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ABSTRACT 2. GLOBAL INTERVAL NEWTON METHOD

In this paper we use the combination of the global inter:et ys denote by, () the trajectory of the system start-
val Newton method and the method of close returns fqpg at . Let us consider an orbife: (%) }repo,] and
detection and proving the existence of periodic orbitsin gt ys choose planesyy, . .. . ¥, which are transver-
continuous—time chaotic dynamical system. We consideg| to this orbit. Let us denote by the union of the
a simple third order electronic circuit for which we provep|anesy.;. We assume that € ¥ and that the orbit
the existence of several unstable periodic orbits. We algfhes not intersect any of the séfs N x; fori # j.

discuss limitations of this technique. intersectsy. Let us define ajeneralized Poincaré map
H:Y¥ 3 rm H(x) = @) (r) € X, wherer(z) is the
1. INTRODUCTION time needed for the trajectony. («) to reachX.

The trajectory{y; (2) } [0, 7] IS periodic if and only

The problem of existence of periodic orbits in nonlineaff H"(z) = z. To prove this fagt one T["ay apply the
systems attracts attention of many researchers. The exiaterval Newton method to the mag — /7™ For longer

tence and exact position of periodic orbits is a key prog2'Pits however, usually the Jacobian maiit/" (x) has

erty in analysis of nonlinear systems and in many appd_arge c_llameter, and one cannot check th_e assumptions of
cations. Periodic orbits may be located approximately iH'€ €xistence theorem and the method fails (compare [2]).
numerical studies but there is no guarantee that there ex- N Order to overcome this problem one may use the in-
ists a true periodic trajectory that stays near a computival Newton method for the global map: (™) —
generated one. (IR™)" defined by

On the other hand periodic orbits may be rigorously [F(z)]x = (4 41)mod n — H(zx) foro <k <n,
studied by means of interval Newton method belongin
to the class of self—validating algorithms. In the interva% rez = (xo,
Newton method [5] in order to investigate the existenc
of zeros of a functio®R™ > = — f(z) € R™ in an
m-dimensional intervax one computes the so—called in-

terval Newton operatoN(x). If N(x) C x then there hlgrll\ler—dlmednSIOQEI f;Jhnctlon. dure for detection of
exists exactly one zero gfin x. ow we describe the procedure for detection of many

Here we use a modification of this method called thgeripdic qrbits _in chaotic systems. First we extract pe-
global interval Newton method/hich may be used for ”Od'.c orbits using the method of close returns [‘.1]' we
proving the existence of long cycles in continuous—tim§1oNitor & trajectory ar_ld_ !OOk f_or parts of the trajectory
systems. In this method the interval Newton operator i§om|ng clo_sely to the initial point. Then using the stan-
applied to the generalized Poincaré map. This techniq grd (non-interval) Newton method we sharpen the ap-

may be automated and used for detection of a large nu roximation obtaining a quasi—periodic trajectory of the
ber of periodic orbits in the state space generalized Poincaré map. We create an interval vector

In this paper we use bold letters to denote intervalX centered at the approximate position of the orbit with

interval vectors and matrices and usual math italic to de[1e same diameter at all points along the orbit. Finally we

o : : . heck whether the im funder the interval Newton
note real quantities. For the introduction to the interva ¢ ether the image afunder the interval Newto

. . . . erator is enclosed ir. If this condition holds the ex-
arithmetic underlying the methods discussed here see [I tence of periodic orbit is proven. In the opposite case

Research supported by Polish Committee of Scientific Rehear W€ Can modify the interval vector and repeat the compu-
KBN, grant no. 0449/P3/94/06. tations.

., &n—1). See thatF'(z) = 0 if and
nly if =, is a fixed point of ™. In the global interval
ewton method the problem of existence of periodic or-
bits is translated to the problem of existence of zeros of a
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Figure 1: Periodic orbits of the Chua’s circuit.

3. PERIODIC ORBITSFOR THE CHUA'S
CIRCUIT

proving the existence of periodic orbits for Chua’s cir-
cuit. First we have generated the trajectory (consisting
of 60000 points) of the Poincaré map : vV, — V.

As an example we consider the Chua’s circuit, a simplé/e have limited ourselves to periodic orbits with length
third—order system defined by the following set of ordismaller thari50. We have located quasi—periodic trajec-
nary differential equations: tories (returning to the neighborhood with radiug05 of

the initial point) with return time smaller than 150. For

Ciz = Gy—=z)—g(x), most quasi—periodic orbits we have succeeded in prov-
Cyy = Glz—y)+2, (1a) ing the existence of a nearby true periodic orbit. In few
Li = —y—Ry: cases the method failed. We have observed that in all

unsuccessful cases the orbit spends a long time in one
linear region before returning to one of the transversal
planes. In order to overcome this problem one should use
more planes defining the generalized Poincaré map. In
our study we also address the problem whether the peri-
For parametersc; = 1, C5 = 9.3515, G, = —3.4429, odic orbit is symmetric. We say that the periodic orbit
Gy = —2.1849, L. = 0.06913, R = 0.33065, Ry = (l‘o,...xn_l) of the generalized Poincaré map is sym-
0.00036 the system (1) exhibits chaotic behavior. wemetricifzo = —z;, wherel = 7. Due to the fact that the
choose the planey = {x € B3 : + = +1} sepa- vector_ﬂ_eld of the system (1) is syn_wmetrl_c Wlth regpect to
rating the three linear regions as the planes defining tig€ origin for every non-symmetric periodic orbit there
generalized Poincaré map{ = V., ¥ = V_). For the exist a different periodic orbit symmetric to it.
details of computation of the generalized Poincaré map, In our investigations we have fourig2 different pe-
its Jacobian and the Jacobian of the global iegee [3].  riodic orbits with period shorter tharb0. Most of these
Now we report the results of application of the tech-orbits are not symmetric, which can be easily proved by
nique described in the previous section for detection anthecking thatx; N (—x;) = @. If this condition is not

whereg(-) is a three-segment piecewise-linear function

9(2) = Goz + 0.5(Ga — Go)(|z + 1| — |« — 1]). (1b)



a|l b| n|n period a b n| n period
11| 2| 1 7.380584397 19| 35 8| 4 38.7797153!
2] 3| 4| 2 14.384438043 20| 37| 10| 2 41.00009%
3| 5| 4| 2 21.330218% 21| 39| 10| 2 41.798567
4| 7] 6| 3 21.67681572 22| 41| 10| 5 42.9797918%
5] 9| 4| 2 24.703929 23| 43| 10| 5 43.39566235
611 6| 3 28.62708665 24| 45 8| 2| S| 43.97666743°
7113 4| 2 28.68369% 25| 46 8| 2 44.1795015$
8|15 8| 4 29.08411545 26| 48 8| 2| S| 44.556774%
9117 4| 2 29.52941% 27 | 135| 16| 4| S| 60.1682885
10(19| 6| 3 31.0621299 28| 136| 16| 4| S| 60.2676902
11121 | 8| 2| S| 32831752 291193 12| 4 66.8021983
12122 8| 2 32.998947 30| 567 | 24| 6| S| 99.129168
13|24| 8| 2| S| 33738133 31|580| 24| 6| S| 99.49633]
14125 8| 4 35.722537 32 160 | 48 790.038137
15127| 8| 4 36.0215453 33 186 | 58 829.6924%
16| 29| 10| 5 36.0750610% 34 204 | 57 893.61693
17131|10| 5 36.45599672 35 246 | 58 1076.943122
18(33| 8| 4 38.73120853

Table 1: Some periodic orbits for the Chua’s circuitis the number of the orbit in Fig. B, is the number of the
orbit in the list of orbits found, the list is sorted accomglito the length of the orbi; is the period of the orbit on the
generalized Poincaré mdp, »’ is the period on the Poincaré m#&p S in the fifth column depicts that the periodic
orbit is symmetric

fulfilled we suspect that the periodic orbit is symmetricperiod?" ~ 7.38). This shows that the technique based
In order to prove this we consider a map: (R™)" —  onthe global interval Newton method can be successfully
(R™)! used for proving the existence of long orbits.

G _ | Tee41)ymodn — H(zg) fork <i—1,
(GG = it ymod n + H(zg) fork=1-1, 4. NUMBER OF PERIODIC ORBITSAND

TOPOLOGICAL ENTROPY

wherez = (zo,...,#—-1). Itis clear thatG(z) = 0 if
and only if ' () = —xo. It follows that /> (xo) = o  In this section we discuss the results obtained in terms of
andz, defines a symmetric periodic orbit with perigd  the number of cycles found for the Poincaré nfap
Applying the interval Newton operator to the above map It is known that there exists a symbolic dynamics for
we have checked thatof the orbits found are symmet- the Chua circuit [1]. Namely there are two séig, N1 C
ric. In the remaining54 orbits there ar&1 pars of mu- 1/, such that for every finite sequence of symhals. . . |
tually symmetric periodic orbits. In other words there are:,, _; from the set{0, 1}, which does not contain the sub-
673 pars of non—symmetric orbits addsymmetric orbits sequencél, 1) there exist a periodic orbit, . . ., z,—1)
which gives the total number @854 different orbits with  such that:; € N,, fori = 1,...  n — 1. The number
length smaller thah50. For all the orbits by iterating the O, (n) of period+ orbits of P corresponding to the exis-
interval Newton method we have obtained the uncertaintgnce of symbolic dynamics is shown in Fig. 2(a). All of
of their position on®: smaller than 0~". these orbits have no intersection with the pl&he Be-

Some of the orbits for which the existence was provenause the return time of the Poincaré map for points in
are shown in Fig. 1. In particular we show all orbits foundV, U N is shorter than it follows that all these periodic
with period smaller thad5 (orbits (1)—(26), for each pair orbits with period smaller thativ has period shorter than
of mutually symmetric orbits we show only one) and alll50 in the continuous—time system. In the same figure
symmetric orbits found (orbits (11), (13), (24), (26)—(28)we plot the number of orbits found. We show the total
(30), (31)). Their parameters are collected in Table 1. number of periodic orbit®(n) and the number of peri-

We have also tried to prove the existence of longer p@dic orbitsO. (n) visiting only the plané’,. One can
riodic orbits. We were able to prove the existence of sewsee that), (n) > O, (n) forn > 8. Hence itis clear that
eral periodic orbits with length larger than 500. Four ofve have not found all periodic orbits with period shorter
them are shown in Fig. 1 (orbits (32)—(35)). The longesthan150.
periodic orbit found has peridl ~ 1076.94 which is ap- Another indication that there may by more periodic
proximately146 times larger than the shortest one (withorbits with period shorter thalb0 is based on the obser-



vation that we have found onBi pars of mutually sym-
metric orbits andb31 non—symmetric orbits intersecting
both of the plane$’, (so both orbits in the pair could be

found from the trajectory of the Poincaré map). Hence it

diffeomorphismf is equal to
1y 18 CU™)

li
n—o00 n

h(f) =

bl

is very likely that there are many other periodic orbits nowhereC(f") denotes the number of fixed points &f.

found.

all orbits
one plane
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Figure 2: (a) the number of periodeycles of P: O(n)
— all orbits found (stars) (n) — orbits found visiting
only planeV. (circles),O;(n) — from the existence of
symbolic dynamics foP (x symbols), (b) estimation of
topological entropy based on the number of cycles

This is caused by the inevitable property of the close

From the existence of symbolic dynamics we know that
the topological entropy of the Poincaré map is bounded
from below byh(P) > log 1+2—\/g > 0.48, see Fig. 2(b).

In Fig. 2(b) the expressioh,, (P) = 1 log C(P") is
used for estimation of topological entropy of the Poincaré
map. As it can be easily seen the number of periodic or-
bits found for smalln is much larger than the number
following from the existence of symbolic dynamics. The
estimationh,, (P) decreases with and this is caused by
the fact that we did not found all periodic orbits. We be-
lieve however that the topological entropy of the Poincaré
map is much larger thain48.

5. CONCLUSIONS

In this paper we have used the global interval Newton
method for proving the existence of periodic orbits in a
model of an electronic circuit. We have shown that this
method is much more powerful that the non-global ver-
sion of the interval Newton method. It is not limited
to short periodic orbits. We have shown that this tech-
nique may be combined with the method of close returns
for performing an exhaustive search of periodic orbits in
the state space. We have fourl2 cycles (including’
symmetric orbits) with period shorter thaf0. We have
also found several long cycles. The longest periodic or-
bit found has period approximately6 times longer than
the shortest one.
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