimensional. Both methods allow proving
the existence of all types of periodic orbits (also of the saddle-type). Their main
drawback is non-efficiency — one has to perform a lot of calculation in order to prove
the assumptions of the existence theorem and control the computational error (in case
of a computer assisted proof).

The recent development of new interval methods for proving the existence and
uniqueness of zeros of nonlinear functions have opened the possibility of rigorous inves-
tigations of chaotic systems in terms of unstable periodic orbits. We compare several
interval methods, which can be used for finding all low—period cycles of a nonlinear
map. The main criterion is the computation time needed to find all period—n orbits
in the considered region. In Sec. 2 we present a short introduction to interval arith-
metic. We briefly recall the definitions of the interval operators and show how to use
these operators and bisection technique to find all periodic orbits for given period.
We test methods based on the interval Newton operator, the Krawczyk operator and
the Hansen—Sengupta operator. We also consider the so—called global versions of these
methods, where the problem of existence of periodic orbits is translated to the problem
of existence of zeros of a higher-dimensional map. We introduce a modification where
the dimension of the search space for the global version is reduced to the dimension of
the original dynamical system. We also describe improvements useful especially if the
map is invertible and if we know a trapping region of the system.

In Sec. 3 we present algorithms for computation of invariant and nonwandering part
of a given set and an algorithm for computation of the basin of attraction of stable
periodic orbits, which may significantly reduce the search space for periodic orbits.

In Secs. 4 and 5 we use the algorithms presented in this paper to study the existence
of periodic orbits for the Hénon map and the Ikeda map. For both systems, we find
very tight enclosures of the invariant and nonwandering parts of the trapping region
in which chaotic behavior is observed. We also find all low period cycles and estimate
the topological entropy of both maps.

2 Inclusion Methods for Proving the Existence of
Periodic Orbits

In this section we present different interval methods for finding periodic solutions of
discrete—time dynamical systems. Let us start by a short description of interval arith-
metic — a basic computational tool used in this study.



2.1 Interval arithmetic

Interval arithmetic is a growing branch of applied mathematics developed to satisfy
the demands on numerical computations to obtain rigorous results. Computations
in properly rounded interval arithmetic produce results, which contain both machine
arithmetic results and also true (infinite arithmetic precision) results.

Here we present a very short introduction to the interval arithmetic (for the thor-
ough presentation see [Moore, 1979] or [Alefeld & Herzberger, 1983]). In this paper,
we use boldface letters to denote intervals, interval vectors, and interval matrices and
usual math italic lowercase letters to denote “real” quantities. By an interval we mean
a closed bounded set of real numbers

x =la,b] = {z:a <x < b}

We can also regard interval as a number represented by the ordered pair of its endpoints
a and b. By an n—dimensional interval vector we mean an ordered n—tuple of intervals
v = (X1,X2,... ,Xp).

On the set of intervals we define basic arithmetic operations.

X1<>X2:{ZL':.I'1<>.T2§.T1GXl,ZL'QEXg}. (1)

where ¢ is any of the following operators: +, —, -, /. All operations but division are
defined for arbitrary intervals. For the division we assume that the interval x5 does not
contain the number 0. Since a real number a can be treated as a degenerate interval
a = |a, a] the interval arithmetic contains usual “real” arithmetic.

The result interval can be always computed in terms of the endpoints. For example,
the rule for interval addition is following:

la,b] + [c,d] = [a+ ¢, b+ d].

In practice we cannot carry out “real” or interval operations exactly. We are con-
fined to approximate arithmetic of limited precision. It is possible to implemented
interval arithmetic on a computer to carry out the operations of interval arithmetic
with appropriate rounding, when necessary, of left and right computed endpoints, in
such a way that the machine computed interval result always contain the exact interval
result. In the “best” rounded interval arithmetic the machine computed right endpoint
is the smallest machine number not less than the correct right endpoint and similarly
the machine computed left endpoint is the largest machine number not greater than
the correct left endpoint. There are many programming packages, which can be used
for interval computations. They are available as libraries for C, C++, Fortran, and as
a Matlab toolbox.

Some interval algorithms are extensions of corresponding real algorithms. Some of
them however are essentially different. The difference results from a dual nature of an
interval. As an interval is not only a number represented by its endpoints but also a
set of real numbers, we can compute the intersection of two or more intervals or check
the inclusion of one interval in another. Self-validating methods called also inclusion
methods for proving the existence of zeros belong to this class.
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Let us now introduce interval Newton operator, Krawczyk operator and Hansen—
Sengupta operator [Alefeld, 1994, Neumaier, 1990], which provide simple computational
tests for uniqueness, existence, and nonexistence of a zero of a function within a given
interval vector.

2.2 Interval Newton operator

Let us consider a function R™ 3 2 — f(z) € R™. In order to investigate the existence
of zeros of f in an m-dimensional interval vector x one evaluates the interval Newton
operator

N(x) = o — (f'(x)) " f(=0), (2)

where f’(x) is the interval matrix containing all Jacobian matrices of the form f'(z)
for x € x and x; is an arbitrary point belonging to the interval vector x. One usually
chooses x( to be the center of x.

One should notice that it is not necessary to compute the inverse of f'(x) in order
to evaluate N(x). For computation or the expression (f’(x))~'f(xo) one can use for
example the Gaussian algorithm.

The following theorem [Neumaier, 1990, Alefeld, 1994| can be used to prove the
existence and uniqueness of zeros of f.

Theorem 1. If N(x) C int(x) then f(z) = 0 has a unique solution in x. If N(x) N
x = () then there are no zeros of f in X.

The elementary proof of the above theorem is given in the appendix for the com-
pleteness and in order to give the reader an idea of what kind of mathematics is involved
when we use interval computations to rigorously prove the existence and uniqueness of
Zeros.

The interval Newton operator can be used only when the interval matrix f'(x) is
regular, i.e., composed of nonsingular matrices. The following two operators can be
used for a wider class of systems.

2.3 Krawczyk and Hansen—Sengupta operators

Krawczyk operator is defined as
K(x)=x0—Cf(z0)— (Cf'(x)—1I)(x—xy), (3)

where xj is an arbitrary point belonging to x (usually one uses the center of x) and C'
is a preconditioning matrix. It is usually chosen as the inverse of f'(zy).
Hansen—Sengupta operator is defined as

H(x)=z0+'(CDf(x), —C f(xy),x — xp), (4)

where T is the Gauss—Seidel operator [Neumaier, 1990]. For intervals a, b, x the Gauss—
Seidel operator I'(a,b,x) is the tightest interval enclosing the set {z € x: ax =



b for some a € a,b € b} and for interval matrix A and interval vectors b, x the Gauss—
Seidel operator I'(A, b, x) is defined by

Yi = F(A, b, X)i (5)
=T (Az’ia bi — Xp<iAirYr — Zk>iAinXg, Xi) .

For these two operators there are similar theorems on the existence and uniqueness of
zeros as for the Newton operator (see [Neumaier, 1990]).

2.4 Existence of periodic orbits. Standard and global versions

The above three operators can be used to prove the existence of period-n cycles of f
by applying the interval operator to the map g = id — f™. We shall call this technique
a standard version of the method.

Another choice, which will be called a global version, is to apply the interval operator
to the map F : (R™)™ — (R™)™ defined by

[G(Z)]k = Z(k+1)modn — f(xk) (6)

for k =0,...,n—1, where z = (zg,... ,7,_1). See that G(z) = 0 if and only if
is a fixed point of f™. In this method, the problem of existence of periodic orbits is
translated to the problem of existence of zeros of a higher—dimensional function.

2.5 Finding all periodic orbits

In this study we are interested in finding for a given map all period-n cycles enclosed
in a certain region A.

In order to find fixed points of f™ we use the combination of one of the interval
methods described above and the generalized bisection (see also [Kearfott & Novoa,
1990]). First the region of interest is covered by m-dimensional intervals (the number
of them increases with n). For each interval x the interval operator N(x) for the map
g (standard method) or G (global method) is evaluated, where N stands for Newton,
Krawczyk or Hansen—Sengupta operators. If N(x) C int(x) then there is exactly one
fixed point of f™ in x. If N(x) Nx = () then there are no fixed points of f™ in x. If none
of these two conditions is fulfilled we divide the interval vector x into smaller parts and
repeat the computations.

For the Newton operator we have to use a different non—existence stopping criterion.
The reason is that we are not able to evaluate the interval Newton operator for each
interval vector containing a point x such that f’(x) is not invertible. Hence as the non—
existence criterion we use the following condition: N(x)Nx = or f*(z) Nx = (). The
second part of the condition allows us to exclude regions for which the Jacobian matrix
is singular. This is not necessary for the two other operators as for their evaluation we
do not need to invert the interval matrix f'(x).

Let us notice that none of the methods is capable of proving the existence of non-
hyperbolic periodic orbit. If such a case is detected the procedure should as a result
return also the interval vectors for which the method failed. Such instances are rare and



in the examples considered, we have not found a single case like that. The uniqueness
results in this case can no longer be proved. In order to prove the existence of non-
hyperbolic orbits one may use purely topological methods based on the concept of
topological index or its simple formulation going back to [Miranda, 1940] (see also
[Neumaier, 1990]).

2.6 Reducing the dimension of the search space for the global
version

The problem that arises, when we implement the global version, is the dimension of
the space, where we are looking for periodic orbits. In order to find all period—n orbits
of an m—dimensional map we have to search an mn—dimensional space.

In order to reduce the dimension of the search space we propose to use R™ as the

search space. For the interval vector x € R™ we first produce the sequence (x;)7—,
where x; = f(x) and we set z = (Xg,...,X,_1). Then we apply the global interval

operator to z. If the division is necessary we divide the m—dimensional interval x,
instead of mn—dimensional interval z. Although some of the components of z generated
from x using the procedure described above may by large (due to the wrapping effect
and positive Lyapunov exponents of f if f is chaotic) it appears that this method is
superior to all the other methods.

2.7 Further modifications

In order to speed up the algorithm we add two modifications.

The first modification uses the fact that we search for periodic solutions enclosed in
A. For the interval x under consideration we compute several forward and backward
(if the map is invertible) iterations. If for some positive i the image f*(x) or the inverse
fU(x) lies outside A than there is no periodic orbit in x, which is entirely enclosed in
A. Obviously if A is the trapping region for the map (f(A) C A) it makes no sense to
check the forward iterates as for x N A # () we have f*(x) N A # ) for all n > 0.

The second modification is possible because we are searching for periodic orbits.
As before we compute f*(x) for positive and negative 7. If any of these iterations is
enclosed in the region for which the algorithm was completed then we can skip the
interval x, as there are no new periodic orbits in x.

3 Invariant Part and Nonwandering Part

Our main goal is to find all periodic orbits enclosed in the region A. In many cases it
is possible to reduce the computation time by removing parts of the region A which
cannot contain periodic orbits. In this section, we develop methods for reducing the
search area for periodic orbits based on the notions of invariant and nonwandering part
of a set.

For A C R™ we define the invariant part of A under the map f as

Inv(A) = {z: I(zx)52_, such that vy =z, 2 € A and x4y = f(xy) for all k}. (7)



We say that a set A is a trapping region for f if f(A) C A. If A is a trapping region
the invariant part of A can be also defined as

ov(4) = () /(4). )

n>0

3.1 Invariant sets

Here we describe the algorithm finding for a given set A a possibly small set enclosing
Inv(A). The set found will be the union of boxes (called interval vectors when the
procedure is implemented using computer interval arithmetic).

Let us choose positive real numbers ¢;, i = 1,2,... ,m. Let ¢ = (g1,82,... ,m)-
Let us call an e-box a set of the form

[1{1161, (kl + 1)61] X [k282, (I{Ig + 1)82] X e X [Iﬁm&m, (km + I)Sm], (9)

where k; are integer numbers. Let V = {v;} be a set of boxes. By |V| we will denote
the sum of all boxes in V' (|V| = Jwv;).

Boxes of the form (9) are very well suited for interval computations. First by
changing € one may achieve arbitrary good approximation of representing a given set by
the set of e—boxes. In a computer program when ¢ is fixed an e-box can be represented
as a sequence of integers (ki, ks, ... , k). This makes it easier for the program to check
whether a particular e-box belongs to a set of boxes.

First let us assume that the set A is the sum of a finite number of e-boxes, i.e.,
V = {v;} is a set of boxes and A = |V | =Jv;).

The following procedure from the set of boxes V' removes those which has empty
intersection with the invariant part of A. It is convenient to express the algorithm in
the language of the graph theory. We create the directed graph G = (V, E) where
vertices v; € V are boxes and the edges correspond to the possibility of going from
one box to another under the action of f. In order to create the set of edges for each
box v; we evaluate f(v;) and we add edge e;; if f(v;) Nv; # 0. Below we describe the
algorithm in terms of a simple model language with clear meaning of syntax.

procedure ReducelnvariantPart (V')
E < the set of edges (e;; € E if f(v;)Nv; #D);
repeat
Improved < FALSE;
for all v; € V do begin
if Vj e € E or Vj e;; € £ then begin
remove v; and all edges incident with v; from the graph;
Improved < TRUE;
end
end
until not Improved;
end of ReducelnvariantPart

In the above procedure the box v; is removed if f(v;) Nv; = 0 for all j (the box v;
is not the beginning of any edge in the graph) or if f(v;) Nv; = 0 for all j (the box
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v; is not the end of any edge in the graph). We proceed until no more boxes can be
removed.

In order to compute the invariant part of an arbitrary set A we first choose ¢ =
(€1,...,&m) and cover A by e-boxes. We call the procedure ReduceInvariantPart to
remove boxes which has empty intersection with Inv(A). Then we refine the division of
the remaining boxes and call the procedure ReduceInvariantPart again. We continue
until we reach a prescribed accuracy. Subsequent calls of ReduceInvariantPart and
refining the division is actually better solution then starting with the accuracy we want
to achieve and calling the procedure ReduceInvariantPart once only. This latter
choice would lead to a huge number of vertices in the graph and make the procedure
very slow. The procedure performing this task is presented below.

procedure FindInvariantPart(A,V)
set ¢p; (desired accuracy)
set € = (¢1,69,...,6p); (defining the initial division into boxes)
V < the set of c-boxes covering A;
ReduceInvariantPart (V) ;
while (min(e) < g¢) do begin
£« €/2;
V' < the set of c-boxes covering |[V|N A;
ReduceInvariantPart (V) ;
end
end of FindInvariantPart

The following lemma states that given A the above procedure returns the set of
boxes containing the invariant part of A.

Lemma 1. Let V' be the set of boxes returned by the procedure FindInvariantPart.
Then

Inv(A) C |V] = le (10)
Proof. We show that the condition
Inv(A) C |V (11)

is fulfilled during the whole course of the procedure. At the beginning by the construc-
tion A C |V and since Inv(A4) C A the condition (11) is true. During the procedure
we remove the box v; if f(v;)Nv; =0 forall v; € Vor f(v;)Nv; =0 forall v; € V.

Let us consider the first case, i.e., f(v;) N v; = 0 for all v; € V. Let us choose
x € v;. It follows that f(z) N|V]| = 0. Since Inv(A) C |V| we have f(x) & Inv(A).
From the property of the invariant part (z € Inv(4) = f(x) € Inv(A4)) we obtain
z ¢ Inv(A) for all x € v;. Finally v; N Inv(A) = 0 and Inv(A4) C [V]\ v;.

Now let us assume that f(v;) Nv; = 0 for all v; € V. It follows that « ¢ f(|V])
for all x € v; and hence x ¢ f(Inv(A)) for all € v;. Since the implication x €
Inv(A) = z € f(Inv(A)) is true, we have z ¢ Inv(A) for all z € v; and in consequence
Inv(A) C |[V]\ v;.

We have shown that in both cases Inv(A) C |V|\ vy, so after removing v; from V
the condition (11) still holds. O



3.2 Nonwandering component

Previously we have described the method how to obtain a rigorous enclosure of the
set Inv(A). The invariant part of the trapping region may contain stable and unstable
manifolds of fixed or periodic points. The so-called nonwandering component is perhaps
more important to the study of long—term behavior. Fixed points and closed orbits
are important in the study of dynamical systems, since they represent stationary or
repeatable behavior. A generalization of these sets is the nonwandering set. A point x
is called nonwandering for the map f if for any neighborhood U of x there exists n > 0
such that f*(U)NU # (). The set of nonwandering points is closed and it contains the
closure of the set of fixed points and periodic orbits. For a given set A we define the
nonwandering part of A as the set of nonwandering points of the map f|Inv(A).

We can easily adapt the procedure ReduceInvariantPart to remove from V boxes
having empty intersection with the nonwandering part of |[V|. We modify the procedure
by adding one more condition under which the box may be removed from the graph.
If for a given e-box there is no closed path of edges going through this box then this
box contains wandering points only and must lie completely outside the nonwandering
part. We may then remove this box from the graph. The problem of finding vertices
not belonging to any closed loops is equivalent to searching for strongly connected
components in a graph. This is a standard problem in algorithmic graph theory and
has a very fast solution, which operates in linear time [Gibbons, 1985]. The algorithm
for removing boxes not belonging to the nonwandering part of a set of boxes is given
below.

procedure ReduceNonwanderingPart (V')
E < the set of edges (e;; € E if f(v;))Nv; #0);
repeat
Improved < FALSE;
for all v; € V do begin
if Vj e;; @ E or Vj e;; € E then begin
or v; does not belong to any closed path then begin
remove v; and all edges incident with v; from the graph;
Improved < TRUE;
end
end
until not Improved;
end of ReduceNonwanderingPart

The procedure FindNonwanderingPart for finding the enclosure of nonwandering
part of an arbitrary set is the same as the procedure FindInvariantPart except that it
calls the procedure ReduceNonwanderingPart instead of ReduceInvariantPart. One
can easily show that the set |V| returned by this procedure contains the nonwandering
part of A.

The above procedures can be implemented in a very fast and efficient way. The
most time-consuming part is the generation of the connections in the graph. In sub-
sequent sections, we apply these procedures for finding nonwandering component of
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the trapping regions for the Ikeda and Hénon maps. We will show that with these
procedures one can significantly reduce the region, which needs to be checked in order
to find all periodic orbits for the map.

3.3 Basins of attraction of stable periodic orbits

When studying periodic orbits for a particular system we may encounter a stable
periodic orbit. A question, which arises, is what is its basin of attraction. We say that
a periodic orbit p = {z1,... ,z,} is asymptotically stable if there is some neighborhood
U of p such that f¥(x) € U for k > 0 and f*(z) — p as k — oo for all z € U. A basin
of attraction of a periodic orbit is a set of points which converge to this periodic orbit
as time goes to infinity

{x: f*(x) — p for k — oo}. (12)

Let B and A be arbitrary sets and assume that B C A. The procedure FindBasin
presented below returns the set of boxes V' enclosed in the basin of attraction of B,

V|Cc{z:3In>0 [f"(x) € B}. (13)

The search is limited to A, i.e., we check only boxes, which has non—empty intersection
with A. At the beginning of the procedure V' is the set of boxes enclosed in B and W
if the set of boxes, which covers A\ B. We move a box w; from W to V if this box
or its image is enclosed in V. We continue until no more boxes can be moved from W
to V. Then we refine the division of boxes and repeat computations until a prescribed
accuracy is achieved.

procedure FindBasin(B,A,V)
set &o;
set € = (21,62, ,Em);
Vo« 0;
repeat
V' < the set of c-boxes enclosed in BU |V];
W < the set of c-boxes covering A\ (BU|V|);
repeat
Improved < FALSE;
for all w; € W do begin
if w; C |V] or f(w;) C|V| then
move w; from W to V;
Improved < TRUE;
end
end
until Improved;
£+ ¢/2;
until (min(e) < g¢);
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end of FindBasin

The above procedure describes the basic idea for finding a subset of A of points,
which eventually visit B. Several refinements are possible. One may for example
use higher iterations of f as a test condition for moving w; from W to V. Another
modification is to evaluate f(w;) after dividing w; into smaller boxes. This helps to
avoid the wrapping effect.

Now we explain how to use the above algorithm to find the basin of attraction of
a stable periodic orbit. Assume that p is an asymptotically stable periodic orbit and
we want to find the intersection of its basin of attraction with a given set A. Since
the orbit is asymptotically stable it is easy to find a neighborhood U of p which is a
trapping region for the map. We use this set as a starting point for our procedure. To
find intersection of A with the basin of attraction of p we call the procedure FindBasin
with parameters U and A. This allows us to obtain rigorous approximation of the basin
of attraction. It is rigorous in the sense that the union of the set of boxes V' returned
by the procedure is enclosed in the basin of attraction of p. This information can be
used for many different purposes. One of them is search for periodic orbits. It is clear
that there is no other periodic orbits of any period within the basin of attraction of
p. Hence, if we locate the stable periodic orbit we can exclude points belonging to its
basin of attraction from search for any other periodic orbits.

In the next part of the paper we use the above procedure for finding basin of
attraction of the stable period—1 orbit for the Ikeda map.

4 Hénon Map

As a first example, we consider the Hénon map defined by the following equation
[Hénon, 1976

h(z,y) = (1 +y — az?, br), (14)

where @ = 1.4 and b = 0.3 are the “classical” parameter values for which the famous
Hénon attractor is observed.

It is well known [Hénon, 1976] that the set 2 defined as a quadrangle ABCD,
where A = (—1.33,0.42), B = (1.32,0.133), C = (1.245, —0.14) and D = (—1.06, —0.5)
is a trapping region for the Hénon map, i.e. h(Q) C . In our study we search
for periodic solution in the trapping region €2, which encloses the strange attractor
observed numerically. The trapping region {2 and a trajectory of the Hénon map are
shown in Fig. 1.

It can be easily checked that there are two fixed points for the Hénon map:

P1 = (ZL‘l,bZL'l), P2 = (.’L‘Q,b.’lfg). (15)

where

b—1++/(1—-0)2+4a
2a

Both of then are unstable. The point P; is located inside the trapping region while P
lies outside (compare Fig. 1).

Ti,2 =
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Figure 1: Trajectory of the Hénon map consisting of 20000 points and the trapping
region €2, unstable fixed points: inside the trapping region (4) and outside the trapping

region (x).
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Invariant part | Nonwandering part

n | box # | area box # | area

1 22| 1.83 20 | 1.67

2 o1 | 1.06 48 | 1.00

3 1371 0.714 118 | 0.615

4 325 | 0.423 278 | 0.362

D 776 | 0.253 660 | 0.215

6 1892 | 0.154 1531 | 0.125

7 4577 | 0.0931 3387 | 0.0689

8 | 10464 | 0.0532 7804 | 0.0397

91 24768 | 0.0315 | 18665 | 0.0237
10 | 59581 | 0.0189 | 44817 | 0.0142
11 | 141426 | 0.0112 | 107938 | 0.00858

Table 1: The number of e-boxes covering the invariant part and nonwandering part
of the rectangle [—1.5,1.5] x [—0.5,0.5] and the area of the boxes, for given n ¢ =

(1/(2"),1/(3-2")).

4.1 Invariant part and nonwandering part

First let us find invariant part and nonwandering part of the rectangle [—1.5,1.5] X
[—0.5,0.5] enclosing the trapping region € and the unstable fixed point P,.

We find sets of e-boxes covering the invariant part and nonwandering part for
e=(1/2",1/(3-2")),n =1,2,...,11. We also compute the area of the region obtained.
The results are summarized in Table 1. The area for n = 11 of the region containing
the nonwandering part is smaller than 0.0086. Hence using the representation of the
nonwandering region by e~boxes we can reduce the search region considerably (the area
of the initial rectangle is 3).

The results obtained for invariant and nonwandering parts are shown in Fig. 2 and
Fig. 3 respectively. Using different shades we plot results for different values of ¢ with
darker color meaning finer division — larger n (in black we plot the results obtained for
n = 11). One can clearly see that the enclosure of the invariant part contains the chaotic
attractor, the unstable fixed point P, and the connection between these two sets. The
enclosure of the nonwandering part is smaller and has two components. One contains
the chaotic attractor while the second (very small) contains the unstable fixed point.
We were able to break the connection between these two sets and removed the part
of the unstable manifold of the fixed point P, from the enclosure of the nonwandering
part.

4.2 Periodic orbits

In this section, we test the interval methods for finding periodic orbits described pre-
viously. First, we compare five versions of the interval Newton method: standard
version (Newton Standard), standard version with modifications (Newton Standard
+), global version with the search space R? (Newton Global), global version with the

14
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Figure 2: Hénon map, invariant part of the region [—1.5,1.5] x [—0.5,0.5], approxima-
tions of the invariant part obtained for different ¢ are plotted using different shades,
unstable fixed points: inside the trapping region (+) and outside the trapping re-

gion (x).
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Figure 3: Hénon map, nonwandering part of the rectangle [—1.5,1.5] x [—0.5,0.5], un-
stable fixed points: inside the trapping region (+) and outside the trapping region (x).
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Figure 4: Computation time needed to find all period-n cycles using different versions
of the interval Newton method: standard version, standard version with modifications,
global version, global version with modifications and global version with R?" search
space.

10 T T T T T
10 | .
10° | 1
10° | .
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Krawczyk Global +

&——= Hansen-Sengupta Global +

10_2 1 1 1 1 1
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Figure 5: Computation time needed to find all period-n cycles using Newton, Krawczyk
and Hansen—Sengupta methods.
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search space R? and with modifications (Newton Global +) and global version with
R?" search space (Newton Global N). In Fig. 4 we plot the computation time necessary
to find all period-n cycles. For n < 3 the standard Newton method is the fastest. For
4 < n < 12 the standard interval Newton method with modifications is the quickest
one. It is not possible however to use the standard Newton method for finding all
longer orbits. It appears that the method fails to find all periodic orbits with period n
for n > 17. For n = 18 there are some periodic points x for which one cannot check the
assumption N(x) C x for any interval vector x 3 . This is due to the wrapping effect,
which causes that DA"(x) has a very large diameter [Galias, 1998a|. For N > 13 the
global version with reduced search space and other improvements is better.

It is interesting to note that the global version with search space R?" is the worst one.
Although many rectangles can be excluded before evaluation of the interval operator,
the algorithm is very slow. It is even slower than the algorithm based on the standard
Newton operator and hence of not much use.

In Fig. 5 we show the computation time for global versions of Newton, Krawczyk
and Hansen—Sengupta methods. One can clearly see that there are no significant
differences in computation time between these three methods.

Using the Krawczyk method which is slightly better than the two other methods
we have found all periodic orbits with period n < 30. The periodic orbits found are
plotted in Fig. 6. The results are summarized in Table 2, where we give the number
Q,, of periodic orbits with period n, the number P, of fixed points of A", estimation
of topological entropy, and the number of rectangles into which the initial region was
divided in order to find all periodic orbits. In particular, we have proved that there are
no period—3 and period—5 orbits for the Hénon map within the trapping region. We
have proved that there are exactly 109033 periodic orbits with period n < 30 and there
are 3065317 points belonging to these orbits. These unstable periodic points shown in
Fig. 7 give very good approximation of the Hénon attractor.

In Fig. 7 one can see small regions of the attractor not visited by periodic orbits
found. Knowing the positions of periodic orbits, we can study an interesting problem
how well the periodic orbits fill the attractor. In Table 3 we collect several numbers
which give some insight into this problem. D. and D, describe the performance of
the interval method. D, is the minimum diameter of the interval for which uniqueness
of period—n orbit was proved. We want this number to be as large as possible so we
do not need to divide the search area in a very fine way to find all periodic orbits.
It cannot be however larger that the distance between the closest period—n points.
D, is the maximum diameter of interval for which the existence was proved. This
number describes the accuracy of the position of periodic orbit found. Clearly the
accuracy degrades with n. Dy, Dmax, and D,, describe how well periodic orbits fill
the attractor. For each period—n point we find its closest neighbor and we define Dy,
D,.x, and D,, as the minimum, maximum, and average distance from the closest
neighbor. The smaller D, is the more difficult it is to find all periodic orbits as
we need to divide the search region into smaller rectangles, as the existence theorem
cannot work if there are two or more periodic points within a given rectangle. The
value of Dy, = 8.5-1078 for n = 27 means that some period-27 points are located
very close to each other and we need a very fine division of the search area in order
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Figure 6: Period-n cycles of the Hénon map for n = 1,...,30 within the trapping
region.

19



0.5

| | |
-1.0 0.0 1.0

-0.5

Figure 7: Cycles within the trapping region of the Hénon map with period n =
1,...,30.
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n Qn P, Q<n P, H, rectangles
1 1 1 1 1| 0.00000 9
2 1 3 2 31 0.54931 21
3 0 1 2 3 | 0.00000 41
4 1 7 3 71 0.48648 101
5 0 1 3 7 1 0.00000 89
6 2 15 5 19 | 0.45134 205
7 4 29 9 47 | 0.48104 285
8 7 63 16 103 | 0.51789 569
9 6 55 22 157 | 0.44526 737
10 10 103 32 257 | 0.46347 1149
11 14 155 46 411 | 0.45849 1521
12 19 247 65 639 | 0.45912 2457
13 32 417 97 1055 | 0.46408 4093
14 44 647 141 1671 | 0.46231 5973
15 72 1081 213 2751 | 0.46571 9653
16 102 1695 315 4383 | 0.46471 16281
17 166 2823 481 7205 | 0.46739 26273
18 233 4263 714 11399 | 0.46432 43545
19 364 6917 1078 18315 | 0.46535 71657
20 535 10807 1613 29015 | 0.46440 121181
21 834 17543 2447 46529 | 0.46535 199889
22 | 1225 27107 3672 73479 | 0.46398 333625
23 | 1930 44391 5602 | 117869 | 0.46525 560725
24 | 2902 69951 8504 | 187517 | 0.46481 961981
25 | 4498 | 112451 | 13002 | 299967 | 0.46521 1584185
26 | 6806 | 177375 | 19808 | 476923 | 0.46485 2670517
27 | 10518 | 284041 | 30326 | 760909 | 0.46507 4346609
28 | 16031 | 449519 | 46357 | 1209777 | 0.46485 7346653
29 | 24740 | 717461 | 71097 | 1927237 | 0.46495 | 12264301
30 | 37936 | 1139275 | 109033 | 3065317 | 0.46486 | 21058121

Table 2: Periodic orbits for the Hénon map. Q, — number of periodic orbits with
period n, P, — number of fixed points of A", Q<, — number of periodic orbits with
period smaller or equal to n, P<, — number of fixed points of A’ for i < n, H, =
n~log(P,) — estimation of topological entropy based on P,.
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D, D. Diin Diax D ayer
7.2-107! | 4.5-10716 | — — —
9.1-1072 | 7.8-107'6 | 0.478 1.1120 | 0.69
9.1-1072 | 6.7-10716 | — — —
1.2-1072 | 1.2-10~% | 0.235 0.4136 | 0.31
1]321072 | 7810716 | — — —

15| 3.8:1073 | 1.4-10~ | 0.063 0.1770 | 0.11

29 | 1.3-1073 | 2.0-1071% | 0.016 0.1276 | 0.062

63 | 2.9-107* | 5.4-107'5 | 5.4-1073 | 0.1032 | 0.041
55| 1.5-10~* | 1.1-10~** | 1.7-1073 | 0.1110 | 0.033
10 103 | 1.5-107% | 6.0-1071% | 2.0-1073 | 0.1183 | 0.024
11 155 | 4.9-107° | 7.5:10715 | 9.6-10~* | 0.0699 | 0.017
12 247 | 5.2:107° | 7.0-107*® | 5.0-10~% | 0.0498 | 0.011
13 417 | 7.5-107% | 2.7-107'% | 3.8-10~* | 0.0519 | 0.0079
14 647 | 6.0-10°% | 6.9-1071% | 2.4-10~% | 0.0299 | 0.0044
15 1081 | 1.9-107% | 1.3-10~'* | 1.2-10~* | 0.0237 | 0.0034
16 1695 | 7.4-1077 | 2.9-107* | 8.6-107° | 0.0235 | 0.0021
17 2823 | 7.0-1077 | 1.7-10~™ | 3.9-10~° | 0.0210 | 0.0015
18 4263 | 7.8-107% | 1.2-10713 | 8.9-107% | 0.0214 | 0.0011
19 6917 | 2.2-10~7 | 2.1-10~** | 1.4-107° | 0.0139 | 0.00077
20 | 10807 | 1.6-10=% | 1.5-10~"3 | 3.7-107% | 0.0138 | 0.00053
21 | 17543 1 9.9-107° | 5.2-107* | 4.9-107% | 0.0077 | 0.00038
22 | 27107 | 4.9-107° | 2.7-10~' | 5.5-10~7 | 0.0109 | 0.00026
23 | 44391 | 3.2-107° | 6.4-10°™ | 1.3-107% | 0.0055 | 0.00018
24 | 69951 | 1.4-107° | 1.4-10~' | 3.2-10~7 | 0.0047 | 0.00012
25 | 112451 | 5.0-10710 | 9.6-10~ | 3.3-10~7 | 0.0041 | 0.000086
26 | 177375 | 2.2-10710 | 9.2.10=™ | 1.2-10~7 | 0.0026 | 0.000060
27 | 284041 | 5.3-10711 | 1.7-10713 | 8.5-1078 | 0.0044 | 0.000041

-~ = W =3
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Table 3: Short cycles for the Hénon map, D. — diameter of interval for which unique-
ness was proved, D, — diameter of interval for which existence was proved, closest
neighbor distance: D, Dmax, Day-
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to find all periodic orbits. Large Dy,., indicates that there are period—n points well
separated from other such points and this means that periodic points do not fill the
attractor densely. Dp.x does not decrease as fast with n as one could expect (see for
example D for n =22,...,27). This corresponds to clearly visible gaps in Fig. 7.

4.3 Estimation of topological entropy

In this section we use the number of periodic orbits for the estimation of topological
entropy of the Hénon map.

Topological entropy H(f) of a map f characterizes “mixing” of points by the map
f. One of the equivalent definitions of topological entropy is based on the notion of
(n,e)-separated sets (see [Bowen, 1971]).

A set E C X is called (n,e)-separated if for every two different points x,y € E,
there exists 0 < j < n such that the distance between f7(z) and f7(y) is greater than
e. Let us define the number s,(¢) as the cardinality of a maximum (n,e)-separated
set:

sp(e) = max{ card E : E is (n,e)-separated }
The number

1
H(f) = lim lim sup — log s,,(¢), (16)
e=0 n—oo N
is called the topological entropy of the map f. The number of periodic orbits is closely
related to the topological entropy. For axiom A diffeomorphisms we have
log P,
H(f) = lim ~2>-", (17)

n—o0 n

where P,, denotes the number of fixed points of f™. It is also possible to use the number
of periodic orbits for the estimation of topological entropy when there exists a symbolic
dynamics for the map.

Using the existence of symbolic dynamics for h” one can prove that (compare
[Zgliczynski, 1997, Galias, 1998b]):

H(h) > —log2 > 0.099.

~| =

Similarly one can obtain the estimation of topological entropy based on the existence
of symbolic dynamics for h? (compare [Galias, 1998b]):

1 5+1
H(h)Z—log\[+

> (.24.
2 2

In Fig. 8(a) we plot in semilogarithmic scale the number P,, of fixed points of h™ as
a function of n. One can see that for n > 10 the plot is almost linear, which indicates
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Figure 8: (a) The number of fixed points of A" and (b) Estimation of topological
entropy of the Hénon map based on the number of low—period cycles.

that the number P,, can be used for obtaining a good approximation of topological
entropy. Here we use the formula

log P
H,(h) = ="

(18)

n

as the approximation of topological entropy. The results are plotted in Fig. 8(b) (see
also Table 2). One can see that H, (h) is almost constant for n > 10. This lets us state
the hypothesis that the topological entropy of the Hénon map is close to 0.465.

5 Ikeda Map

As a second example let us consider the Tkeda map [Hammel et al., 1985]
f(z) =p+ Bexp (ik —io/ (1 + |2]?)) 2, (19)

where z = x + 4y is a complex number. This map can be written as a two dimensional
system in the following form:

f(z,y) = (p+ B(zcost — ysint), B(xzsint + ycost)), (20)

where t = t(x,y) = k — o/ (1 + 2% + y?).
First let us observe that the ball K = B((p,0),pB/(1 — B)) is a trapping region for
the map f (f(K) C K) [Hammel et al., 1985]. For z € K we have

pB

[f(z) =pl < Blz| < Bp+ 7—5) = 75
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[nvariant part | Nonwandering part
n | box # | area | box # area
0 61 | 61.00 61 61.00
1 155 | 38.80 69 17.20
2 328 | 20.50 176 11.00
3 789 | 12.30 368 5.75
4 1971 | 7.70 1098 4.29
5 5392 | 5.27 3597 3.51
6| 15399 | 3.76 | 11890 2.90
7| 46604 | 2.84 | 39660 2.42
8 | 145346 | 2.22 | 131837 2.01

Table 4: The number of e-boxes covering the invariant part and nonwandering part of
the trapping region and sum of the area of the boxes for ¢ = (1/2",1/2").

and hence f(z) € K.

It may be shown that all initial points are mapped to this trapping region in finite
time and hence we may limit our analysis to the behavior of the system in the trapping
region.

We consider the Ikeda map with the following parameter values: p =1, B = 0.9,
k = 0.4 and a = 6, for which in simulations a chaotic behavior is observed. A typical
chaotic trajectory is shown in Fig. 9.

There are three fixed points of the map. They belong to the following interval
vectors:

Py € (2.972131617910553, 4.14594642139531),
P, € (0.53275462294073;, 0.2468967727110113),
Py € (1.11426961458135, —2.2856944609861¢7).

The first fixed point is stable and the two others are unstable. P, belongs to the
numerically observed chaotic attractor.

We have found sets of e-boxes enclosing the invariant part and the nonwandering
part of the trapping region. The results are shown in Fig. 10 and 11 respectively and
summarized in Table 4. We plot the results for e = (1/2",1/2") for n =0, ... , 8 using
different shades and black denoting the smallest set (n = 8).

The invariant part contains the stable fixed point, unstable periodic point, chaotic
attractor and unstable manifold of P; connecting this point with the stable fixed point
and the chaotic attractor. The area of the region obtained is 2.22.

The nonwandering part is smaller than the invariant part. Its area is 2.01. It does
not contain the heteroclinic orbit connecting the unstable and stable fixed points. We
were not able however to break the connection between the unstable periodic orbit and
the region where the numerically observed attractor exists. Hence we cannot state for
sure that the unstable fixed point P3; does not belong to the attractor.

The nonwandering region contains all periodic orbits and w-limit sets for the sys-
tem. Hence in the search for periodic orbits we may limit ourselves to the region
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Figure 9: Tkeda map, a chaotic trajectory, the unstable point inside the attractor (+)
and unstable fixed point located slightly below the attractor ().
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Figure 10: Tkeda map, invariant part of the trapping, the stable fixed point P; (x) and
the unstable fixed points P, and P5 (+,%).
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Figure 11: Tkeda map, nonwandering part of the trapping region.
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containing the nonwandering part, area of which is much smaller than the area of the
trapping region 254.5.

In order to better understand the dynamics of the system we have found the basin of
attraction of the stable fixed point P;. First, we have located a trapping region around
the stable fixed point. The size and the shape of the basin of attraction is a global
feature and cannot be studied by means of the Jacobian matrix at the stable fixed point
alone. However, analysis of the Jacobian matrix helps us to choose the initial trapping
region. Close to the fixed point when the linear approximation is valid, we may easily
find a small set, which is a trapping region. For the algorithm FindBasin this set
should be as large as possible. The matrix norm induced by the Euclidean norm for
the Jacobian matrix at P is 1.753 > 1. This means that in the linear approximation
circles are not trapping regions and we need to start with an ellipse. We have found
that the following ellipse is a trapping region for the map:

cos’¢  sinp sin¢  cos? o
( D) + 2 ) (37 - .T[))2 + < 2 + 2 > (y - y0)2 +
1 T3 ry 3

(- %) o — )y - <1 o)
ryoory
where zy = 2.972132, yo = 4.145946, r, = 1.2, ro = 2.1, ¢ = 1. Then using the
hyperbolicity of the fixed point we have shown that the invariant part of this trapping
region is P; (all trajectories starting in the ellipse converge to the fixed point).
Finally using the algorithm FindBasin we have found a subset of the rectangle
[—10, 10] x [—10, 10] enclosed in the basin of attraction of P, (see Fig. 12). The region
found has an area of 357.005. Since in each basin of attraction there is only one periodic
orbit once we locate this orbit we may exclude the basin of attraction from the region
where we search for other periodic orbits.

5.1 Periodic orbits with period n < 15

We have found all periodic orbits for the Ikeda map with period smaller or equal to
15. For the standard version, the Krawczyk and Hansen—Sengupta operators are 2 or
3 times faster than the Newton operator is. However for the global version there are
no significant differences in computation time. The results are collected in Table 5.
Periodic orbits found are shown in Fig. 13 and 14. One can see that low—period cycles
do not fill the attractor uniformly and an interesting Cantor set like structure is formed.
As for the Hénon map we compute the closest neighbor distance and summarize the
results in Table 6.

5.2 Estimation of topological entropy

As before we use the formula (18) to estimate the topological entropy of the map.
The values of H, (h) = log(P,)/n for different n are collected in Table 5 and plotted
in Fig. 15. The approximation stabilizes as n is increased. This lets us state the
hypothesis that the topological entropy of the Ikeda map for the parameters considered
is H(f) ~ 0.6.
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Figure 12: Tkeda map, basin of attraction of the stable fixed point P, (x), the unstable

fixed point P, (4) belonging to the attractor and the unstable fixed point Py () lying
on the border of the basin of attraction of P;.
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Figure 13: Tkeda map, periodic orbit with period n < 15.
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Figure 14: Tkeda map, periodic orbits with period n = 1, ..., 15, basin of attraction of
Py
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Qn Pn an Pgn Hn
2 2 2 21 0.6931
1 4 3 4 10.6931
2 8 5 10 | 0.6931
3 16 8 22 | 0.6931
4 22 12 421 0.6182

7 52 19 84 | 0.6585
10 72 29 154 | 0.6110
14 | 128 43 266 | 0.6065
26 | 242 69 500 | 0.6099
10| 46| 484 | 115 960 | 0.6182
11| 76| 838 | 191 | 1796 | 0.6119
12 1 110 | 1384 | 301 | 3116 | 0.6027
13| 194 | 2524 | 495 | 5638 | 0.6026
14 | 317 | 4512 | 812 | 10076 | 0.6010
15 | 566 | 8518 | 1378 | 18566 | 0.6033

© 00~ O Uk w3

Table 5: Q,, — number of periodic orbits with period n, P,, — number of fixed points
of f", Q<, — number of cycles with period smaller or equal to n, P<,, — number of
fixed points of f* for 1 < n, H, = n~'log(P,) — estimation of topological entropy.

Dc De Dmin Dmax Dav

n

213.19-10°2 [2.98-10 1% | 2.599 2.599 | 2.599

411.69-107% | 2.98-10~'* | 0.370 1.783 | 0.8445

816.37-10°% | 3.38-10714 | 0.395 1.220 | 0.6442

16 | 8.01-107° | 3.56-10~' | 0.175 0.956 | 0.3739
8.01-107° | 3.85-10714 | 0.143 0.644 | 0.3033

52 | 2.40-107° | 5.20-1071* | 4.27-1072 | 0.495 | 0.1404
72 | 3.48-107% | 6.89-107'* | 1.98-10~2 | 0.355 | 0.1057
128 | 1.23-1076 | 1.41-10713 | 4.56-1072 | 0.264 | 0.0726
242 | 7.80-10~8 | 5.89-10713 | 7.39-10~* | 0.210 | 0.0456
10 | 484 | 5.92-10°8 | 2.72-10713 | 1.25-1073 | 0.143 | 0.0310
11| 838 ] 1.26-107% | 3.25-10~13 | 7.22-10=% | 0.119 | 0.0226
12 | 1384 | 5.25-107° | 2.92-10~1 | 4.11-10~% | 0.337 | 0.0160
13 | 2524 | 2.06-10~° | 3.12-10~3 | 2.55-10~* | 0.270 | 0.0109
14 | 4512 | 4.13-10719 | 8.36-107% | 7.01-107° | 0.260 | 0.00753
15 | 8518 | 8.08-10~'" | 5.14-10~13 | 1.02-10=* | 0.197 | 0.00515

© 00~ U W N3
[N}
N}

Table 6: P, — number of fixed points of f", D. — diameter of interval for which
uniqueness was proved, DD, — diameter of interval for which existence was proved,
closest neighbor distance: minimum Dy, maximum D,,,, average Dy, .
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Figure 15: Estimation of topological entropy for the Ikeda map based on the number
of short periodic orbits.

6 Conclusions

In this paper we have shown that interval arithmetic is a very powerful tool for in-
vestigations of nonlinear systems and rigorous studies of periodic orbits in particular.
We have described methods for computation of the enclosure of the invariant part and
the nonwandering part of a given set. We have also developed methods for finding all
low period cycles for the discrete-time dynamical systems based on interval operators.
We have compared the performance of several interval methods. We have shown that
the global version with the reduced search space is superior to all other methods. We
have also shown that for the maps considered using Krawczyk or Hansen—-Sengupta
operators does not reduce the computational time considerably. It is true however that
there exist systems for which Newton operator is significantly slower then the two other
operators. A very simple example is the non—invertible logistic map.

Using these methods we have found all periodic orbits for the Hénon map with
period n < 30 and for the Ikeda map with period n < 15 and estimated the topological
entropy of these maps.

It was shown that the information about periodic orbits which can be obtained using
the presented methods allows to investigate further the structure of chaotic attractors.
First, the number of periodic orbits gives us a good approximation of invariants like
topological entropy. The convergence of the approximation is considerably fast. Sec-
ond, we can easily identify regions within the chaotic attractor not visited by short
cycles and this gives us better insight into the structure of the attractor.

The methods presented can also be applied to investigate periodic orbits for conti-
nuous—time systems by using the technique of Poincaré map [Galias, 1999].
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Appendix

In the appendix we present a simple proof of the theorem on the existence, uniqueness,
and nonexistence of zeros of a map using interval Newton operator.

Theorem 2. Let f : R* D D — R" be a continuously differentiable mapping. Let
x C D be an interval vector and let us choose xy € x. f'(x) is the interval arithmetic
evaluation of the Jacobian of f over the interval x. We assume that f'(x)~! ewists.

Let N(x) = xg — f'(x) "L f (o).
(i). If N(x)Nx =0 then f has no zero in x.
(ii). If N(x) C x then f has a unique zero in X.

Proof. Let g(t) = f(zo + t(x — xp)). It is clear that

F(2) — F(w0) = (1) — g(0) = / J()dt = / F(o + 1z — w0)) (& — wo)dt,  (22)
Hence

f(@) = f(xo) = J(x) (2 — z0), (23)

where

() = /0 (w0 + t(x — 20))dt. (24)

If x,2p € x and t € [0,1] then zo + t(x — xy) € x as the interval vector x is convex.
Hence J(z) € f'(x). From the existence of f'(x) ! it follows that f’(x) does not contain
any singular matrix and hence .J(z) is nonsingular for all z € x.

(). First we show that if f has a zero z* in x then 2* € N(x). The first part of the
theorem will then follow.

J(@%) (@™ — o) = f(2") = f(wo) = —f (o). (25)

Since J(z*) € f'(x) it is nonsingular and therefore z* = zy — J(2*) "' f(y) € x¢ —
(%) f(zg) = N(x). It is clear that if x N N(x) = ) then x contains no zeros of f.
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(ii). Let us define p(z) = o — J(z) 1 f (o).
p(z) = 29 — J(2) 7' f(20) € N(x) C x. (26)

for all x € x. Since p(x) C x by Brouwer’s fixed point theorem there exists z* such
that p(z*) = 2*. Then
0=p(z*) —2* =z — J(2*) " f () — 2*
= o — J(a*) (f(2*) = J(")(@" — x0)) — 2*
=xp— J(2*) (2" + 2t —xg — 2t = —J(a¥) " f(a).
Since J(z*) is nonsingular f(z*) = 0.

Now we prove the uniqueness of the fixed point. Assume that z* and z** are two zeros
of f in x. We will show that from the existence of f’(x)~! if follows that they must be
equal.

J(z")(@" —2™) = f(2") = f(a™) =0, (27)

where
J(a*) = /0 F@™ 4t — 7))t (28)

As J(z*) is nonsingular it follows that z* = z**.
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