
INTERVAL METHODS FOR RIGOROUS

INVESTIGATIONS OF PERIODIC ORBITS

ZBIGNIEW GALIAS

Institute for Nonlinear Siene, University of California, San Diego

9500 Gilman Dr., San Diego, CA 92093-0402, USA

e-mail: galias�usd.edu

permanent address

Dept. of Eletrial Engineering, University of Mining and Metallurgy

al. Mikiewiza 30, 30{059 Krak�ow, Poland

Abstrat

In this paper, we investigate the possibility of using interval arithmeti for

rigorous investigations of periodi orbits in disrete{time dynamial systems with

speial emphasis on haoti systems. We show that methods based on interval

arithmeti when implemented properly are apable of �nding all period-n yles

for onsiderable large n. We ompare several interval methods for �nding periodi

orbits. We onsider the interval Newton method and methods based on the

Krawzyk operator and Hansen{Sengupta operator. We also test the global

versions of these three methods. We propose algorithms for omputation of the

invariant part and nonwandering part of a given set and for omputation of the

basin of attration of stable periodi orbits, whih allow reduing greatly the

searh spae for periodi orbits.

As examples we onsider two{dimensional haoti disrete{time dynamial

systems, de�ned by the H�enon map and the Ikeda map, with the \standard"

parameter values for whih the haoti behavior is observed. For both maps

using the algorithms presented in this paper, we �nd very good approximation of

the invariant part and the nonwandering part of the region enlosing the haoti

attrator observed numerially. For the H�enon map we �nd all yles with period

n � 30 belonging to the trapping region. For the Ikeda map we �nd the basin

of attration of the stable �xed point and all periodi orbits with period n � 15.

For both systems using the number of short yles, we estimate its topologial

entropy.
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1 Introdution

Finding periodi orbits of nonlinear systems is an important problem enountered

frequently in a variety of �elds. In partiular the problem of existene of periodi

orbits is ruial for analysis of haoti systems, whih under ertain assumptions are

haraterized by the existene of in�nitely many unstable periodi orbits embedded

within the haoti attrator. The struture of the strange attrator is built on an

in�nite set of unstable periodi orbits. Periodi orbits are ordered hierarhially, longer

orbits give better approximations to the haoti attrator. The problem of existene of

periodi orbits is also of great importane in many appliations. In the area of haoti

systems one ould mention ontrolling haos by stabilization of one of in�nitely many

periodi orbits embedded in a haoti attrator [Ott et al., 1990℄ or using periodi orbits

as a ommuniation alphabet in a haos ommuniation sheme [Hayes & Grebogi,

1995℄.

Usually periodi orbits are found in numerial studies but there is no guarantee

that there exists a true periodi trajetory that stays near a omputer{generated one.

This problem is espeially important for haoti systems, as due to inevitable round{o�

errors and sensitive dependene on initial onditions usually after ertain number of

iterations (100 or so) the omputer{generated trajetory beomes unorrelated with

the true trajetory. A very important question is whether there really exists a true

periodi trajetory in the neighborhood of the omputer{generated one.

A method to �nd periodi solutions form a time series was developed in [Lathrop &

Kostelih, 1989℄. In this method one searhes for parts of a trajetory whih are almost

periodi (the trajetory returns lose to the initial point). The method is based on the

assumption that in the neighborhood of suh a fragment there exists a real periodi

orbit. However, one never knows if a real trajetory atually exists. For example, in a

quasiperiodi motion de�ned on the two-dimensional torus the method of lose returns

would �nd many periodi orbits but we know that there exists no periodi orbit for

this system.

The basi numerial method for detetion of period{n orbit of a map f is based on

the Newton method for searhing for zeros applied to the funtion g(x) = x � f

n

(x).

The proess of �nding periodi orbit begins with the hoie of initial point followed

be omputation of suessive orretions. The method has very good onvergene

properties (the onvergene is quadrati), assuming that the initial point is suÆiently

lose to the periodi orbit. We have however no rigorous proof that the periodi orbit

exists. In order to �nd all periodi orbits one an hek many initial onditions for

example using a uniform grid. Again it is not sure that all periodi orbits are found.

There are several methods, whih an be used for proving rigorously the existene

of periodi orbits. Many of them are a simple onlusion of the Brouwer's �xed point

theorem, whih states that if a onvex ompat set X � R

n

is mapped by a ontinuous

map f into itself then f has a �xed point in X (i.e., there exist x 2 X suh that

f(x) = x). Using this theorem one an easily prove the existene of a stable periodi

orbit. If the orbit is asymptotially stable one an �nd a neighborhood U suh that

f

n

(U) � U , proving that there exists period{n point of f in U . Similarly, if the map

is invertible one an prove the existene of a periodi orbit unstable in all diretions
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(it beomes stable when the diretion of time is hanged). Unfortunately, this method

annot be used diretly for proving the existene of saddle type orbits.

Another lass of methods is based on the �xed point index properties. In one of the

methods one has to prove the topologial onjugay of the map in the neighborhood

of the �xed point with a linear map possessing a saddle{type �xed point [Miranda,

1940, Galias et al., 1994℄. The seond method involves omputation of an integral of

a ertain funtion over a irle surrounding a �xed point of the map. If this integral is

non-zero then the existene of the �xed point is ensured [Krasnosielskij, 1963℄. This last

method an be used when the map is two{dimensional. Both methods allow proving

the existene of all types of periodi orbits (also of the saddle{type). Their main

drawbak is non-eÆieny | one has to perform a lot of alulation in order to prove

the assumptions of the existene theorem and ontrol the omputational error (in ase

of a omputer assisted proof).

The reent development of new interval methods for proving the existene and

uniqueness of zeros of nonlinear funtions have opened the possibility of rigorous inves-

tigations of haoti systems in terms of unstable periodi orbits. We ompare several

interval methods, whih an be used for �nding all low{period yles of a nonlinear

map. The main riterion is the omputation time needed to �nd all period{n orbits

in the onsidered region. In Se. 2 we present a short introdution to interval arith-

meti. We briey reall the de�nitions of the interval operators and show how to use

these operators and bisetion tehnique to �nd all periodi orbits for given period.

We test methods based on the interval Newton operator, the Krawzyk operator and

the Hansen{Sengupta operator. We also onsider the so{alled global versions of these

methods, where the problem of existene of periodi orbits is translated to the problem

of existene of zeros of a higher{dimensional map. We introdue a modi�ation where

the dimension of the searh spae for the global version is redued to the dimension of

the original dynamial system. We also desribe improvements useful espeially if the

map is invertible and if we know a trapping region of the system.

In Se. 3 we present algorithms for omputation of invariant and nonwandering part

of a given set and an algorithm for omputation of the basin of attration of stable

periodi orbits, whih may signi�antly redue the searh spae for periodi orbits.

In Ses. 4 and 5 we use the algorithms presented in this paper to study the existene

of periodi orbits for the H�enon map and the Ikeda map. For both systems, we �nd

very tight enlosures of the invariant and nonwandering parts of the trapping region

in whih haoti behavior is observed. We also �nd all low period yles and estimate

the topologial entropy of both maps.

2 Inlusion Methods for Proving the Existene of

Periodi Orbits

In this setion we present di�erent interval methods for �nding periodi solutions of

disrete{time dynamial systems. Let us start by a short desription of interval arith-

meti | a basi omputational tool used in this study.
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2.1 Interval arithmeti

Interval arithmeti is a growing branh of applied mathematis developed to satisfy

the demands on numerial omputations to obtain rigorous results. Computations

in properly rounded interval arithmeti produe results, whih ontain both mahine

arithmeti results and also true (in�nite arithmeti preision) results.

Here we present a very short introdution to the interval arithmeti (for the thor-

ough presentation see [Moore, 1979℄ or [Alefeld & Herzberger, 1983℄). In this paper,

we use boldfae letters to denote intervals, interval vetors, and interval matries and

usual math itali lowerase letters to denote \real" quantities. By an interval we mean

a losed bounded set of real numbers

x = [a; b℄ = fx : a � x � bg:

We an also regard interval as a number represented by the ordered pair of its endpoints

a and b. By an n{dimensional interval vetor we mean an ordered n{tuple of intervals

v = (x

1

;x

2

; : : : ;x

n

).

On the set of intervals we de�ne basi arithmeti operations.

x

1

� x

2

= fx = x

1

� x

2

: x

1

2 x

1

; x

2

2 x

2

g: (1)

where � is any of the following operators: +, �, �, =. All operations but division are

de�ned for arbitrary intervals. For the division we assume that the interval x

2

does not

ontain the number 0. Sine a real number a an be treated as a degenerate interval

a = [a; a℄ the interval arithmeti ontains usual \real" arithmeti.

The result interval an be always omputed in terms of the endpoints. For example,

the rule for interval addition is following:

[a; b℄ + [; d℄ = [a + ; b + d℄:

In pratie we annot arry out \real" or interval operations exatly. We are on-

�ned to approximate arithmeti of limited preision. It is possible to implemented

interval arithmeti on a omputer to arry out the operations of interval arithmeti

with appropriate rounding, when neessary, of left and right omputed endpoints, in

suh a way that the mahine omputed interval result always ontain the exat interval

result. In the \best" rounded interval arithmeti the mahine omputed right endpoint

is the smallest mahine number not less than the orret right endpoint and similarly

the mahine omputed left endpoint is the largest mahine number not greater than

the orret left endpoint. There are many programming pakages, whih an be used

for interval omputations. They are available as libraries for C, C++, Fortran, and as

a Matlab toolbox.

Some interval algorithms are extensions of orresponding real algorithms. Some of

them however are essentially di�erent. The di�erene results from a dual nature of an

interval. As an interval is not only a number represented by its endpoints but also a

set of real numbers, we an ompute the intersetion of two or more intervals or hek

the inlusion of one interval in another. Self{validating methods alled also inlusion

methods for proving the existene of zeros belong to this lass.
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Let us now introdue interval Newton operator, Krawzyk operator and Hansen{

Sengupta operator [Alefeld, 1994, Neumaier, 1990℄, whih provide simple omputational

tests for uniqueness, existene, and nonexistene of a zero of a funtion within a given

interval vetor.

2.2 Interval Newton operator

Let us onsider a funtion R

m

3 x 7! f(x) 2 R

m

. In order to investigate the existene

of zeros of f in an m-dimensional interval vetor x one evaluates the interval Newton

operator

N(x) = x

0

� (f

0

(x))

�1

f(x

0

); (2)

where f

0

(x) is the interval matrix ontaining all Jaobian matries of the form f

0

(x)

for x 2 x and x

0

is an arbitrary point belonging to the interval vetor x. One usually

hooses x

0

to be the enter of x.

One should notie that it is not neessary to ompute the inverse of f

0

(x) in order

to evaluate N(x). For omputation or the expression (f

0

(x))

�1

f(x

0

) one an use for

example the Gaussian algorithm.

The following theorem [Neumaier, 1990, Alefeld, 1994℄ an be used to prove the

existene and uniqueness of zeros of f .

Theorem 1. If N(x) � int(x) then f(x) = 0 has a unique solution in x. If N(x) \

x = ; then there are no zeros of f in x.

The elementary proof of the above theorem is given in the appendix for the om-

pleteness and in order to give the reader an idea of what kind of mathematis is involved

when we use interval omputations to rigorously prove the existene and uniqueness of

zeros.

The interval Newton operator an be used only when the interval matrix f

0

(x) is

regular, i.e., omposed of nonsingular matries. The following two operators an be

used for a wider lass of systems.

2.3 Krawzyk and Hansen{Sengupta operators

Krawzyk operator is de�ned as

K(x)=x

0

�Cf(x

0

)�(Cf

0

(x)�I)(x�x

0

); (3)

where x

0

is an arbitrary point belonging to x (usually one uses the enter of x) and C

is a preonditioning matrix. It is usually hosen as the inverse of f

0

(x

0

).

Hansen{Sengupta operator is de�ned as

H(x)=x

0

+�(CDf(x);�Cf(x

0

);x� x

0

); (4)

where � is the Gauss{Seidel operator [Neumaier, 1990℄. For intervals a;b;x the Gauss{

Seidel operator �(a;b;x) is the tightest interval enlosing the set fx 2 x : ax =
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b for some a 2 a; b 2 bg and for interval matrix A and interval vetors b;x the Gauss{

Seidel operator �(A;b;x) is de�ned by

y

i

= �(A;b;x)

i

(5)

= � (A

ii

; b

i

� �

k<i

A

ik

y

k

� �

k>i

A

ik

x

k

;x

i

) :

For these two operators there are similar theorems on the existene and uniqueness of

zeros as for the Newton operator (see [Neumaier, 1990℄).

2.4 Existene of periodi orbits. Standard and global versions

The above three operators an be used to prove the existene of period-n yles of f

by applying the interval operator to the map g = id� f

n

. We shall all this tehnique

a standard version of the method.

Another hoie, whih will be alled a global version, is to apply the interval operator

to the map F : (R

m

)

n

7! (R

m

)

n

de�ned by

[G(z)℄

k

= x

(k+1)modn

� f(x

k

) (6)

for k = 0; : : : ; n � 1, where z = (x

0

; : : : ; x

n�1

). See that G(z) = 0 if and only if x

0

is a �xed point of f

n

. In this method, the problem of existene of periodi orbits is

translated to the problem of existene of zeros of a higher{dimensional funtion.

2.5 Finding all periodi orbits

In this study we are interested in �nding for a given map all period-n yles enlosed

in a ertain region A.

In order to �nd �xed points of f

n

we use the ombination of one of the interval

methods desribed above and the generalized bisetion (see also [Kearfott & Novoa,

1990℄). First the region of interest is overed by m{dimensional intervals (the number

of them inreases with n). For eah interval x the interval operator N(x) for the map

g (standard method) or G (global method) is evaluated, where N stands for Newton,

Krawzyk or Hansen{Sengupta operators. If N(x) � int(x) then there is exatly one

�xed point of f

n

in x. If N(x)\x = ; then there are no �xed points of f

n

in x. If none

of these two onditions is ful�lled we divide the interval vetor x into smaller parts and

repeat the omputations.

For the Newton operator we have to use a di�erent non{existene stopping riterion.

The reason is that we are not able to evaluate the interval Newton operator for eah

interval vetor ontaining a point x suh that f

0

(x) is not invertible. Hene as the non{

existene riterion we use the following ondition: N(x)\x = ; or f

n

(x)\x = ;. The

seond part of the ondition allows us to exlude regions for whih the Jaobian matrix

is singular. This is not neessary for the two other operators as for their evaluation we

do not need to invert the interval matrix f

0

(x).

Let us notie that none of the methods is apable of proving the existene of non-

hyperboli periodi orbit. If suh a ase is deteted the proedure should as a result

return also the interval vetors for whih the method failed. Suh instanes are rare and
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in the examples onsidered, we have not found a single ase like that. The uniqueness

results in this ase an no longer be proved. In order to prove the existene of non-

hyperboli orbits one may use purely topologial methods based on the onept of

topologial index or its simple formulation going bak to [Miranda, 1940℄ (see also

[Neumaier, 1990℄).

2.6 Reduing the dimension of the searh spae for the global

version

The problem that arises, when we implement the global version, is the dimension of

the spae, where we are looking for periodi orbits. In order to �nd all period{n orbits

of an m{dimensional map we have to searh an mn{dimensional spae.

In order to redue the dimension of the searh spae we propose to use R

m

as the

searh spae. For the interval vetor x 2 R

m

we �rst produe the sequene (x

i

)

n�1

i=0

,

where x

i

= f

i

(x) and we set z = (x

0

; : : : ;x

n�1

). Then we apply the global interval

operator to z. If the division is neessary we divide the m{dimensional interval x,

instead of mn{dimensional interval z. Although some of the omponents of z generated

from x using the proedure desribed above may by large (due to the wrapping e�et

and positive Lyapunov exponents of f if f is haoti) it appears that this method is

superior to all the other methods.

2.7 Further modi�ations

In order to speed up the algorithm we add two modi�ations.

The �rst modi�ation uses the fat that we searh for periodi solutions enlosed in

A. For the interval x under onsideration we ompute several forward and bakward

(if the map is invertible) iterations. If for some positive i the image f

i

(x) or the inverse

f

�i

(x) lies outside A than there is no periodi orbit in x, whih is entirely enlosed in

A. Obviously if A is the trapping region for the map (f(A) � A) it makes no sense to

hek the forward iterates as for x \ A 6= ; we have f

n

(x) \ A 6= ; for all n > 0.

The seond modi�ation is possible beause we are searhing for periodi orbits.

As before we ompute f

i

(x) for positive and negative i. If any of these iterations is

enlosed in the region for whih the algorithm was ompleted then we an skip the

interval x, as there are no new periodi orbits in x.

3 Invariant Part and Nonwandering Part

Our main goal is to �nd all periodi orbits enlosed in the region A. In many ases it

is possible to redue the omputation time by removing parts of the region A whih

annot ontain periodi orbits. In this setion, we develop methods for reduing the

searh area for periodi orbits based on the notions of invariant and nonwandering part

of a set.

For A � R

m

we de�ne the invariant part of A under the map f as

Inv(A) = fx : 9(x

k

)

1

k=�1

suh that x

0

= x, x

k

2 A and x

k+1

= f(x

k

) for all kg: (7)
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We say that a set A is a trapping region for f if f(A) � A. If A is a trapping region

the invariant part of A an be also de�ned as

Inv(A) =

\

n�0

f

n

(A): (8)

3.1 Invariant sets

Here we desribe the algorithm �nding for a given set A a possibly small set enlosing

Inv(A). The set found will be the union of boxes (alled interval vetors when the

proedure is implemented using omputer interval arithmeti).

Let us hoose positive real numbers "

i

, i = 1; 2; : : : ; m. Let " = ("

1

; "

2

; : : : ; "

m

).

Let us all an "{box a set of the form

[k

1

"

1

; (k

1

+ 1)"

1

℄� [k

2

"

2

; (k

2

+ 1)"

2

℄� � � � � [k

m

"

m

; (k

m

+ 1)"

m

℄; (9)

where k

i

are integer numbers. Let V = fv

i

g be a set of boxes. By jV j we will denote

the sum of all boxes in V (jV j =

S

v

i

).

Boxes of the form (9) are very well suited for interval omputations. First by

hanging " one may ahieve arbitrary good approximation of representing a given set by

the set of "{boxes. In a omputer program when " is �xed an "{box an be represented

as a sequene of integers (k

1

; k

2

; : : : ; k

m

). This makes it easier for the program to hek

whether a partiular "{box belongs to a set of boxes.

First let us assume that the set A is the sum of a �nite number of "{boxes, i.e.,

V = fv

i

g is a set of boxes and A = jV j =

S

v

i

).

The following proedure from the set of boxes V removes those whih has empty

intersetion with the invariant part of A. It is onvenient to express the algorithm in

the language of the graph theory. We reate the direted graph G = (V;E) where

verties v

i

2 V are boxes and the edges orrespond to the possibility of going from

one box to another under the ation of f . In order to reate the set of edges for eah

box v

i

we evaluate f(v

i

) and we add edge e

ij

if f(v

i

) \ v

j

6= ;. Below we desribe the

algorithm in terms of a simple model language with lear meaning of syntax.

proedure RedueInvariantPart(V )

E  the set of edges (e

i;j

2 E if f(v

i

) \ v

j

6= ;);

repeat

Improved  FALSE;

for all v

i

2 V do begin

if 8j e

ij

62 E or 8j e

ji

62 E then begin

remove v

i

and all edges inident with v

i

from the graph;

Improved  TRUE;

end

end

until not Improved;

end of RedueInvariantPart

In the above proedure the box v

i

is removed if f(v

i

)\ v

j

= ; for all j (the box v

i

is not the beginning of any edge in the graph) or if f(v

j

) \ v

i

= ; for all j (the box
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v

i

is not the end of any edge in the graph). We proeed until no more boxes an be

removed.

In order to ompute the invariant part of an arbitrary set A we �rst hoose " =

("

1

; : : : ; "

m

) and over A by "{boxes. We all the proedure RedueInvariantPart to

remove boxes whih has empty intersetion with Inv(A). Then we re�ne the division of

the remaining boxes and all the proedure RedueInvariantPart again. We ontinue

until we reah a presribed auray. Subsequent alls of RedueInvariantPart and

re�ning the division is atually better solution then starting with the auray we want

to ahieve and alling the proedure RedueInvariantPart one only. This latter

hoie would lead to a huge number of verties in the graph and make the proedure

very slow. The proedure performing this task is presented below.

proedure FindInvariantPart(A,V )

set "

0

; (desired auray)

set " = ("

1

; "

2

; : : : ; "

m

); (defining the initial division into boxes)

V  the set of "-boxes overing A;

RedueInvariantPart(V );

while (min(") < "

0

) do begin

"  "=2;

V  the set of "-boxes overing jV j \ A;

RedueInvariantPart(V );

end

end of FindInvariantPart

The following lemma states that given A the above proedure returns the set of

boxes ontaining the invariant part of A.

Lemma 1. Let V be the set of boxes returned by the proedure FindInvariantPart.

Then

Inv(A) � jV j =

[

v

i

: (10)

Proof. We show that the ondition

Inv(A) � jV j (11)

is ful�lled during the whole ourse of the proedure. At the beginning by the onstru-

tion A � jV j and sine Inv(A) � A the ondition (11) is true. During the proedure

we remove the box v

i

if f(v

i

) \ v

j

= ; for all v

j

2 V or f(v

j

) \ v

i

= ; for all v

j

2 V .

Let us onsider the �rst ase, i.e., f(v

i

) \ v

j

= ; for all v

j

2 V . Let us hoose

x 2 v

i

. It follows that f(x) \ jV j = ;. Sine Inv(A) � jV j we have f(x) 62 Inv(A).

From the property of the invariant part (x 2 Inv(A) ) f(x) 2 Inv(A)) we obtain

x 62 Inv(A) for all x 2 v

i

. Finally v

i

\ Inv(A) = ; and Inv(A) � jV j n v

i

.

Now let us assume that f(v

j

) \ v

i

= ; for all v

j

2 V . It follows that x 62 f(jV j)

for all x 2 v

i

and hene x 62 f(Inv(A)) for all x 2 v

i

. Sine the impliation x 2

Inv(A)) x 2 f(Inv(A)) is true, we have x 62 Inv(A) for all x 2 v

i

and in onsequene

Inv(A) � jV j n v

i

.

We have shown that in both ases Inv(A) � jV j n v

i

, so after removing v

i

from V

the ondition (11) still holds.
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3.2 Nonwandering omponent

Previously we have desribed the method how to obtain a rigorous enlosure of the

set Inv(A). The invariant part of the trapping region may ontain stable and unstable

manifolds of �xed or periodi points. The so-alled nonwandering omponent is perhaps

more important to the study of long{term behavior. Fixed points and losed orbits

are important in the study of dynamial systems, sine they represent stationary or

repeatable behavior. A generalization of these sets is the nonwandering set. A point x

is alled nonwandering for the map f if for any neighborhood U of x there exists n > 0

suh that f

n

(U)\U 6= ;. The set of nonwandering points is losed and it ontains the

losure of the set of �xed points and periodi orbits. For a given set A we de�ne the

nonwandering part of A as the set of nonwandering points of the map f jInv(A).

We an easily adapt the proedure RedueInvariantPart to remove from V boxes

having empty intersetion with the nonwandering part of jV j. We modify the proedure

by adding one more ondition under whih the box may be removed from the graph.

If for a given "{box there is no losed path of edges going through this box then this

box ontains wandering points only and must lie ompletely outside the nonwandering

part. We may then remove this box from the graph. The problem of �nding verties

not belonging to any losed loops is equivalent to searhing for strongly onneted

omponents in a graph. This is a standard problem in algorithmi graph theory and

has a very fast solution, whih operates in linear time [Gibbons, 1985℄. The algorithm

for removing boxes not belonging to the nonwandering part of a set of boxes is given

below.

proedure RedueNonwanderingPart(V )

E  the set of edges (e

i;j

2 E if f(v

i

) \ v

j

6= ;);

repeat

Improved  FALSE;

for all v

i

2 V do begin

if 8j e

ij

62 E or 8j e

ji

62 E then begin

or v

i

does not belong to any losed path then begin

remove v

i

and all edges inident with v

i

from the graph;

Improved  TRUE;

end

end

until not Improved;

end of RedueNonwanderingPart

The proedure FindNonwanderingPart for �nding the enlosure of nonwandering

part of an arbitrary set is the same as the proedure FindInvariantPart exept that it

alls the proedure RedueNonwanderingPart instead of RedueInvariantPart. One

an easily show that the set jV j returned by this proedure ontains the nonwandering

part of A.

The above proedures an be implemented in a very fast and eÆient way. The

most time{onsuming part is the generation of the onnetions in the graph. In sub-

sequent setions, we apply these proedures for �nding nonwandering omponent of

10



the trapping regions for the Ikeda and H�enon maps. We will show that with these

proedures one an signi�antly redue the region, whih needs to be heked in order

to �nd all periodi orbits for the map.

3.3 Basins of attration of stable periodi orbits

When studying periodi orbits for a partiular system we may enounter a stable

periodi orbit. A question, whih arises, is what is its basin of attration. We say that

a periodi orbit p = fx

1

; : : : ; x

m

g is asymptotially stable if there is some neighborhood

U of p suh that f

k

(x) 2 U for k � 0 and f

k

(x)! p as k !1 for all x 2 U . A basin

of attration of a periodi orbit is a set of points whih onverge to this periodi orbit

as time goes to in�nity

fx : f

k

(x)! p for k !1g: (12)

Let B and A be arbitrary sets and assume that B � A. The proedure FindBasin

presented below returns the set of boxes V enlosed in the basin of attration of B,

jV j � fx : 9n � 0 f

n

(x) 2 Bg: (13)

The searh is limited to A, i.e., we hek only boxes, whih has non{empty intersetion

with A. At the beginning of the proedure V is the set of boxes enlosed in B and W

if the set of boxes, whih overs A n B. We move a box w

i

from W to V if this box

or its image is enlosed in V . We ontinue until no more boxes an be moved from W

to V . Then we re�ne the division of boxes and repeat omputations until a presribed

auray is ahieved.

proedure FindBasin(B,A,V )

set "

0

;

set " = ("

1

; "

2

; : : : ; "

m

);

V  ;;

repeat

V  the set of "-boxes enlosed in B [ jV j;

W  the set of "-boxes overing A n (B [ jV j);

repeat

Improved  FALSE;

for all w

i

2 W do begin

if w

i

� jV j or f(w

i

) � jV j then

move w

i

from W to V ;

Improved  TRUE;

end

end

until Improved;

"  "=2;

until (min(") < "

0

);

11



end of FindBasin

The above proedure desribes the basi idea for �nding a subset of A of points,

whih eventually visit B. Several re�nements are possible. One may for example

use higher iterations of f as a test ondition for moving w

i

from W to V . Another

modi�ation is to evaluate f(w

i

) after dividing w

i

into smaller boxes. This helps to

avoid the wrapping e�et.

Now we explain how to use the above algorithm to �nd the basin of attration of

a stable periodi orbit. Assume that p is an asymptotially stable periodi orbit and

we want to �nd the intersetion of its basin of attration with a given set A. Sine

the orbit is asymptotially stable it is easy to �nd a neighborhood U of p whih is a

trapping region for the map. We use this set as a starting point for our proedure. To

�nd intersetion of A with the basin of attration of p we all the proedure FindBasin

with parameters U and A. This allows us to obtain rigorous approximation of the basin

of attration. It is rigorous in the sense that the union of the set of boxes V returned

by the proedure is enlosed in the basin of attration of p. This information an be

used for many di�erent purposes. One of them is searh for periodi orbits. It is lear

that there is no other periodi orbits of any period within the basin of attration of

p. Hene, if we loate the stable periodi orbit we an exlude points belonging to its

basin of attration from searh for any other periodi orbits.

In the next part of the paper we use the above proedure for �nding basin of

attration of the stable period{1 orbit for the Ikeda map.

4 H�enon Map

As a �rst example, we onsider the H�enon map de�ned by the following equation

[H�enon, 1976℄

h(x; y) = (1 + y � ax

2

; bx); (14)

where a = 1:4 and b = 0:3 are the \lassial" parameter values for whih the famous

H�enon attrator is observed.

It is well known [H�enon, 1976℄ that the set 
 de�ned as a quadrangle ABCD,

where A = (�1:33; 0:42), B = (1:32; 0:133), C = (1:245;�0:14) and D = (�1:06;�0:5)

is a trapping region for the H�enon map, i.e. h(
) � 
. In our study we searh

for periodi solution in the trapping region 
, whih enloses the strange attrator

observed numerially. The trapping region 
 and a trajetory of the H�enon map are

shown in Fig. 1.

It an be easily heked that there are two �xed points for the H�enon map:

P

1

= (x

1

; bx

1

); P

2

= (x

2

; bx

2

): (15)

where

x

1;2

=

b� 1�

p

(1� b)

2

+ 4a

2a

Both of then are unstable. The point P

1

is loated inside the trapping region while P

2

lies outside (ompare Fig. 1).

12
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Figure 1: Trajetory of the H�enon map onsisting of 20000 points and the trapping

region 
, unstable �xed points: inside the trapping region (+) and outside the trapping

region (�).
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Invariant part Nonwandering part

n box # area box # area

1 22 1.83 20 1.67

2 51 1.06 48 1.00

3 137 0.714 118 0.615

4 325 0.423 278 0.362

5 776 0.253 660 0.215

6 1892 0.154 1531 0.125

7 4577 0.0931 3387 0.0689

8 10464 0.0532 7804 0.0397

9 24768 0.0315 18665 0.0237

10 59581 0.0189 44817 0.0142

11 141426 0.0112 107938 0.00858

Table 1: The number of "{boxes overing the invariant part and nonwandering part

of the retangle [�1:5; 1:5℄ � [�0:5; 0:5℄ and the area of the boxes, for given n " =

(1=(2

n

); 1=(3 � 2

n

)).

4.1 Invariant part and nonwandering part

First let us �nd invariant part and nonwandering part of the retangle [�1:5; 1:5℄ �

[�0:5; 0:5℄ enlosing the trapping region 
 and the unstable �xed point P

2

.

We �nd sets of "{boxes overing the invariant part and nonwandering part for

" = (1=2

n

; 1=(3�2

n

)), n = 1; 2; : : : ; 11. We also ompute the area of the region obtained.

The results are summarized in Table 1. The area for n = 11 of the region ontaining

the nonwandering part is smaller than 0:0086. Hene using the representation of the

nonwandering region by "{boxes we an redue the searh region onsiderably (the area

of the initial retangle is 3).

The results obtained for invariant and nonwandering parts are shown in Fig. 2 and

Fig. 3 respetively. Using di�erent shades we plot results for di�erent values of " with

darker olor meaning �ner division | larger n (in blak we plot the results obtained for

n = 11). One an learly see that the enlosure of the invariant part ontains the haoti

attrator, the unstable �xed point P

2

and the onnetion between these two sets. The

enlosure of the nonwandering part is smaller and has two omponents. One ontains

the haoti attrator while the seond (very small) ontains the unstable �xed point.

We were able to break the onnetion between these two sets and removed the part

of the unstable manifold of the �xed point P

2

from the enlosure of the nonwandering

part.

4.2 Periodi orbits

In this setion, we test the interval methods for �nding periodi orbits desribed pre-

viously. First, we ompare �ve versions of the interval Newton method: standard

version (Newton Standard), standard version with modi�ations (Newton Standard

+), global version with the searh spae R

2

(Newton Global), global version with the

14
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Figure 2: H�enon map, invariant part of the region [�1:5; 1:5℄� [�0:5; 0:5℄, approxima-

tions of the invariant part obtained for di�erent " are plotted using di�erent shades,

unstable �xed points: inside the trapping region (+) and outside the trapping re-

gion (�).
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Figure 3: H�enon map, nonwandering part of the retangle [�1:5; 1:5℄� [�0:5; 0:5℄, un-

stable �xed points: inside the trapping region (+) and outside the trapping region (�).
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Newton Standard +
Newton Global    
Newton Global +  
Newton Global N  

Figure 4: Computation time needed to �nd all period{n yles using di�erent versions

of the interval Newton method: standard version, standard version with modi�ations,

global version, global version with modi�ations and global version with R

2n

searh

spae.

0 5 10 15 20 25 30
10

−2

10
0

10
2

10
4

10
6

Newton Global +         
Krawczyk Global +       
Hansen−Sengupta Global +

Figure 5: Computation time needed to �nd all period{n yles using Newton, Krawzyk

and Hansen{Sengupta methods.
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searh spae R

2

and with modi�ations (Newton Global +) and global version with

R

2n

searh spae (Newton Global N). In Fig. 4 we plot the omputation time neessary

to �nd all period{n yles. For n � 3 the standard Newton method is the fastest. For

4 � n � 12 the standard interval Newton method with modi�ations is the quikest

one. It is not possible however to use the standard Newton method for �nding all

longer orbits. It appears that the method fails to �nd all periodi orbits with period n

for n > 17. For n = 18 there are some periodi points x for whih one annot hek the

assumption N(x) � x for any interval vetor x 3 x. This is due to the wrapping e�et,

whih auses that Dh

n

(x) has a very large diameter [Galias, 1998a℄. For N � 13 the

global version with redued searh spae and other improvements is better.

It is interesting to note that the global version with searh spae R

2n

is the worst one.

Although many retangles an be exluded before evaluation of the interval operator,

the algorithm is very slow. It is even slower than the algorithm based on the standard

Newton operator and hene of not muh use.

In Fig. 5 we show the omputation time for global versions of Newton, Krawzyk

and Hansen{Sengupta methods. One an learly see that there are no signi�ant

di�erenes in omputation time between these three methods.

Using the Krawzyk method whih is slightly better than the two other methods

we have found all periodi orbits with period n � 30. The periodi orbits found are

plotted in Fig. 6. The results are summarized in Table 2, where we give the number

Q

n

of periodi orbits with period n, the number P

n

of �xed points of h

n

, estimation

of topologial entropy, and the number of retangles into whih the initial region was

divided in order to �nd all periodi orbits. In partiular, we have proved that there are

no period{3 and period{5 orbits for the H�enon map within the trapping region. We

have proved that there are exatly 109033 periodi orbits with period n � 30 and there

are 3065317 points belonging to these orbits. These unstable periodi points shown in

Fig. 7 give very good approximation of the H�enon attrator.

In Fig. 7 one an see small regions of the attrator not visited by periodi orbits

found. Knowing the positions of periodi orbits, we an study an interesting problem

how well the periodi orbits �ll the attrator. In Table 3 we ollet several numbers

whih give some insight into this problem. D



and D

e

desribe the performane of

the interval method. D



is the minimum diameter of the interval for whih uniqueness

of period{n orbit was proved. We want this number to be as large as possible so we

do not need to divide the searh area in a very �ne way to �nd all periodi orbits.

It annot be however larger that the distane between the losest period{n points.

D

e

is the maximum diameter of interval for whih the existene was proved. This

number desribes the auray of the position of periodi orbit found. Clearly the

auray degrades with n. D

min

, D

max

, and D

av

desribe how well periodi orbits �ll

the attrator. For eah period{n point we �nd its losest neighbor and we de�ne D

min

,

D

max

, and D

av

as the minimum, maximum, and average distane from the losest

neighbor. The smaller D

min

is the more diÆult it is to �nd all periodi orbits as

we need to divide the searh region into smaller retangles, as the existene theorem

annot work if there are two or more periodi points within a given retangle. The

value of D

min

= 8:5 � 10

�8

for n = 27 means that some period{27 points are loated

very lose to eah other and we need a very �ne division of the searh area in order
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n=1 n=2 n=3 n=4 n=5

n=6 n=7 n=8 n=9 n=10

n=11 n=12 n=13 n=14 n=15

n=16 n=17 n=18 n=19 n=20

n=21 n=22 n=23 n=24 n=25

n=26 n=27 n=28 n=29 n=30

Figure 6: Period-n yles of the H�enon map for n = 1; : : : ; 30 within the trapping

region.
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Figure 7: Cyles within the trapping region of the H�enon map with period n =

1; : : : ; 30.
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n Q

n

P

n

Q

�n

P

�n

H

n

retangles

1 1 1 1 1 0.00000 9

2 1 3 2 3 0.54931 21

3 0 1 2 3 0.00000 41

4 1 7 3 7 0.48648 101

5 0 1 3 7 0.00000 89

6 2 15 5 19 0.45134 205

7 4 29 9 47 0.48104 285

8 7 63 16 103 0.51789 569

9 6 55 22 157 0.44526 737

10 10 103 32 257 0.46347 1149

11 14 155 46 411 0.45849 1521

12 19 247 65 639 0.45912 2457

13 32 417 97 1055 0.46408 4093

14 44 647 141 1671 0.46231 5973

15 72 1081 213 2751 0.46571 9653

16 102 1695 315 4383 0.46471 16281

17 166 2823 481 7205 0.46739 26273

18 233 4263 714 11399 0.46432 43545

19 364 6917 1078 18315 0.46535 71657

20 535 10807 1613 29015 0.46440 121181

21 834 17543 2447 46529 0.46535 199889

22 1225 27107 3672 73479 0.46398 333625

23 1930 44391 5602 117869 0.46525 560725

24 2902 69951 8504 187517 0.46481 961981

25 4498 112451 13002 299967 0.46521 1584185

26 6806 177375 19808 476923 0.46485 2670517

27 10518 284041 30326 760909 0.46507 4346609

28 16031 449519 46357 1209777 0.46485 7346653

29 24740 717461 71097 1927237 0.46495 12264301

30 37936 1139275 109033 3065317 0.46486 21058121

Table 2: Periodi orbits for the H�enon map. Q

n

| number of periodi orbits with

period n, P

n

| number of �xed points of h

n

, Q

�n

| number of periodi orbits with

period smaller or equal to n, P

�n

| number of �xed points of h

i

for i � n, H

n

=

n

�1

log(P

n

) | estimation of topologial entropy based on P

n

.
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n P

n

D



D

e

D

min

D

max

D

aver

1 1 7:2�10

�1

4:5�10

�16

| | |

2 3 9:1�10

�2

7:8�10

�16

0.478 1.1120 0.69

3 1 9:1�10

�2

6:7�10

�16

| | |

4 7 1:2�10

�2

1:2�10

�15

0.235 0.4136 0.31

5 1 3:2�10

�2

7:8�10

�16

| | |

6 15 3:8�10

�3

1:4�10

�15

0.063 0.1770 0.11

7 29 1:3�10

�3

2:0�10

�15

0.016 0.1276 0.062

8 63 2:9�10

�4

5:4�10

�15

5:4�10

�3

0.1032 0.041

9 55 1:5�10

�4

1:1�10

�14

1:7�10

�3

0.1110 0.033

10 103 1:5�10

�4

6:0�10

�15

2:0�10

�3

0.1183 0.024

11 155 4:9�10

�5

7:5�10

�15

9:6�10

�4

0.0699 0.017

12 247 5:2�10

�5

7:0�10

�15

5:0�10

�4

0.0498 0.011

13 417 7:5�10

�6

2:7�10

�14

3:8�10

�4

0.0519 0.0079

14 647 6:0�10

�6

6:9�10

�15

2:4�10

�4

0.0299 0.0044

15 1081 1:9�10

�6

1:3�10

�14

1:2�10

�4

0.0237 0.0034

16 1695 7:4�10

�7

2:9�10

�14

8:6�10

�5

0.0235 0.0021

17 2823 7:0�10

�7

1:7�10

�14

3:9�10

�5

0.0210 0.0015

18 4263 7:8�10

�8

1:2�10

�13

8:9�10

�6

0.0214 0.0011

19 6917 2:2�10

�7

2:1�10

�14

1:4�10

�5

0.0139 0.00077

20 10807 1:6�10

�8

1:5�10

�13

3:7�10

�6

0.0138 0.00053

21 17543 9:9�10

�9

5:2�10

�14

4:9�10

�6

0.0077 0.00038

22 27107 4:9�10

�9

2:7�10

�13

5:5�10

�7

0.0109 0.00026

23 44391 3:2�10

�9

6:4�10

�14

1:3�10

�6

0.0055 0.00018

24 69951 1:4�10

�9

1:4�10

�13

3:2�10

�7

0.0047 0.00012

25 112451 5:0�10

�10

9:6�10

�14

3:3�10

�7

0.0041 0.000086

26 177375 2:2�10

�10

9:2�10

�14

1:2�10

�7

0.0026 0.000060

27 284041 5:3�10

�11

1:7�10

�13

8:5�10

�8

0.0044 0.000041

Table 3: Short yles for the H�enon map, D



| diameter of interval for whih unique-

ness was proved, D

e

| diameter of interval for whih existene was proved, losest

neighbor distane: D

min

, D

max

, D

av

.
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to �nd all periodi orbits. Large D

max

indiates that there are period{n points well

separated from other suh points and this means that periodi points do not �ll the

attrator densely. D

max

does not derease as fast with n as one ould expet (see for

example D

max

for n = 22; : : : ; 27). This orresponds to learly visible gaps in Fig. 7.

4.3 Estimation of topologial entropy

In this setion we use the number of periodi orbits for the estimation of topologial

entropy of the H�enon map.

Topologial entropy H(f) of a map f haraterizes \mixing" of points by the map

f . One of the equivalent de�nitions of topologial entropy is based on the notion of

(n; "){separated sets (see [Bowen, 1971℄).

A set E � X is alled (n; "){separated if for every two di�erent points x; y 2 E,

there exists 0 � j < n suh that the distane between f

j

(x) and f

j

(y) is greater than

". Let us de�ne the number s

n

(") as the ardinality of a maximum (n; "){separated

set:

s

n

(") = maxf ardE : E is (n; ")-separated g

The number

H(f) = lim

"!0

lim sup

n!1

1

n

log s

n

("); (16)

is alled the topologial entropy of the map f . The number of periodi orbits is losely

related to the topologial entropy. For axiom A di�eomorphisms we have

H(f) = lim

n!1

log P

n

n

; (17)

where P

n

denotes the number of �xed points of f

n

. It is also possible to use the number

of periodi orbits for the estimation of topologial entropy when there exists a symboli

dynamis for the map.

Using the existene of symboli dynamis for h

7

one an prove that (ompare

[Zglizy�nski, 1997, Galias, 1998b℄):

H(h) �

1

7

log 2 > 0:099:

Similarly one an obtain the estimation of topologial entropy based on the existene

of symboli dynamis for h

2

(ompare [Galias, 1998b℄):

H(h) �

1

2

log

p

5 + 1

2

> 0:24:

In Fig. 8(a) we plot in semilogarithmi sale the number P

n

of �xed points of h

n

as

a funtion of n. One an see that for n > 10 the plot is almost linear, whih indiates
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Figure 8: (a) The number of �xed points of h

n

and (b) Estimation of topologial

entropy of the H�enon map based on the number of low{period yles.

that the number P

n

an be used for obtaining a good approximation of topologial

entropy. Here we use the formula

H

n

(h) =

log P

n

n

(18)

as the approximation of topologial entropy. The results are plotted in Fig. 8(b) (see

also Table 2). One an see that H

n

(h) is almost onstant for n � 10. This lets us state

the hypothesis that the topologial entropy of the H�enon map is lose to 0:465.

5 Ikeda Map

As a seond example let us onsider the Ikeda map [Hammel et al., 1985℄

f(z) = p + B exp

�

i�� i�=(1 + jzj

2

)

�

z; (19)

where z = x+ iy is a omplex number. This map an be written as a two dimensional

system in the following form:

f(x; y) = (p + B(x os t� y sin t); B(x sin t + y os t)); (20)

where t = t(x; y) = �� �=(1 + x

2

+ y

2

).

First let us observe that the ball K = B((p; 0); pB=(1�B)) is a trapping region for

the map f (f(K) � K) [Hammel et al., 1985℄. For z 2 K we have

jf(z)� pj � Bjzj � B(p +

pB

1�B

) =

pB

1�B

;
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Invariant part Nonwandering part

n box # area box # area

0 61 61.00 61 61.00

1 155 38.80 69 17.20

2 328 20.50 176 11.00

3 789 12.30 368 5.75

4 1971 7.70 1098 4.29

5 5392 5.27 3597 3.51

6 15399 3.76 11890 2.90

7 46604 2.84 39660 2.42

8 145346 2.22 131837 2.01

Table 4: The number of "{boxes overing the invariant part and nonwandering part of

the trapping region and sum of the area of the boxes for " = (1=2

n

; 1=2

n

).

and hene f(z) 2 K.

It may be shown that all initial points are mapped to this trapping region in �nite

time and hene we may limit our analysis to the behavior of the system in the trapping

region.

We onsider the Ikeda map with the following parameter values: p = 1, B = 0:9,

� = 0:4 and � = 6, for whih in simulations a haoti behavior is observed. A typial

haoti trajetory is shown in Fig. 9.

There are three �xed points of the map. They belong to the following interval

vetors:

P

1

2 (2:9721316179105

71

38

; 4:145946421395

91

87

);

P

2

2 (0:5327546229407

93

88

; 0:24689677271101

49

12

);

P

3

2 (1:114269614581

43

39

;�2:2856944609861

45

69

):

The �rst �xed point is stable and the two others are unstable. P

2

belongs to the

numerially observed haoti attrator.

We have found sets of "{boxes enlosing the invariant part and the nonwandering

part of the trapping region. The results are shown in Fig. 10 and 11 respetively and

summarized in Table 4. We plot the results for " = (1=2

n

; 1=2

n

) for n = 0; : : : ; 8 using

di�erent shades and blak denoting the smallest set (n = 8).

The invariant part ontains the stable �xed point, unstable periodi point, haoti

attrator and unstable manifold of P

3

onneting this point with the stable �xed point

and the haoti attrator. The area of the region obtained is 2:22.

The nonwandering part is smaller than the invariant part. Its area is 2:01. It does

not ontain the heterolini orbit onneting the unstable and stable �xed points. We

were not able however to break the onnetion between the unstable periodi orbit and

the region where the numerially observed attrator exists. Hene we annot state for

sure that the unstable �xed point P

3

does not belong to the attrator.

The nonwandering region ontains all periodi orbits and !{limit sets for the sys-

tem. Hene in the searh for periodi orbits we may limit ourselves to the region
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-2

-1

0

1

Figure 9: Ikeda map, a haoti trajetory, the unstable point inside the attrator (+)

and unstable �xed point loated slightly below the attrator (+�).
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Figure 10: Ikeda map, invariant part of the trapping, the stable �xed point P

1

(�) and

the unstable �xed points P

2

and P

3

(+,+�).
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Figure 11: Ikeda map, nonwandering part of the trapping region.
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ontaining the nonwandering part, area of whih is muh smaller than the area of the

trapping region 254:5.

In order to better understand the dynamis of the system we have found the basin of

attration of the stable �xed point P

1

. First, we have loated a trapping region around

the stable �xed point. The size and the shape of the basin of attration is a global

feature and annot be studied by means of the Jaobian matrix at the stable �xed point

alone. However, analysis of the Jaobian matrix helps us to hoose the initial trapping

region. Close to the �xed point when the linear approximation is valid, we may easily

�nd a small set, whih is a trapping region. For the algorithm FindBasin this set

should be as large as possible. The matrix norm indued by the Eulidean norm for

the Jaobian matrix at P

1

is 1:753 > 1. This means that in the linear approximation

irles are not trapping regions and we need to start with an ellipse. We have found

that the following ellipse is a trapping region for the map:

�

os

2

'

r

2

1

+

sin

2

'

r

2

2

�

(x� x

0

)

2

+

�

sin

2

'

r

2

1

+

os

2

'

r

2

2

�

(y � y

0

)

2

+

�

1

r

2

1

�

1

r

2

2

�

sin(2')(x� x

0

)(y � y

0

) � 1; (21)

where x

0

= 2:972132, y

0

= 4:145946, r

1

= 1:2, r

2

= 2:1, ' = 1. Then using the

hyperboliity of the �xed point we have shown that the invariant part of this trapping

region is P

1

(all trajetories starting in the ellipse onverge to the �xed point).

Finally using the algorithm FindBasin we have found a subset of the retangle

[�10; 10℄� [�10; 10℄ enlosed in the basin of attration of P

1

(see Fig. 12). The region

found has an area of 357.005. Sine in eah basin of attration there is only one periodi

orbit one we loate this orbit we may exlude the basin of attration from the region

where we searh for other periodi orbits.

5.1 Periodi orbits with period n � 15

We have found all periodi orbits for the Ikeda map with period smaller or equal to

15. For the standard version, the Krawzyk and Hansen{Sengupta operators are 2 or

3 times faster than the Newton operator is. However for the global version there are

no signi�ant di�erenes in omputation time. The results are olleted in Table 5.

Periodi orbits found are shown in Fig. 13 and 14. One an see that low{period yles

do not �ll the attrator uniformly and an interesting Cantor set like struture is formed.

As for the H�enon map we ompute the losest neighbor distane and summarize the

results in Table 6.

5.2 Estimation of topologial entropy

As before we use the formula (18) to estimate the topologial entropy of the map.

The values of H

n

(h) = log(P

n

)=n for di�erent n are olleted in Table 5 and plotted

in Fig. 15. The approximation stabilizes as n is inreased. This lets us state the

hypothesis that the topologial entropy of the Ikeda map for the parameters onsidered

is H(f) � 0:6.
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Figure 12: Ikeda map, basin of attration of the stable �xed point P

1

(�), the unstable

�xed point P

2

(+) belonging to the attrator and the unstable �xed point P

3

(+�) lying

on the border of the basin of attration of P

1

.
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n=1 n=2 n=3

n=4 n=5 n=6

n=7 n=8 n=9

n=10 n=11 n=12

n=13 n=14 n=15

Figure 13: Ikeda map, periodi orbit with period n � 15.
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Figure 14: Ikeda map, periodi orbits with period n = 1; : : : ; 15, basin of attration of

P

1
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n Q

n

P

n

Q

�n

P

�n

H

n

1 2 2 2 2 0.6931

2 1 4 3 4 0.6931

3 2 8 5 10 0.6931

4 3 16 8 22 0.6931

5 4 22 12 42 0.6182

6 7 52 19 84 0.6585

7 10 72 29 154 0.6110

8 14 128 43 266 0.6065

9 26 242 69 500 0.6099

10 46 484 115 960 0.6182

11 76 838 191 1796 0.6119

12 110 1384 301 3116 0.6027

13 194 2524 495 5638 0.6026

14 317 4512 812 10076 0.6010

15 566 8518 1378 18566 0.6033

Table 5: Q

n

| number of periodi orbits with period n, P

n

| number of �xed points

of f

n

, Q

�n

| number of yles with period smaller or equal to n, P

�n

| number of

�xed points of f

i

for i � n, H

n

= n

�1

log(P

n

) | estimation of topologial entropy.

n P

n

D



D

e

D

min

D

max

D

av

1 2 3:19�10

�2

2:98�10

�14

2.599 2.599 2.599

2 4 1:69�10

�3

2:98�10

�14

0.370 1.783 0.8445

3 8 6:37�10

�4

3:38�10

�14

0.395 1.220 0.6442

4 16 8:01�10

�5

3:56�10

�14

0.175 0.956 0.3739

5 22 8:01�10

�5

3:85�10

�14

0.143 0.644 0.3033

6 52 2:40�10

�5

5:20�10

�14

4:27�10

�2

0.495 0.1404

7 72 3:48�10

�6

6:89�10

�14

1:98�10

�2

0.355 0.1057

8 128 1:23�10

�6

1:41�10

�13

4:56�10

�2

0.264 0.0726

9 242 7:80�10

�8

5:89�10

�13

7:39�10

�4

0.210 0.0456

10 484 5:92�10

�8

2:72�10

�13

1:25�10

�3

0.143 0.0310

11 838 1:26�10

�8

3:25�10

�13

7:22�10

�4

0.119 0.0226

12 1384 5:25�10

�9

2:92�10

�13

4:11�10

�4

0.337 0.0160

13 2524 2:06�10

�9

3:12�10

�13

2:55�10

�4

0.270 0.0109

14 4512 4:13�10

�10

8:36�10

�13

7:01�10

�5

0.260 0.00753

15 8518 8:08�10

�11

5:14�10

�13

1:02�10

�4

0.197 0.00515

Table 6: P

n

| number of �xed points of f

n

, D



| diameter of interval for whih

uniqueness was proved, D

e

| diameter of interval for whih existene was proved,

losest neighbor distane: minimum D

min

, maximum D

max

, average D

av

.
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Figure 15: Estimation of topologial entropy for the Ikeda map based on the number

of short periodi orbits.

6 Conlusions

In this paper we have shown that interval arithmeti is a very powerful tool for in-

vestigations of nonlinear systems and rigorous studies of periodi orbits in partiular.

We have desribed methods for omputation of the enlosure of the invariant part and

the nonwandering part of a given set. We have also developed methods for �nding all

low period yles for the disrete{time dynamial systems based on interval operators.

We have ompared the performane of several interval methods. We have shown that

the global version with the redued searh spae is superior to all other methods. We

have also shown that for the maps onsidered using Krawzyk or Hansen{Sengupta

operators does not redue the omputational time onsiderably. It is true however that

there exist systems for whih Newton operator is signi�antly slower then the two other

operators. A very simple example is the non{invertible logisti map.

Using these methods we have found all periodi orbits for the H�enon map with

period n � 30 and for the Ikeda map with period n � 15 and estimated the topologial

entropy of these maps.

It was shown that the information about periodi orbits whih an be obtained using

the presented methods allows to investigate further the struture of haoti attrators.

First, the number of periodi orbits gives us a good approximation of invariants like

topologial entropy. The onvergene of the approximation is onsiderably fast. Se-

ond, we an easily identify regions within the haoti attrator not visited by short

yles and this gives us better insight into the struture of the attrator.

The methods presented an also be applied to investigate periodi orbits for onti-

nuous{time systems by using the tehnique of Poinar�e map [Galias, 1999℄.
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Appendix

In the appendix we present a simple proof of the theorem on the existene, uniqueness,

and nonexistene of zeros of a map using interval Newton operator.

Theorem 2. Let f : R

n

� D 7! R

n

be a ontinuously di�erentiable mapping. Let

x � D be an interval vetor and let us hoose x

0

2 x. f

0

(x) is the interval arithmeti

evaluation of the Jaobian of f over the interval x. We assume that f

0

(x)

�1

exists.

Let N(x) = x

0

� f

0

(x)

�1

f(x

0

).

(i). If N(x) \ x = ; then f has no zero in x.

(ii). If N(x) � x then f has a unique zero in x.

Proof. Let g(t) = f(x

0

+ t(x� x

0

)). It is lear that

f(x)� f(x

0

) = g(1)� g(0) =

Z

1

0

g

0

(t)dt =

Z

1

0

f

0

(x

0

+ t(x� x

0

))(x� x

0

)dt; (22)

Hene

f(x)� f(x

0

) = J(x)(x� x

0

); (23)

where

J(x) =

Z

1

0

f

0

(x

0

+ t(x� x

0

))dt: (24)

If x; x

0

2 x and t 2 [0; 1℄ then x

0

+ t(x � x

0

) 2 x as the interval vetor x is onvex.

Hene J(x) 2 f

0

(x). From the existene of f

0

(x)

�1

it follows that f

0

(x) does not ontain

any singular matrix and hene J(x) is nonsingular for all x 2 x.

(i). First we show that if f has a zero x

?

in x then x

?

2 N(x). The �rst part of the

theorem will then follow.

J(x

?

)(x

?

� x

0

) = f(x

?

)� f(x

0

) = �f(x

0

): (25)

Sine J(x

?

) 2 f

0

(x) it is nonsingular and therefore x

?

= x

0

� J(x

?

)

�1

f(y) 2 x

0

�

f

0

(x)f(x

0

) = N(x). It is lear that if x \N(x) = ; then x ontains no zeros of f .

35



(ii). Let us de�ne p(x) = x

0

� J(x)

�1

f(x

0

).

p(x) = x

0

� J(x)

�1

f(x

0

) 2 N(x) � x: (26)

for all x 2 x. Sine p(x) � x by Brouwer's �xed point theorem there exists x

?

suh

that p(x

?

) = x

?

. Then

0 = p(x

?

)� x

?

= x

0

� J(x

?

)

�1

f(x

0

)� x

?

= x

0

� J(x

?

)

�1

(f(x

?

)� J(x

?

)(x

?

� x

0

))� x

?

= x

0

� J(x

?

)

�1

f(x

?

) + x

?

� x

0

� x

?

= �J(x

?

)

�1

f(x

?

):

Sine J(x

?

) is nonsingular f(x

?

) = 0.

Now we prove the uniqueness of the �xed point. Assume that x

?

and x

??

are two zeros

of f in x. We will show that from the existene of f

0

(x)

�1

if follows that they must be

equal.

J(x

?

)(x

?

� x

??

) = f(x

?

)� f(x

??

) = 0; (27)

where

J(x

?

) =

Z

1

0

f(x

??

+ t(x

?

� x

??

))dt: (28)

As J(x

?

) is nonsingular it follows that x

?

= x

??

.
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