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ABSTRACT

In this paper we use the combination of the global inter-
val Newton method and the method of close returns for
detection and proving the existence of periodic orbits in a
continuous–time chaotic dynamical system. We consider
a simple third order electronic circuit for which we prove
the existence of several unstable periodic orbits. We also
find out which of these periodic orbits are symmetric and
discuss limitations of this technique.

1. INTRODUCTION

The problem of existence of periodic orbits in nonlinear
systems attracts attention of many researchers. The exis-
tence and exact position of periodic orbits is a key prop-
erty in analysis of nonlinear systems and in many appli-
cations. Periodic orbits may be located approximately in
numerical studies but there is no guarantee that there ex-
ists a true periodic trajectory that stays near a computer
generated one.

On the other hand periodic orbits may be rigorously
studied by means of interval Newton method belonging
to the class of self–validating algorithms. In the interval
Newton method [5] in order to investigate the existence
of zeros of a functionRm

3 x 7! f(x) 2 R

m in an
m-dimensional intervalx one computes the so–called in-
terval Newton operatorN(x). If N(x) � x then there
exists exactly one zero off in x.

Here we use a modification of this method called the
global interval Newton methodwhich may be used for
proving the existence of long cycles in continuous–time
systems. In this method the interval Newton operator is
applied to the generalized Poincaré map. This technique
may be automated and used for detection of a large num-
ber of periodic orbits in the state space.

In this paper we use bold letters to denote intervals,
interval vectors and matrices and usual math italic to de-
note real quantities. For the introduction to the interval
arithmetic underlying the methods discussed here see [5].
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2. GLOBAL INTERVAL NEWTON METHOD

Let us denote by'
t

(x) the trajectory of the system start-
ing at x. Let us consider an orbitf'

t

(�x)g

t2[0;T ]

and
let us choosep planes�

1

; : : : ;�

p

which are transver-
sal to this orbit. Let us denote by� the union of the
planes�

i

. We assume that�x 2 � and that the orbit
does not intersect any of the sets�

i

\ �

j

for i 6= j.
Let n be the number of points at which the trajectory
intersects�. Let us define ageneralized Poincaré map
H : � 3 x 7! H(x) = '

�(x)

(x) 2 �, where� (x) is the
time needed for the trajectory'

t

(x) to reach�.
The trajectoryf'

t

(�x)g

t2[0;T ]

is periodic if and only
if Hn

(�x) = �x. To prove this fact one may apply the
interval Newton method to the mapid�H

n. For longer
orbits however, usually the Jacobian matrixDHn

(�x) has
large diameter, and one cannot check the assumptions of
the existence theorem and the method fails (compare [2]).

In order to overcome this problem one may use the in-
terval Newton method for the global mapF : (R

m

)

n

7!

(R

m

)

n defined by

[F (z)]

k

= x

(k+1)mod n

�H(x

k

) for 0 � k < n;

wherez = (x

0

; : : : ; x

n�1

). See thatF (z) = 0 if and
only if x

0

is a fixed point ofHn. In the global interval
Newton method the problem of existence of periodic or-
bits is translated to the problem of existence of zeros of a
higher–dimensional function.

Now we describe the procedure for detection of many
periodic orbits in chaotic systems. First we extract pe-
riodic orbits using the method of close returns [4]. We
monitor a trajectory and look for parts of the trajectory
coming closely to the initial point. Then using the stan-
dard (non-interval) Newton method we sharpen the ap-
proximation obtaining a quasi–periodic trajectory of the
generalized Poincaré map. We create an interval vector
x centered at the approximate position of the orbit with
the same diameter at all points along the orbit. Finally we
check whether the image ofx under the interval Newton
operator is enclosed inx. If this condition holds the ex-
istence of periodic orbit is proven. In the opposite case
we can modify the interval vector and repeat the compu-
tations.
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Figure 1: Periodic orbits of the Chua’s circuit.

3. PERIODIC ORBITS FOR THE CHUA’S
CIRCUIT

As an example we consider the Chua’s circuit, a simple
third–order system defined by the following set of ordi-
nary differential equations:

C

1

_x = G(y � x)� g(x);

C

2

_y = G(x� y) + z; (1a)

L _z = �y �R

0

z;

whereg(�) is a three-segment piecewise-linear function

g(x) = G

b

x+ 0:5(G

a

�G

b

)(jx+ 1j � jx� 1j): (1b)

For parameters:C
1

= 1, C
2

= 9:3515, G
a

= �3:4429,
G

b

= �2:1849, L = 0:06913, R = 0:33065, R
0

=

0:00036 the system (1) exhibits chaotic behavior. We
choose the planesV

�

= fx 2 R

3

: x = �1 g sepa-
rating the three linear regions as the planes defining the
generalized Poincaré map (�

1

= V

+

, �
2

= V

�

). For the
details of computation of the generalized Poincaré map,
its Jacobian and the Jacobian of the global mapF see [3].

Now we report the results of application of the tech-
nique described in the previous section for detection and

proving the existence of periodic orbits for Chua’s cir-
cuit. First we have generated the trajectory (consisting
of 60000 points) of the Poincaré mapP : V

+

! V

+

.
We have limited ourselves to periodic orbits with length
smaller than150. We have located quasi–periodic trajec-
tories (returning to the neighborhood with radius0:005 of
the initial point) with return time smaller than 150. For
most quasi–periodic orbits we have succeeded in prov-
ing the existence of a nearby true periodic orbit. In few
cases the method failed. We have observed that in all
unsuccessful cases the orbit spends a long time in one
linear region before returning to one of the transversal
planes. In order to overcome this problem one should use
more planes defining the generalized Poincaré map. In
our study we also address the problem whether the peri-
odic orbit is symmetric. We say that the periodic orbit
(x

0

; : : :x

n�1

) of the generalized Poincaré map is sym-
metric ifx

0

= �x

l

, wherel = n

2

. Due to the fact that the
vector field of the system (1) is symmetric with respect to
the origin for every non–symmetric periodic orbit there
exist a different periodic orbit symmetric to it.

In our investigations we have found762 different pe-
riodic orbits with period shorter than150. Most of these
orbits are not symmetric, which can be easily proved by
checking thatx

0

\ (�x

l

) = ;. If this condition is not



a b n n

0 period
1 1 2 1 7:38058439

9

7

2 3 4 2 14:38443804

5

1

3 5 4 2 21:330218

4

2

4 7 6 3 21:6768157

2

0

5 9 4 2 24:70392

9

7

6 11 6 3 28:6270866

6

2

7 13 4 2 28:68369

8

6

8 15 8 4 29:0841154

6

4

9 17 4 2 29:52941

4

2

10 19 6 3 31:062129

9

4

11 21 8 2 S 32:83175

2

0

12 22 8 2 32:99894

7

5

13 24 8 2 S 33:73813

3

1

14 25 8 4 35:72253

9

7

15 27 8 4 36:021545

3

1

16 29 10 5 36:0750610

4

2

17 31 10 5 36:4559967

9

7

18 33 8 4 38:731208

93

2

a b n n

0 period
19 35 8 4 38:779715

91

3

20 37 10 2 41:00009

4

1

21 39 10 2 41:79856

7

5

22 41 10 5 42:9797918

9

5

23 43 10 5 43:3956623

6

2

24 45 8 2 S 43:9766674

96

4

25 46 8 2 44:1795015

6

1

26 48 8 2 S 44:556774

7

5

27 135 16 4 S 60:168288

6

4

28 136 16 4 S 60:267690

2

0

29 193 12 4 66:802198

3

0

30 567 24 6 S 99:12916

8

3

31 580 24 6 S 99:49633

9

4

32 160 48 790:0381

97

89

33 186 58 829:6924

7

5

34 204 57 893:61

603

599

35 246 58 1076:9431

9

6

2

Table 1: Some periodic orbits for the Chua’s circuit,a is the number of the orbit in Fig. 1,b is the number of the
orbit in the list of orbits found, the list is sorted according to the length of the orbit,n is the period of the orbit on the
generalized Poincaré mapH, n0 is the period on the Poincaré mapP , S in the fifth column depicts that the periodic
orbit is symmetric

fulfilled we suspect that the periodic orbit is symmetric.
In order to prove this we consider a mapG : (R

m

)

l

7!

(R

m

)

l

[G(z)]

k

=

�

x

(k+1)mod n

�H(x

k

) for k < l � 1;

x

(k+1)mod n

+H(x

k

) for k = l � 1;

wherez = (x

0

; : : : ; x

l�1

). It is clear thatG(z) = 0 if
and only ifHl

(x

0

) = �x

0

. It follows thatH2l

(x

0

) = x

0

andx
0

defines a symmetric periodic orbit with period2l.
Applying the interval Newton operator to the above map
we have checked that8 of the orbits found are symmet-
ric. In the remaining754 orbits there are81 pars of mu-
tually symmetric periodic orbits. In other words there are
673 pars of non–symmetric orbits and8 symmetric orbits
which gives the total number of1354 different orbits with
length smaller than150. For all the orbits by iterating the
interval Newton method we have obtained the uncertainty
of their position on� smaller than10�7.

Some of the orbits for which the existence was proven
are shown in Fig. 1. In particular we show all orbits found
with period smaller than45 (orbits (1)–(26), for each pair
of mutually symmetric orbits we show only one) and all
symmetric orbits found (orbits (11), (13), (24), (26)–(28),
(30), (31)). Their parameters are collected in Table 1.

We have also tried to prove the existence of longer pe-
riodic orbits. We were able to prove the existence of sev-
eral periodic orbits with length larger than 500. Four of
them are shown in Fig. 1 (orbits (32)–(35)). The longest
periodic orbit found has periodT � 1076:94which is ap-
proximately146 times larger than the shortest one (with

periodT � 7:38). This shows that the technique based
on the global interval Newton method can be successfully
used for proving the existence of long orbits.

4. NUMBER OF PERIODIC ORBITS AND
TOPOLOGICAL ENTROPY

In this section we discuss the results obtained in terms of
the number of cycles found for the Poincaré mapP .

It is known that there exists a symbolic dynamics for
the Chua circuit [1]. Namely there are two setsN

0

; N

1

�

V

+

such that for every finite sequence of symbolsa

0

; : : : ;

a

n�1

from the setf0; 1g, which does not contain the sub-
sequence(1; 1) there exist a periodic orbit(x

0

; : : :; x

n�1

)

such thatx
i

2 N

a

i

for i = 1; : : : ; n � 1. The number
O

s

(n) of period-n orbits ofP corresponding to the exis-
tence of symbolic dynamics is shown in Fig. 2(a). All of
these orbits have no intersection with the planeV

�

. Be-
cause the return time of the Poincaré map for points in
N

0

[N

1

is shorter than9 it follows that all these periodic
orbits with period smaller than17 has period shorter than
150 in the continuous–time system. In the same figure
we plot the number of orbits found. We show the total
number of periodic orbitsO(n) and the number of peri-
odic orbitsO

+

(n) visiting only the planeV
+

. One can
see thatO

s

(n) > O

+

(n) for n > 8. Hence it is clear that
we have not found all periodic orbits with period shorter
than150.

Another indication that there may by more periodic
orbits with period shorter than150 is based on the obser-



vation that we have found only81 pars of mutually sym-
metric orbits and531 non–symmetric orbits intersecting
both of the planesV

�

(so both orbits in the pair could be
found from the trajectory of the Poincaré map). Hence it
is very likely that there are many other periodic orbits not
found.

(a)

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3 all orbits

one plane 
symb. dyn.

(b)

0 2 4 6 8 10 12
0

1

2

3
all orbits
one plane 
symb. dyn.

Figure 2: (a) the number of period-n cycles ofP : O(n)

— all orbits found (stars),O
1

(n) — orbits found visiting
only planeV

+

(circles),O
s

(n) — from the existence of
symbolic dynamics forP (� symbols), (b) estimation of
topological entropy based on the number of cycles

This is caused by the inevitable property of the close
returns method. In this method longer periodic orbits are
less likely to be found especially if they lie in the neigh-
borhood of a shorter orbit.

It is also interesting to note that the numberO(n) of
periodic orbits found oscillates. For oddn it is much
smaller than forn even. In particular we have found only
one fixed point of the Poincaré map and no fixed points
of P visiting also the planeV

�

.
It is well known that the number of period–n cycles

can be used for estimation of topological entropy of the
map. For example topological entropy of an axiom A

diffeomorphismf is equal to

h(f) = lim

n!1

logC(f

n

)

n

;

whereC(f

n

) denotes the number of fixed points offn.
From the existence of symbolic dynamics we know that
the topological entropy of the Poincaré map is bounded
from below byh(P ) � log

1+

p

5

2

> 0:48, see Fig. 2(b).
In Fig. 2(b) the expressionh

n

(P ) =

1

n

logC(P

n

) is
used for estimation of topological entropy of the Poincaré
map. As it can be easily seen the number of periodic or-
bits found for smalln is much larger than the number
following from the existence of symbolic dynamics. The
estimationh

n

(P ) decreases withn and this is caused by
the fact that we did not found all periodic orbits. We be-
lieve however that the topological entropy of the Poincaré
map is much larger than0:48.

5. CONCLUSIONS

In this paper we have used the global interval Newton
method for proving the existence of periodic orbits in a
model of an electronic circuit. We have shown that this
method is much more powerful that the non-global ver-
sion of the interval Newton method. It is not limited
to short periodic orbits. We have shown that this tech-
nique may be combined with the method of close returns
for performing an exhaustive search of periodic orbits in
the state space. We have found1372 cycles (including8
symmetric orbits) with period shorter than150. We have
also found several long cycles. The longest periodic or-
bit found has period approximately146 times longer than
the shortest one.
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