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Abstract

In this paper we present a new method of controlling periodic orbits in chaotic systems.

This method can be applied in situations when the chaotic system depends on one system

parameter, which can be changed over a continuous interval or over a discrete, two-element set.

We compare the new method to other ones, discuss its properties, and illustrate our approach

with a numerical example.
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1 Introduction

It is well known that even seemingly simple nonlinear systems can behave chaotically. In

practical situations however we would prefere to avoid it. There are several possible approaches

to the problem of suppressing chaotic behaviour [Ogorza lek, 1993]. In this paper we follow the

approach, introduced in [Ott et al., 1990] and studied in other papers [Dressler & Nitsche, 1992,

D�abrowski et al., 1993a], in which control of chaos is understood as stabilization of one of the

unstable periodic orbits existing within the strange attractor. In the method presented in

[Ott et al., 1990] (referred to as the OGY method), one of the system parameters is changed

only when the trajectory intersects the chosen plane and the modi�cation is such that the next

intersection of this plane by the system trajectory will fall onto the stable manifold of the

periodic orbit. In the case where there are many available parameters one can choose any of

them as the control one, but certainly some choices will make the successful control easier to

obtain.

Here we present a di�erent approach. The control formula is derived from the condition

that the next intersection will be as close to the periodic orbit as possible. We also present the

modi�cation of this method for a control parameter with two discrete values only. An example

of a system in which such a modi�cation could be applied is an electronic circuit with a switch

changing one of the circuit parameters. The switch-control is much easier to implement than

the continuous-value (or multilevel) control. In Sec. 2 we recall the notion of Poincar�e map and

as the motivation for the new method we give an example of a system possessing a periodic orbit

attracting along a part of its unstable manifold. In sec. 3 we present the new control method

an we discuss the in
uence of the maximal value of control parameter and the frequency of

application of the control signal upon the operation of the method. In Sec. 4 we describe the

computer simulations. We present the results of stabilization of unstable periodic orbits in the

double-scroll attractor of Chua's circuit.

2 Basic Notions

Let us consider a three-dimensional continuous-time dynamical system, which depends on one

system parameter, denoted by p:

dx(t)

dt

= F (x(t); p): (1)

where F is a continuous vector �eld. We say that the system (1) generates a 
ow �

t

: U �! IR

n

,

where U is some open set in IR

n

, if � satis�es (1) in the sense that

d

dt

(�

t

(x))j

t=�

= F (�

�

(x); p)

for all x 2 U and � 2 I = (a; b) � IR. �

t

(x

0

) de�nes a trajectory of the di�erential equation

(1) based at x

0

(we will also write this solution as x(x

0

; t) or simply x(t)).

2.1 Poincar�e map, generalized Poincar�e map

In this subsection we recall the notion of Poincar�e map [Guckenheimer & Holmes, 1983]. Let

�

t

be a 
ow arising from the system (1). Let 
 be a periodic orbit of the 
ow. First we choose

a local cross section �. We assume that � is a hyperplane and is everywhere transverse to the


ow. We also assume that the intersection of the orbit 
 with the hyperplane � is one point,

denoted by x

F

(if this intersection is multipoint we must shrink � appropriately). The Poincar�e

map P : U �! � is de�ned by:

P (x) = P

�

(x) = �

�(x)

(x);
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where U is some neighbourhood of x

F

in � and �(x) is the time needed for the trajectory �

t

(x)

to return to �. The existence of Poincar�e maps follows from the following Theorem:

Theorem 1 ([Parker & Chua, 1989]) There exist an open set U with x

F

2 U , and a unique

C

1

map � : U �! IR, such that, for all x 2 U , �

�(x)

(x) 2 � and �(x

F

) is the period of 
.

It is clear that x

F

is a �xed point for the map P and the stability of x

F

re
ects the stability

of 
 for the 
ow. The most important property of Poincar�e maps is stated in the following

theorem:

Theorem 2 ([Parker & Chua, 1989]) Let x

1

and x

2

be any two points on a periodic orbit. Let

�

1

be a hyperplane passing through x

1

transversally to the 
ow. Likewise, de�ne �

2

with respect

to x

2

. Then DP

�

1

(x

1

) is similar to DP

�

2

(x

2

).

From the above theorem the immidiate conclusion is that the eigenvalues of the Jacobian of a

Poincar�e map are uniquely determined (they do not depend on the choice of a point x on the

periodic orbit or the choice of a transversal section).

Let us now choose two points x

1

and x

2

, such that x

2

= �

�

(x

1

). Let �

1

and �

2

be local

transversal cross sections such that x

1

2 �

1

and x

2

2 �

2

. The generalized Poincar�e map

P

�

1

�

2

: U �! �

2

is de�ned by:

P

�

1

�

2

(x) = �

�(x)

(x);

where U is some neighbourhood of x

1

and �(x) is the time needed for the trajectory based at x

to reach �

2

. For the generalized Poincar�e map the property of the eigenvalues of the Jacobian is

not preserved. As it will be shown in the next subsection the eigenvalues can vary signi�cantly

with the change of points x

1

, x

2

on the periodic orbit. Also qualitative change of eigenvalues

(change of their position with respect to the unit circle) is possible.

2.2 Example

We will show an example of a two-dimensional dynamical system possessing a periodic orbit,

which is unstable and attracting trajectories in a part of it. By a small modi�cation we will

produce a three-dimensional system with a periodic saddle-type orbit, which locally repells in

both directions. Let us consider the system de�ned in polar coordinates by the following state

equations:

(

_r = (r� 1)(1 + c sin �)

_

� = 1

(2)

By solving Eqs. (2) the global 
ow can be obtained

�

t

(r

0

; �

0

) = (1 + (r

0

� 1)e

c cos �

0

�c cos(t+�

0

)+t

; t+ �

0

):

Let us choose the following local transversal planes:

�

1

= � = f(r; �) 2 IR

+

� S

1

: r > 0; � = 0g;

�

2

= f(r; �) 2 IR

+

� S

1

: r > 0; � = �g:

Let us de�ne Poincar�e map as P = P

��

. The time of 
ight �(x) for any point x 2 � is � = 2�

and hence the Poincar�e map is given by

P (r) = 1 + (r� 1)e

2�

:
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Clearly r = 1 is a �xed point of P , re
ecting the circular closed orbit of radius 1 of the

system (2). The Jacobian of this orbit is DP (1) =

dP

dr

�

�

�

r=1

= e

2�

, hence the periodic orbit is

unstable. Let us de�ne two generalized Poincar�e maps: P

1

= P

�

1

�

2

and P

2

= P

�

2

�

1

:

P

1

(r) = 1 + (r � 1)e

2c+�

;

P

2

(r) = 1 + (r� 1)e

�2c+�

:

For c = � the Jacobians of generalized Poincar�e maps are DP

1

(1) = e

2c+�

= e

3�

> 1 and

DP

2

(1) = e

�2c+�

= e

��

< 1. Thus the map P

2

is attracting but as the repelling action in

the �rst part (P

1

) is dominant { the periodic orbit is unstable (DP (1) = DP

2

(1) �DP

1

(1)).

Several trajectories of this system based at points close to (r; �) = (1; 0) are shown in Fig.1.

One can notice that trajectories are globally repelled from the periodic orbit, but locally in the

lower half-plane they are attracted.
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Figure 1: Example of unstable periodic orbit attracting in the lower half-plane

Let us add a third independent variable to the above system:

8

>

<

>

:

_r = (r� 1)(1 + c sin �)

_

� = 1

_z = �z

(3)

The global 
ow is now given by

�

t

(r

0

; �

0

; z

0

) = (1 + (r

0

� 1)e

c cos �

0

�c cos(t+�

0

)+t

; t+ �

0

; z

0

e

�t

):
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Let us de�ne the following transversal sections:

�

1

= � = f(r; �; z) 2 IR

+

� S

1

� IR : r > 0; � = 0g;

�

2

= f(r; �; z) 2 IR

+

� S

1

� IR : r > 0; � = �g:

The Poincar�e map P = P

��

is given by

P (r; z) = (1 + (r� 1)e

2�

; ze

�2�

):

Similarly to the two-dimensional system let us de�ne two generalized Poincar�e maps:

P

1

(r; z) = P

�

1

�

2

(r; z) = (1 + (r � 1)e

2c+�

; ze

��

);

P

2

(r; z) = P

�

2

�

1

(r; z) = (1 + (r � 1)e

�2c��

; ze

��

):

The Jacobian of Poincar�e map is

DP (1; 0) =

"

e

2�

0

0 e

�2�

#

;

which means that the �xed point is a saddle. The Jacobians of generalized Poincar�e maps are

DP

1

(1; 0) =

"

e

2c+�

0

0 e

��

#

; DP

2

(1; 0) =

"

e

�2c+�

0

0 e

��

#

:

The Poincar�e map P can be decomposed as P = P

2

�P

1

. Hence the condition DP = DP

1

�DP

2

must be ful�lled. For c = � the Jacobian DP

2

has two eigenvalues e

��

. Thus the stable

direction of DP

2

does not exist. Similar example can be given for a case where both eigenvalues

are unstable. From this example one can see that a decomposition of standard Poincar�e map

can lead to generalized Poincar�e maps with qualitatively di�erent behaviour (they can locally

attract in the unstable direction of the periodic orbit or repel in the stable one).

2.3 Comments on the multipoint OGY method

The multipoint OGY formula, as proposed originally in [Ott et al., 1990] does not work properly

in all cases. The control formula is derived from the condition that the next intersection will fall

onto the stable direction of the next generalized Poincar�e map. The silent assumption is that

for every generalized Poincar�e map P

j

there exist stable and unstable directions, which is true

for standard Poincar�e maps only (singlepoint method). As it has been shown in the previous

subsection, in a multipoint case di�erent situations could occur: both real eigenvalues of DP

j

can lie outside the unit circle (two unstable directions), both real eigenvalues can lie inside the

unit circle (two stable directions) or there could exists two complex eigenvalues. The formula

of multipoint OGY method does not say what to do in such situations. The OGY method can

be reformulated to be general one. Instead of pushing the trajectory onto the stable direction

of the next generalized Poincar�e map P

j+1

one can push it onto the stable direction of periodic

orbit, which is the stable direction of the matrix DP

j

� : : : �DP

1

�DP

n

� : : : �DP

j+1

. This is

however not a good solution because especially for longer orbits this matrix cannot be computed

very accurately. The second reason is that this condition can lead to pushing trajectory onto

the stable direction of the periodic orbit also within a region in which the periodic orbit repels

locally along the stable direction (compare the example from the previous subsection).

In the next section we propose a new method, which is general (it can be used also when

the decomposition of matrices DP

j

into stable and unstable directions does not exist). Its idea

is very simple. Instead of pushing the trajectory onto the stable manifold, which could repel

locally, we try in every step to minimize the distance between the trajectory and the periodic

orbit.
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3 New Control Method

We consider a dynamical system de�ned by the state equation (1). We assume that for the

nominal value of p, denoted by p

0

, the solutions x(t) are chaotic and that there exists an unstable

periodic orbit embedded within the attractor. The second assumption is a consequence of one

of chaotic attractors' properties, which states that the set of unstable periodic orbits is dense

within the attractor. Similarly to the OGY method we assume that the change in the system

caused by applying the control parameter in the allowed range is small. By this we mean that for

small parameter modi�cations both the chaotic attractor and the periodic orbit which we want

to stabilize do not disappear. In other words we assume that in the considered neighbourhood

of the nominal value of the parameter there exists no bifurcation point of this periodic orbit.

3.1 Continuous values of control parameter

First let us consider the case when we can change the parameter p continuously over some

interval around its nominal value p

0

. Let 
 be the unstable periodic orbit, which we want to

stabilize. Let us assume that the periodic orbit is parametrized in the following way


 = fx(t) 2 IR

3

: t 2 [0; T ]g;

where T is the period of the orbit and x(T ) = x(0). Let us choose the real values 0 = t

1

< t

2

<

: : : < t

n

< T , which de�ne n points on the periodic orbit (x(t

j

); j = 1 : : :n). At each of these

points let us choose a plane �

j

, which is transversal to the periodic orbit 
. For simplicity we

assume that these planes are orthogonal to the third axis and are de�ned by

�

j

= fy = (y

1

; y

2

; y

3

)

T

2 R

3

: y

3

= x

3

(t

j

)):

Such an assumption simpli�es the implementation of the method. Let �

Fj

:= (x

1

(t

j

); x

2

(t

j

))

T

be a point on the plane �

j

belonging to the periodic orbit. Without this assumption about

transversal planes we would have to de�ne new coordinate systems for each plane, while here

we use the coordinates on �

j

inherited from IR

3

. Let P

j

be the generalised Poincar�e map

between planes �

j

and �

j+1

associated with the dynamical system considered, namely

�

i+1

= P

j

(�

i

; p

i

);

where �

i

2 �

j

and �

i+1

is the �rst intersection with the plane �

j+1

of the trajectory based at �

i

and p

i

is the actual value of control parameter (constant between points �

i

and �

i+1

). For our

method we use the �rst order approximations of the mappings P

j

near �

Fj

and p

0

:

��

i+1

� A

j

��

i

+w

j

�p

i

; (4)

where ��

i

= �

i

� �

Fj

, �p

i

= p

i

� p

0

, A

j

is the Jacobian of the map P

j

at �

Fj

, p

0

and w

j

=

@P

j

@p

(�

Fj

; p

0

).

We monitor the intersections of the system trajectory with the planes �

j

. We wait until the

intersection �

i

of the trajectory with the plane �

j

is close to the point �

Fj

. Then we change p

in such a way, that the intersection of the trajectory with the next plane �

j+1

will be as close

as possible to the periodic point �

Fj+1

. We will use the Euclidean metric for the derivation of

the control formula. We want to choose p such that jj��

i+1

jj is minimal. In order to �nd the

formula for �p

i

we use the following lemma:

Lemma 1 Let f(p) = A� +wp, where p 2 IR, �;w 2 IR

2

and A is a square 2� 2 matrix. For

p = �

w

T

A

jjwjj

2

�

jjf(p)jj is minimal.
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Proof: Let us write the norm of the function f in the form:

jjf(p)jj

2

= jjA� +wpjj

2

= (A� +wp)

T

(A� +wp) = �

T

A

T

A� + �

T

A

T

wp+ pw

T

A� + pw

T

wp

and then calculate its derivative with respect to p:

(jjf(p)jj

2

)

0

= �

T

A

T

w +w

T

A� + 2pw

T

w = 2w

T

A� + 2pjjwjj

2

:

The minimum can be found from the condition (jjf(p)jj

2

)

0

= 0. The necessary condition for the

minimum is obviously ful�lled (function jjf(�)jj

2

is quadratic).

2

In our case for

�p

i

= �

w

T

j

A

j

jjw

j

jj

2

��

i

=: g

j

��

i

(5)

jj��

i+1

jj is minimal.

Thus we change the value of the parameter p by the amount �p

i

(p

i

= p

0

+ �p

i

) and we expect

that when the trajectory intersects the next plane �

j+1

it will pass closer to the unstable periodic

orbit.

3.2 Two-level parameter control

In the previous subsection we have dealt with the case of continuous variations of the parameter.

Here we consider the case when the control parameter can accept only two values say q

1

and

q

2

, q

1

< q

2

. The idea is straightforward. If we want to make the two-level control we just check

the sign of the value �p

i

and we change the value of parameter p by the amount sgn(�p

i

)�p

max

from the nominal value p

0

= (q

1

+ q

2

)=2, where �p

max

= (q

2

� q

1

)=2. In other words, if �p

i

� 0,

we present parameter q

2

to the system and otherwise q

1

. By choosing one of the values q

1

, q

2

we make the trajectory to move in the desired direction at the maximal possible speed. If the

points t

1

; t

2

; : : : ; t

n+1

are close enough to each other then the trajectory will not escape far from

the periodic orbit and at the next intersection we will have a chance to keep the error small.

All the parameters necessary for the control can be calculated when we can apply only the

two values of the parameter p to the system. Let �

1

Fj

and �

2

Fj

be the intersection points of the

periodic orbit with transversal planes �

j

for q

1

and q

2

respectively. Let p

0

= (q

1

+ q

2

)=2. The

positions of the periodic points on Poincar�e planes change linearly with the change of control

parameter (for small parameter variations), and hence �

Fj

= (�

1

Fj

+ �

2

Fj

)=2 is the approximate

position of the periodic orbit for p

0

. We can apply the described method for the points �

Fj

and the parameter value p

0

. We start to run the system with any of two parameters q

1

,q

2

. We

monitor the intersections of system trajectories with planes �

j

. We calculate �p

i

using formula

(5) and we apply the parameter

p

i

=

(

q

2

if �p

i

� 0

q

1

if �p

i

< 0

In this case we must apply the control parameter more frequently, because the control signal

only "informs" the system in which direction to move. We must check quickly enough if the

trajectory does not escape far from periodic orbit. Applying control more frequently is done by

choosing more points on the periodic orbit.

3.3 Convergence properties - efectiveness of control

Now we investigate the problem, for which maps P

j

and vectors w

j

the control is e�ective.

Lemma 1 guaranties only minimization of the distance but does not imply the convergence of
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the trajectories towards the desired orbit. We say that the control is e�ective if there exists

some small � > 0 and t

0

such that for t > t

0

the distance between trajectory and the stabilized

periodic orbit is smaller than �. As it will be shown, the e�ectiveness of the method depends

on the direction of vectors w in relation to the eigenvectors of the Jacobian matrices. Let us

consider the period-one case. Let P (�; p) be the Poincar�e map of the system. Without loss of

generality we will assume that O = [0; 0]

T

is a �xed point of P for p = 0 (P (O; 0) = O). Let

the linear approximation of the map P be of the form

f(�; p) = A� +wp: (6)

In order to minimize jjf(�; p)jj we choose p(�) = �

w

T

A

jjwjj

2

�.

First we derive the condition for w ensuring that in every iteration the distance between the

trajecory and the periodic orbit is decreased. We want to �nd vectors w for which there exists

some neighbourhood U of the �xed point O such that for every � 2 U

jjP (�)jj < jj�jj (7)

The function f can be written as

f(�) = A� +wp(�) = A� �

ww

T

A

jjwjj

2

� =

�

I �

ww

T

jjwjj

2

�

A� =: W �: (8)

Let

A =

 

a

11

a

12

a

21

a

22

!

and w = jjwjj � (cos ; sin )

T

.

Lemma 2 Let f , A, w be de�ned above.

Then

8� jjf(�)jj < jj�jj (9)

if and only if

(a

11

sin  � a

21

cos )

2

+ (a

12

sin � a

22

cos )

2

< 1 (10)

Proof: Because the map f is linear it is enough to check the condition (9) for � such that

jj�jj = 1. Hence it is equivalent to checking if the matrix 2-norm of W is smaller than one. The

2-norm of a matrix B is de�ned by:

jjBjj = max

jj�jj=1

jjB�jj

where jj � jj on the right-hand side is the Euclidean norm. It can be proved that the matrix

2-norm is equal to the square root of the largest eigenvalue of the matrix B

T

B or equivalently

the largest singular value of B. Let us write the matrix W in a more convevient form:

W =

 

I �

ww

T

jjwjj

2

!

A =

  

1 0

0 1

!

�

 

cos

2

 cos sin 

cos cos sin

2

 

!!

�

 

a

11

a

12

a

21

a

22

!

=

 

sin

2

 � cos sin  

� cos cos cos

2

 

!

�

 

a

11

a

12

a

21

a

22

!

After simple algebraical manipulations we can write the matrix W

T

W as

 

c

2

1

c

1

c

2

c

1

c

2

c

2

2

!
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where c

1

= a

11

sin  � a

21

cos and c

2

= a

12

sin � a

22

cos . Its eigenvalues are �

1

= 0 and

�

2

= (a

11

sin  � a

21

cos )

2

+ (a

12

sin  � a

22

cos )

2

. Hence the 2-norm of W is jjW jj =

p

�

2

.

Finally jjW jj < 1 i� j�

2

j < 1.

2

The condition (10) can be written as

cos 2 �A+ sin 2 �B > C;

where A = a

2

11

+ a

2

12

� a

2

21

� a

2

22

, B = 2(a

11

a

21

+ a

12

a

22

) and C = a

2

11

+ a

2

12

+ a

2

21

+ a

2

22

� 2.

We can obtain the solution in  of this inequality by introducing the new variable �, such that

cos 2� = A=

p

A

2

+B

2

and sin 2� = B=

p

A

2

+B

2

cos(2� � 2�) > D =

C

p

A

2

+B

2

:

One can check that jDj � 1 i�

a

2

11

+ a

2

12

+ a

2

21

+ a

2

22

� 1 + (detA)

2

: (11)

In this case  satis�es inequality (10) i�  � � 2 [�

1

2

arccosD + k�;

1

2

arccosD + k�] for some

integer k. If (11) does not hold we have two subcases. If C < 0 (which corresponds to small

elements of matrix A) then the condition (10) is ful�lled for all  . If all elements of the matrix

A are small then trajectories of the original system are attracted by the �xed point, and no

control is necessary to obtain demanded behaviour. If C > 0 then there exist no  satisfying

(10).

Let us consider the case when the matrix A has one stable and one unstable eigenvalues.

In order to �nd the optimal position of vector w in relation to the eigenvectors of the Jacobian

A let us assume that the matrix A is diagonal. Let f and w be the same as in the previous

lemma and

A =

 

�

1

0

0 �

2

!

(12)

with j�

1

j > 1 > j�

2

j. In this case � = 0, D =

�

2

1

+�

2

2

�2

�

2

1

��

2

2

and (10) is equivalent to

cos 2 >

�

2

1

+ �

2

2

� 2

�

2

1

� �

2

2

(13)

It is now clear that the most successful control is achieved when the vector w is parallel to the

unstable eigenvector of the Jacobian A (from (13) it follows that  should be close to 0 or �

which means that w = �jjwjj(1; 0)

T

while the unstable eigenvector is e

u

= (1; 0)

T

). It can be

shown that if the eigenvectors of matrixA are orthogonal then � is the angle between the x-axis

and the unstable eigenvector of the matrix A.

Another su�cient condition ensuring proper behaviour of the method in an ideal case is the

existence of some neighbourhood U of the �xed point O such that for all � 2 U

jjP

n

(�)jj �! O for n �! 1 (14)

Lemma 3 Let f , A, w be the same as in Lemma 2.

Then for every �

jjf

n

(�)jj �! 0 for n �! 1 (15)

if and only if

ja

11

sin

2

 + a

22

cos

2

 � (a

12

+ a

21

) cos sin j < 1 (16)
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Proof: As the map f is linear we must check when all eigenvalues of the matrix W lie inside

the unit circle. The eigenvalues of matrix W are �

1

= 0 and �

2

= a

11

sin

2

 + a

22

cos

2

 �

(a

12

+ a

21

) cos sin  .

2

The above two lemmas state the properties of the linear approximation of the map P . As

an immediate conclusion we obtain the following corollary describing the behaviour of the map

P in the neighbourhood of the �xed point O.

Corollary 1 From the condition (10) it follows that there exists some neighbourhood U of the

�xed point such that for every � from this neighbourhood jjP (�)jj < jj�jj.

From the condition (16) it follows that there exists some neighbourhood U of the �xed point O

such that for every � from this neighbourhood jjP

n

(�)jj �! O for n �! 1.

The conditions (10) and (16) do not assume that a decomposition of the Jacobian into stable

and unstable directions exists. Hence they can be used as criteria for the method to work also

in a multipoint method. Using this method for the stabilization of periodic orbits with two

unstable directions when the condition (16) is ful�lled is however problematic. Such an orbit

does not belong to the chaotic attractor and it is very unlikely that the trajectory will ever

come inside a small neighbourhood of the periodic orbit allowing us to start the control.

The condition in Lemma 2 is stronger than the one from Lemma 3. The �rst one ensures

that in every iteration the distance from the �xed point of the Poincar�e map is decreased, while

the second one ensures only convergence of the trajectory to the �xed point. For example let

us consider the Poincar�e map P with the Jacobian being a diagonal matrix with eigenvalues

�

1

= 2 and �

2

= 0:5. Then (10) is ful�lled for  2 [�0:464; 0:464][ [2:678; 3:605] which is about

30% of the 2� interval while (16) is ful�lled for  2 [�0:615; 0:615][ [2:526; 3:757] which is about

39% of the 2� interval. The condition (16) can sometimes be too weak in real experiments. It

is possible that after starting control the trajectory will leave a small neighbourhood limited by

the maximal allowed parameter changes and/or by the nonlinear e�ects.

Now let us study the e�ect of increasing the number of points along the periodic orbit at

which we modify the control parameter. If we decompose the Poincar�e map de�ned above

into two maps with equal Jacobian such that �

1

=

p

2 and �

2

=

p

0:5 (which is not always

possible but gives us an idea, what happens in the multiplane case) then (10) is ful�lled for

 2 [�0:62; 0:62] [ [2:53; 3:76] which is about 39% of 2� interval. From this example one can

see that typically increasing the number of Poincar�e planes make it easier for w to ful�ll the

condition (10).

We would like to emphasize, that (10) and (16) are only su�cient conditions for the method

to work. In the conditon (7) and (14) the worst case is checked. The trajectory has not to visit

the worst case points (directions) or can visit them rarely. Then the �xed point will attract

the trajectory on the average and the method could work without satisfying condition (16) or

equivalent inequality (14). Another possible criterion would be calculating the average ratio

jjP (�)jj=jj�jj over the chaotic trajectory in the neighbourhood of O, but this would involve

calculation of the invariant measure and is much more complicated.

3.4 Characterization of the two-level control signal

In this subsection we will discuss the problem of choosing p

max

and the minimal number of

points n for a given periodic orbit in the case of the two-level control. First let us consider the

case n = 1. Let us assume, like in the previous subsection that P (�; p) is the Poincar�e map of the

system,O is the �xed point for p = 0 and f de�ned by (6) is the linear approximation of the map

P . In this case we choose p(�) = sgn(�

w

T

A

jjwjj

2

�) � p

max

as the control signal. Let us assume that

the matrix A has two real eigenvalues �

1

, �

2

and j�

1

j > 1 > j�

2

j. Let us change the coordinate

10



system in such a way that in this new coordinate system the Jacobian of the periodic orbit is

a diagonal matrix de�ned by (12). Notice that P (O) = P (O; p(O)) = P (O; p

max

) = wp

max

.

Hence we are not able to ensure the minimization of distance in subsequent iterations or even

converging of trajectories towards the �xed point. We will use the following condition ensuring

e�ectiveness of the method: there exists some small real value � such that

jj�jj

1

� � ) jjP (�)jj

1

< �: (17)

If this condition is satis�ed than any trajectory starting from the ball with radius � in max-

imum norm will remain in this ball for ever. This time we have used the maximum norm

(jj(x

1

; x

2

)jj

1

:= max(x

1

; x

2

)) since for the Euclidean norm the results are di�cult to obtain

and to interpret (these two norms are equivalent). First we will discuss the problem how to

choose the value of p

max

in order to satisfy (17).

Lemma 4 Let

f(�) = A� +wp(�) = A� +w � p

max

� sgn

 

�

w

T

A

jjwjj

2

� �

!

;

where A is the diagonal matrix de�ned by (12) and w = (w

1

; w

2

)

T

. Let � be a positive real

value. Then

jj�jj

1

� � ) jjf(�)jj

1

< �: (18)

if and only if

j�

2

w

2

j � j�

1

w

1

j

p

max

> � �

j�

1

j � 1

jw

1

j

p

max

< � �

1� jw

2

�

2

=w

1

j

jw

1

j

(19)

p

max

< � �

1� j�

2

j

jw

2

j

:

Proof: Let us consider the case w

1

, w

2

, �

1

, �

2

> 0. For other cases the proof is similar. In the

proof jj � jj will denote the maximum norm. In order to �nd the condition equivalent for (18) we

calculate the maximum of the norm jjf(�)jj over the ball f� : jj�jj � �g:

m := maxfjjf(�)jj : jj�jj � �g

= maxfjjA� +wp

max

sgn(�w

T

A � �)jj : jj�jj � �g

= maxfmaxfjjA� +wp

max

jj : jj�jj � �;�w

T

A� � 0g;

maxfjjA� �wp

max

jj : jj�jj � �;�w

T

A� < 0gg:

It can be checked that

maxfjjA� +wp

max

jj : jj�jj��;�w

T

A��0g = maxfjjA� �wp

max

jj : jj�jj��;�w

T

A��0g

and hence

m = maxfjjA� �wp

max

jj : jj�jj � �;�w

T

A� � 0g:

After using the maximum norm de�nition for the expression jjA� � wp

max

jj we obtain m =

maxfm

1

; m

2

g where

m

1

= maxfj�

1

x

1

+ w

1

p

max

j : jj�jj � �;�w

T

A� � 0g;

m

2

= maxfj�

2

x

2

+ w

2

p

max

j : jj�jj � �;�w

T

A� � 0g:

11



The condition �w

T

A� � 0 is equivalent to �

1

�

1

w

1

+ �

2

�

2

w

2

� 0, m

1

can be written as

m

1

= maxfj�

1

�

1

+ w

1

p

max

j : j�

1

j � �; j�

2

j � �; �

1

�

1

w

1

+ �

2

�

2

w

2

� 0g

= maxfj�

1

�

1

+ w

1

p

max

j : j�

1

j � �; �

1

� � �

w

2

�

2

w

1

�

1

g:

Now let us assume that

�

1

w

1

� �

2

w

2

: (20)

Then

m

1

= maxfj�

1

�

1

+ w

1

p

max

j : �� � �

1

� � �

w

2

�

2

w

1

�

1

g:

Because the expression �

1

�

1

+ w

1

p

max

is linear it follows

m

1

= maxfj � ��

1

+ w

1

p

max

j; j� �

w

2

�

2

w

1

+ w

1

p

max

jg:

The same argument is true when computing m

2

but this time due to the assumption (20) the

condition �

2

� � �

w

1

�

1

w

2

�

2

is weaker than �

2

� �. Hence:

m

2

= maxfj�

2

�

2

+ w

2

p

max

j : j�

2

j � �; �

2

� � �

w

1

�

1

w

2

�

2

g

= maxfj�

2

�

2

+ w

2

p

max

j : j�

2

j � �g

= maxfj � ��

2

+ w

2

p

max

j; j��

2

+ w

2

p

max

jg

= j��

2

+ w

2

p

max

j:

Finally

m = maxfm

1

; m

2

g = maxfj � ��

1

+ w

1

p

max

j; j

�w

2

�

2

w

1

+ w

1

p

max

j; j��

2

+ w

2

p

max

jg:

From m < � and the additional assumption (20) the conditions (19) can be easily derived.

Let us now consider the second case when the assumption (20) does not hold. Then �

1

w

1

<

�

2

w

2

. In this case we will obtain the same formula for m but with exchanged indices:

m = maxfj � ��

2

+ w

2

p

max

j; j

�w

1

�

1

w

2

+ w

2

p

max

j; j��

1

+ w

1

p

max

jg:

As j�

1

j > 1 then the last element j��

1

+ w

1

p

max

j > �, hence m > � and the condition (18) is

not ful�lled.

2

From (19) one can see that p

max

depends linearly on �. If we want the trajectory to remain

closer to the stabilized periodic orbit we must choose smaller p

max

.

Corollary 2 If

j�

2

w

2

j � j�

1

w

1

j

j�

1

j < 2� j

w

2

�

2

w

1

j (21)

j�

1

j < 1 + (1� j�

2

j)j

w

1

w

2

j

then there exists p

max

such that (17) hold.
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Proof: We choose � such that inside the ball f� : jj�jj

1

< �g the linear approximation (6) is

good. From the previous lemma the value of p

max

satisfying conditions (19) can be chosen if

and only if

j�

2

w

2

j � j�

1

w

1

j

� �

j�

1

j � 1

jw

1

j

< � �

1� jw

2

�

2

=w

1

j

jw

1

j

� �

j�

1

j � 1

jw

1

j

< � �

1� j�

2

j

jw

2

j

which is equivalent to conditions (21).

2

The condition (17) is only a su�cient condition for the method to work and hence the conditions

for �

1

, �

2

, w

1

and w

2

in the previous two Corollaries are not strictly equivalent to the proper

behaviour of the method. But in spite of that we have found them to be good criteria when

searching for the best location of points on the periodic orbit used for the control.

Corollary 3 For j�

1

j � 2 there exists no pair (�; p

max

) satisfying (19). If �

2

could be neglected

(j�

2

j � 1) (which is usually true for unstable periodic orbits in chaotic systems) and jw

1

j > jw

2

j

(which should be true for the e�ective control) then for j�

1

j < 2 there exist p

max

and � satisfying

(19) and the e�ectiveness of control depends on noise in the system.

Corollary 4 Let n denote the number of points on the periodic orbit used for the two-level

control. Let �

1

be the unstable eigenvalue of the periodic orbit. If

n � ln

2

j�

1

j;

then there exists no pair (�; p

max

) satisfying (19) for every generalized Poincar�e map P

j

, j 2

f1; : : : ; ng.

Proof: In order to satisfy (19) we must choose so many points on the periodic orbit that

all matrices A

j

have their eigenvalues smaller than two. Let us assume that j�

j

1

j < 2 are the

unstable eigenvalues of matricesA

j

, and �

1

is the unstable eigenvalue of matrixA = A

n

�: : :�A

1

.

Then

j�

1

j < j�

1

1

j � : : : � j�

n

1

j < 2

n

and hence the Corollary is true.

2

3.5 Properties of the method

The two methods described are feedback methods. Only one accessible system parameter with

only two levels is necessary for stabilization of periodic orbits embedded within the attractor.

For the implementation of the method one must calculate 5 parameters for each of the n points

(4 in the case of two-level control), namely three coordinates of points x(t

j

) and two coe�cients

of vector g

j

de�ned in (5) necessary for obtaining the control signal �p

i

using Eq. (5). All

the parameters necessary for the control can be calculated without knowledge of the system

equations. Periodic orbits can be found from the data series using the procedures given by

Lathrop and Kostelich [Lathrop & Kostelich, 1989], the approximation of the Jacobians A

j

could be found using the standard LS algorithm. For the determination of vectors w

j

one could

use the method presented in [Dressler & Nitsche, 1992]. For the case when only one system

variable is measureable the well-known delay coordinate embedding technique is also available.
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3.6 Discussion of parameter settings ensuring proper operation

of the method

There are several parameters which must be set properly to ensure the desired behaviour of the

controlled system. The �rst parameter is d

max

, which determines whether to activate control or

not. If intersection of the trajectory with one of Poincar�e planes is detected then the distance

d between the actual intersection and the periodic orbit is calculated. If it is greater than

d

max

then the parameter perturbation is set to zero. If d � d

max

then the parameter change

is computed using Eq. (5) and the control is activeted. Another possibility is not to check the

distance and apply the control always after detection of an intersection. But this solution does

not work properly in most situations because one orbit can intersect a given plane many times.

Also the linearisation conditions do not hold in large neighbourhoods. The value of d

max

could

not be chosen to small because chaotic transients would be too long and also the noise could

a�ect the result. During the experiments we have used d

max

= 0:01 and we have calculated

distances after normalizing variables to the interval [0; 1].

Another important parameters are: n - the number of points on periodic orbit at which

we modify the control signal and the positions of these points. We already know the lower

boundary for n in the case of two-level control. It seems that the most e�ective control should

be obtained when the unstable eigenvalues of matrices A

j

are equal in absolute value. The

same should also be true for continuous-value control. But as will be shown in one of examples

this is not always true.

The next parameter which must be chosen carefully in the two-level control is p

max

. The

value of p

max

should satisfy conditions (19) from Lemma 4, but unfortunately we do not know

the value � for which the linearisation is correct. It cannot be chosen too big due to nonlinear

e�ects and too small because change in the system caused by applying the signal �p

max

must

excede the level of noise. Usually it has to be chosen by a trial-and-error. The in
uence of the

number of points n on allowable values of p

max

is discussed in the next section. Generally for

greater n one has more freedom in choosing p

max

.

4 Simulation Results

For the experiments we have used the canonical Chua's circuit [Chua & Lin, 1990], with the

dynamics described by a third-order state equation:

C

1

_x = �g(x) + z

C

2

_y = �Gy + z (22)

L _z = �x� y �Rz

where g(�) has a three-segment piecewise-linear characteristic:

g(x) = G

b

x+ 0:5(G

a

�G

b

)(jx+ 1j � jx� 1j) (23)

We have used the following parameter values: C

1

= 1, C

2

= �0:632, G = �0:0033, L =

�1:02, R = �0:33, G

a

= �0:419, G

b

= 0:839. For this set of parameters the double-scroll

attractor exists. The double-scroll attractor is shown in Fig.2. Four of the periodic orbits

embedded within the attractor are shown in Fig.3. We use the following coding of unstable

periodic orbits: 


m;n

denotes periodic orbit with m windings around P

+

and n windings around

P

�

, where P

+

and P

�

are unstable equilibria of the system in the regions x > 1 and x < �1

appropriately.

During the experiments the state equation has been integrated numerically using fourth-

order Runge-Kutta method with time step 0.1 and saved as a three-dimensional time series.

14



-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3

4

x

y

Figure 2: The double scroll Chua's attractor

All the parameters necessary for the control have been calculated from this data series without

the knowledge of the system state equation. In all experiments we have used Poincar�e planes

orthogonal to the �rst axis. We have chosen C

1

as the control parameter.

4.1 Continuous-value control of period-one orbit

In the �rst experiment we have controlled the period-one orbit (compare Fig. 3a) using single-

point (n = 1) continuous-value control method. We have chosen one point on the orbit de�ned

by: x = 1, _x < 0. The computed eigenvalues and vector w used during the control are presented

below.

�

1

�

2

w

1

w

2

�2:55 �0:002 0:75 0:21

The condition (10) is satis�ed, and hence also the condition (16). The result of the control

is shown in Fig. 4.

We would like to stress that Lemma 3 gives su�cient conditions only if we assume that all

the parameters in the linear approximation are accurate and the nonlinear e�ects are negligible.

But this is not always true, especially if parameters are found from a data series. We have tried

to control the same periodic orbit for a slightly changed nominal value of parameter, C

1

= 1:02.

This time computed coe�cients are

�

1

�

2

w

1

w

2

�3:39 �0:002 0:71 0:19
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Figure 3:

Examples of unstable periodic orbits within the double scroll strange attractor,

(a) 


1;0

, (b) 


2;2

, (c) 


3;0

, (d) 


3;9

.

The subscripts denotes the number of windings around the equilibria P

+

and P

�

Although for these coe�cients the assumptions of Lemma 3 hold we were not able to stabilize

this periodic orbit. The reason could be some inaccuracies in calculation of coe�cients and/or

too large ustable eigenvalue. Such a large value could increase errors of computed parameters

exponentially and cause that the control signal is applied too rarely.

4.2 Continuous-value control of longer orbits

As it has been mentioned before applying the control signal once per period could be not

frequent enough due to strong repelling action in the unstable direction. Hence we must apply

the control signal more frequently (greater n).

In Figs. 5-7 we show the examples of successful control of orbits 


2;2

, 


3;0

, 


3;9

. For the

control of symmetric orbit 


2;2

we have used two points on the orbit de�ned by: x = 1 and

_x < 0. One can see (compare Fig. 5) that these points do not divide the orbit equally in time,

but this is not necessary for the method to work. We would like to remark that the second

Jacobian has no unstable direction, hence one could not use the OGY method here.

We have also tried to stabilize orbit 


3;0

(Fig. 6). The control was possible with three points

on the orbit. We have chosen one point on the plane x = 1, and two points on the plane x = 0.

In Fig. 7 we show how the method works with an extremely long orbit. For the stabilisation

of orbit 


3;9

with 12 windings around system equilibria P

+

and P

�

we needed 10 points on the
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Figure 4:

Control of 


1;0

, period-one orbit. (a) state variable x, (b) control signal C

1

orbit.

4.3 Two-level control

In this section we report the results of implementation of the two-level control method. In Figs.

8..10 we present the stabilized period-one orbit using n = 10; 6; 4 points. For each value of n

we have tried to choose n points on the periodic orbit in such a way that maximal eigenvalue

of matrices A

j

is as small as possible. We have noticed that for small n one must choose the

value p

max

more carefully. The values of p

max

for which the stabilization has been successful

are summarized below:

n p

max

10 0:0008::0:10

6 0:0008::0:08

4 0:0018::0:06

3 0:0020::0:03

2 �

For n = 2 the stabilization was unsuccessful (compare Fig. 11) but we have obtained long

periodic movements breaked by chaotic bursts. For p

max

= 0:0024 we have observed the longest

periodic parts. Why is control with two points not possible? This periodic orbit has the unstable

eigenvalue �

1

= �2:55. Hence from Corollary 4 the minimal value for n is 2. We have chosen

two points on the orbit lying on the plane x = 1. The linear coe�cients of the corresponding

Poincar�e maps are:
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Figure 5:

Control of 


2;2

, symmetric orbit, n = 2

j �

j

1

�

j

2

w

j

1

w

j

2

1 1:53 �0:44 �0:13 1:28

2 �1:54 0:02 0:76 2:58

The vectors w

j

are evaluated in coordinates de�ned by eigenvectors of matrices A

j

. One

can see that vectors w

j

are badly situated. From Corollary 2 it follows that the following

conditions should hold: j�

1

1

j < �2 and j�

2

1

j < 1:3. None of them is satis�ed and this could be

an explanation why control is not possible.

It is interesting to observe for the case n = 3 the unstable eigenvalues of matrices A

j

. For

three points on the orbit de�ned by (x = 1, _x < 0), (x = 0:4, _x < 0), (x = 1:8, _x > 0) the

corresponding eigenvalues are �

1

1

= 2:76, �

2

1

= 1:04, �

3

1

= �1:16. These values are far from

the optimal case when all unstable eigenvalues are equal in magnitude, with absolute values

smaller than two. But for these positions of points x(t

1

), x(t

2

), x(t

3

) the method has worked

properly. We have managed to position points x(t

j

) in such a way that all unstable eigenvalues

have satis�ed the condition j�

j

1

j < 1:8 but then the control has been unsuccessful. The reason

could be vectors w

j

which in the second case are badly situated.

In general to check if for a speci�c n the control is possible one has to test several positions

of points x(t

j

) and several values of p

max

.

In the last experiment we have controlled the orbit 


2;2

using 10 points on the orbit (Fig.

12). The method works properly and the conclusion is that the two-level control method can

also be used for longer periodic orbits but obviously greater n must be used to obtain successful

control.
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Figure 6:

Control of 


3;0

, period-three orbit, n = 3
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Figure 7:

Control of 


3;9

, long orbit, n = 10
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Figure 8:

Two-level control of period-one orbit, n=10
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Figure 9:

Two-level control of period-one orbit, n=6
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Figure 10:

Two-level control of period-one orbit, n=4
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Figure 11:

Attempt of two-level control of period-one orbit, n=2
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Figure 12:

Two-level control of 


2;2

, symmetric orbit, n=10

5 Conclusions

The new general method of controlling chaotic systems is introduced. It can be used for sta-

bilizing periodic orbits in chaotic systems, when only one system parameter is accessible. Its

modi�cation (called the two-level control) for the case, when the allowed range for the control

parameter value is a two-element set, is also described. Some theoretical results on the choice of

the method's parameters are given. The dependence of the e�ectiveness of control upon various

parameters has been discussed. The control formulas introduced in the paper have been applied

in simulations of Chua's circuit. Both methods have been found to work properly in computer

simulations. We have managed to stabilize several periodic orbits using both methods.
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